Skip to main content

FAT10

Activated by UBA6 and Functioning in Protein Degradation

  • Chapter
Conjugation and Deconjugation of Ubiquitin Family Modifiers

Part of the book series: Subcellular Biochemistry ((SCBI,volume 54))

Abstract

The ubiquitin-like modifier FAT10 (HLA-F adjacent transcript 10) is the only ubiquitin-like modifier known, which apart from ubiquitin, directly targets proteins to proteasomal degradation. The covalent linkage of ubiquitin or other ubiquitin-like modifiers (ULM) to specific substrates is achieved by adjoining them to target proteins with an enzyme cascade using three enzymes: E1, E2 and E3. The first enzyme activates the ULM, the second enzyme serves a conjugating enzyme and the third enzyme ligates the ULM to its target. More recently, the first enzyme in the FAT10 conjugation machinery was characterized. It turned out that the novel E1 activating enzyme UBA6, which serves as a second E1 for ubiquitin in higher eukaryotes, additionally has the ability to activate FAT10. In this chapter the activation of FAT10 and ubiquitin by UBA6 as well as the role of FAT10 in protein degradation will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ciechanover A, Heller H, Katz-Etzion R et al. Activation of the heat-stable polypeptide of the ATP-dependent proteolytic system. Proc Natl Acad Sci USA 1981; 78:761–5.

    Article  CAS  PubMed  Google Scholar 

  2. Haas AL, Warms JV, Hershko A et al. Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation. J Biol Chem 1982; 257:2543–8.

    CAS  PubMed  Google Scholar 

  3. Hershko A, Heller H, Elias S et al. Components of ubiquitin-protein ligase system. Resolution, affinity purification and role in protein breakdown. J Biol Chem 1983; 258:8206–14.

    CAS  PubMed  Google Scholar 

  4. Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem 1998; 67:425–79.

    Article  CAS  PubMed  Google Scholar 

  5. Ciechanover A. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 1998; 17:7151–60.

    Article  CAS  PubMed  Google Scholar 

  6. Haglund K, Dikic I. Ubiquitylation and cell signaling. EMBO J 2005; 24:3353–9.

    Article  CAS  PubMed  Google Scholar 

  7. Hochstrasser M. Evolution and function of ubiquitin-like protein-conjugation systems. Nat Cell Biol 2000; 2: E153–7.

    Article  CAS  PubMed  Google Scholar 

  8. Hurley JH, Lee S, Prag G. Ubiquitin-binding domains. Biochem J 2006; 399:361–72.

    Article  CAS  PubMed  Google Scholar 

  9. Kerscher O, Felberbaum R, Hochstrasser M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Ann Rev Cell Dev Biol 2006; 22:159–80.

    Article  CAS  Google Scholar 

  10. Pelzer C, Kassner I, Matentzoglu K et al. UBE1L2, a novel E1 enzyme specific for ubiquitin. J Biol Chem 2007; 282:23010–4.

    Article  CAS  PubMed  Google Scholar 

  11. Jin J, Li X, Gygi SP et al. Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature 2007; 447:1135–8.

    Article  CAS  PubMed  Google Scholar 

  12. Chiu YH, Sun Q, Chen ZJ. E1-L2 activates both ubiquitin and FAT10. Mol Cell 2007; 27:1014–23.

    Article  CAS  PubMed  Google Scholar 

  13. Lehmann C, Begley TP, Ealick SE. Structure of the Escherichia coli ThiS-T hiF complex, a key component of the sulfur transfer system in thiamin biosynthesis. Biochemistry 2006; 45:11–9.

    Article  CAS  PubMed  Google Scholar 

  14. Lake MW, Wuebbens MM, Rajagopalan KV et al. Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB-MoaD complex. Nature 2001; 414:325–9.

    Article  CAS  PubMed  Google Scholar 

  15. Huang DT, Walden H, Duda D et al. Ubiquitin-like protein activation. Oncogene 2004; 23:1958–71.

    Article  CAS  PubMed  Google Scholar 

  16. Groettrup M, Pelzer C, Schmidtke G et al. Activating the ubiquitin family: UBA6 challenges the field. Trends Biochem Sci 2008; 33:230–7.

    Article  CAS  PubMed  Google Scholar 

  17. Dye BT, Schulman BA. Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu Rev Biophys Biomol Struct 2007; 36:131–50.

    Article  CAS  PubMed  Google Scholar 

  18. Walden H, Podgorski MS, Huang DT et al. The structure of the APPBP1-UBA3-NED 8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. Mol Cell 2003; 12:1427–37.

    Article  CAS  PubMed  Google Scholar 

  19. Walden H, Podgorski MS, Schulman BA. Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NED 8. Nature 2003; 422:330–4.

    Article  CAS  PubMed  Google Scholar 

  20. Lois LM, Lima CD. Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J 2005; 24:439–51.

    Article  CAS  PubMed  Google Scholar 

  21. Lee I, Schindelin H. Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell 2008; 134:268–78.

    Article  CAS  PubMed  Google Scholar 

  22. Johnson ES, Schwienhorst I, Dohmen RJ et al. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J 1997; 16:5509–19.

    Article  CAS  PubMed  Google Scholar 

  23. Liakopoulos D, Doenges G, Matuschewski K et al. A novel protein modification pathway related to the ubiquitin system. EMBO J 1998; 17:2208–14.

    Article  CAS  PubMed  Google Scholar 

  24. Szczepanowski RH, Filipek R, Bochtler M. Crystal structure of a fragment of mouse ubiquitin-activating enzyme. J Biol Chem 2005; 280:22006–11.

    Article  CAS  PubMed  Google Scholar 

  25. Huang DT, Paydar A, Zhuang M et al. Structural basis for recruitment of Ubc12 by an E2 binding domain in NED 8’s E1. Mol Cell 2005; 17:341–50.

    Article  CAS  PubMed  Google Scholar 

  26. Huang DT, Hunt HW, Zhuang M et al. Basis for a ubiquitin-like protein thioester switch toggling E1-E 2 affinity. Nature 2007; 445:394–8.

    Article  CAS  PubMed  Google Scholar 

  27. Komatsu M, Chiba T, Tatsumi K et al. A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier. EMBO J 2004; 23:1977–86.

    Article  CAS  PubMed  Google Scholar 

  28. Schmitz J, Chowdhury MM, Hanzelmann P et al. The sulfurtransferase activity of Uba4 presents a link between ubiquitin-like protein conjugation and activation of sulfur carrier proteins. Biochemistry 2008; 47:6479–89.

    Article  CAS  PubMed  Google Scholar 

  29. Tanida I, Tanida-Miyake E, Ueno T et al. The human homolog of Saccharomyces cerevisiae Apg7p is a Protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP and MAP-LC3. J Biol Chem 2001; 276:1701–6.

    CAS  PubMed  Google Scholar 

  30. Komatsu M, Tanida I, Ueno T et al. The C-terminal region of an Apg7p/Cvt2p is required for homodimerization and is essential for its E1 activity and E1-E 2 complex formation. J Biol Chem 2001; 276:9846–54.

    Article  CAS  PubMed  Google Scholar 

  31. Haas AL, Warms JV, Rose IA. Ubiquitin adenylate: structure and role in ubiquitin activation. Biochemistry 1983; 22:4388–94.

    Article  CAS  PubMed  Google Scholar 

  32. Haas AL, Rose IA. The mechanism of ubiquitin activating enzyme. A kinetic and equilibrium analysis. J Biol Chem 1982; 257:10329–37.

    CAS  PubMed  Google Scholar 

  33. Ciechanover A, Elias S, Heller H et al. “Covalent affinity” purification of ubiquitin-activating enzyme. J Biol Chem 1982; 257:2537–42.

    CAS  PubMed  Google Scholar 

  34. Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem 2001; 70:503–33.

    Article  CAS  PubMed  Google Scholar 

  35. Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2001; 2:211–6.

    Article  CAS  PubMed  Google Scholar 

  36. Ichimura Y, Kirisako T, Takao T et al. A ubiquitin-like system mediates protein lipidation. Nature 2000; 408:488–92.

    Article  CAS  PubMed  Google Scholar 

  37. Ohsumi Y, Mizushima N. Two ubiquitin-like conjugation systems essential for autophagy. Semin Cell Dev Biol 2004; 15:231–6.

    Article  CAS  PubMed  Google Scholar 

  38. Gong L, Li B, Millas S et al. Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex. FEBS Lett 1999; 448:185–9.

    Article  CAS  PubMed  Google Scholar 

  39. Desterro JM, Rodriguez MS, Kemp GD et al. Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J Biol Chem 1999; 274:10618–24.

    Article  CAS  PubMed  Google Scholar 

  40. Zheng M, Gu X, Zheng D et al. UBE1DC1, an ubiquitin-activating enzyme, activates two different ubiquitin-like proteins. J Cell Biochem 2008; 104:2324–34.

    Article  CAS  PubMed  Google Scholar 

  41. Canaan A, Yu X, Booth CJ et al. FAT10/diubiquitin-like protein-deficient mice exhibit minimal phenotypic differences. Mol Cell Biol 2006; 26:5180–9.

    Article  CAS  PubMed  Google Scholar 

  42. Yuan W, Krug RM. Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J 2001; 20:362–71.

    Article  CAS  PubMed  Google Scholar 

  43. Hatfield PM, Gosink MM, Carpenter TB et al. The ubiquitin-activating enzyme (E1) gene family in Arabidopsis thaliana. Plant J 1997; 11:213–26.

    Article  CAS  PubMed  Google Scholar 

  44. Hatfield PM, Vierstra RD. Multiple forms of ubiquitin-activating enzyme E1 from wheat. Identification of an essential cysteine by in vitro mutagenesis. J Biol Chem 1992; 267:14799–803.

    CAS  PubMed  Google Scholar 

  45. Gu X, Zhao F, Zheng M et al. Cloning and characterization of a gene encoding the human putative ubiquitin conjugating enzyme E2Z (UBE2Z). Mol Biol Rep 2007; 34:183–8.

    Article  CAS  PubMed  Google Scholar 

  46. Fan W, Cai W, Parimoo S et al. Identification of seven new human MHC class I region genes around the HLA-F locus. Immunogenetics 1996; 44:97–103.

    Article  CAS  PubMed  Google Scholar 

  47. Liu YC, Pan J, Zhang C et al. A MHC-encoded ubiquitin-like protein (FAT10) binds noncovalently to the spindle assembly checkpoint protein MAD2. Proc Natl Acad Sci USA 1999; 96:4313–8.

    Article  CAS  PubMed  Google Scholar 

  48. Raasi S, Schmidtke G, Groettrup M. The ubiquitin-like protein FAT10 forms covalent conjugates and induces apoptosis. J Biol Chem 2001; 276:35334–43.

    Article  CAS  PubMed  Google Scholar 

  49. Narasimhan J, Wang M, Fu Z et al. Crystal structure of the interferon-induced ubiquitin-like protein ISG15. J Biol Chem 2005; 280:27356–65.

    Article  CAS  PubMed  Google Scholar 

  50. Raasi S, Schmidtke G, de Giuli R et al. A ubiquitin-like protein which is synergistically inducible by interferon-gamma and tumor necrosis factor-alpha. Eur J Immunol 1999; 29:4030–6.

    Article  CAS  PubMed  Google Scholar 

  51. Bates EFM, Ravel O, Dieu MC et al. Identification and analysis of a novel member of the ubiquitin family expressed in dendritic cells and mature B-cells. Eur J Immunol 1997; 27:2471–7.

    Article  CAS  PubMed  Google Scholar 

  52. Lukasiak S, Schiller C, Oehlschlaeger P et al. Proinflammatory cytokines cause FAT10 upregulation in cancers of liver and colon. Oncogene 2008; 27:6068–74.

    Article  CAS  PubMed  Google Scholar 

  53. Lee CG, Ren J, Cheong IS et al. Expression of the FAT10 gene is highly upregulated in hepatocellular carcinoma and other gastrointestinal and gynecological cancers. Oncogene 2003; 22:2592–603.

    Article  CAS  PubMed  Google Scholar 

  54. Xiong W, Wang X, Liu XY et al. Analysis of gene expression in hepatitis B virus transfected cell line induced by interferon. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 2003; 35:1053–60.

    CAS  Google Scholar 

  55. Ocklenburg F, Moharregh-Khiabani D, Geffers R et al. UBD, a downstream element of FOXP3, allows the identification of LGALS3, a new marker of human regulatory T-cells. Lab Invest 2006; 86:724–37.

    Article  CAS  PubMed  Google Scholar 

  56. Ebstein F, Lange N, Urban S et al. Maturation of human dendritic cells is accompanied by functional remodelling of the ubiquitin-proteasome system. Int J Biochem Cell Biol 2008.

    Google Scholar 

  57. Ross MJ, Wosnitzer MS, Ross MD et al. Role of ubiquitin-like protein FAT10 in epithelial apoptosis in renal disease. J Am Soc Nephrol 2006; 17:996–1004.

    Article  CAS  PubMed  Google Scholar 

  58. Coyle B, Freathy C, Gant TW et al. Characterization of the transforming growth factor-beta 1-induced apoptotic transcriptome in FaO hepatoma cells. J Biol Chem 2003; 278:5920–8.

    Article  CAS  PubMed  Google Scholar 

  59. Ren J, Kan A, Leong SH et al. FAT10 plays a role in the regulation of chromosomal stability. J Biol Chem 2006; 281:11413–21.

    Article  CAS  PubMed  Google Scholar 

  60. FitzPatrick DR, Ramsay J, McGill NI et al. Transcriptome analysis of human autosomal trisomy. Hum Mol Genet 2002; 11:3249–56.

    Article  CAS  PubMed  Google Scholar 

  61. Hipp MS, Kalveram B, Raasi S et al. FAT10, a ubiquitin-independent signal for proteasomal degradation. Mol Cell Biol. 2005; 25:3483–91.

    Article  CAS  PubMed  Google Scholar 

  62. Oliva J, Bardag-Gorce F, French BA et al. Fat10 is an epigenetic marker for liver preneoplasia in a drug-primed mouse model of tumorigenesis. Exp Mol Pathol 2008; 84:102–12.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang DW, Jeang KT, Lee CG. p53 negatively regulates the expression of FAT10, a gene upregulated in various cancers. Oncogene 2006; 25:2318–27.

    Article  CAS  PubMed  Google Scholar 

  64. Dokmanovic M, Chang BD, Fang J et al. Retinoid-induced growth arrest of breast carcinoma cells involves co-activation of multiple growth-inhibitory genes. Cancer Biol Ther 2002; 1:24–7.

    CAS  PubMed  Google Scholar 

  65. Hipp MS, Raasi S, Groettrup M et al. NED 8 ultimate buster-1L interacts with the ubiquitin-like protein FAT10 and accelerates its degradation. J Biol Chem 2004; 279:16503–10.

    Article  CAS  PubMed  Google Scholar 

  66. Kamitani T, Kito K, Fukuda-Kamitani T et al. Targeting of NED 8 and its conjugates for proteasomal degradation by NUB1. J Biol Chem 2001; 276:46655–60.

    Article  CAS  PubMed  Google Scholar 

  67. Schmidtke G, Kalveram B, Weber E et al. The UBA domains of NUB1L are required for binding but not for accelerated degradation of the ubiquitin-like modifier FAT10. J Biol Chem 2006; 281:20045–54.

    Article  CAS  PubMed  Google Scholar 

  68. Schauber C, Chen L, Tongaonkar P et al. Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 1998; 391:715–8.

    Article  CAS  PubMed  Google Scholar 

  69. Raasi S, Varadan R, Fushman D et al. Diverse polyubiquitin interaction properties of ubiquitin-associated domains. Nat Struct Mol Biol 2005; 12:708–14.

    Article  CAS  PubMed  Google Scholar 

  70. Schmidtke G, Kalveram B, Groettrup M. Degradation of FAT10 by the 26S proteasome is independent of ubiquitylation but relies on NUB1L. FEBS Lett 2009; 583:591–4.

    Article  CAS  PubMed  Google Scholar 

  71. Kalveram B, Schmidtke G, Groettrup M. The ubiquitin-like modifier FAT10 interacts with HDAC6 and localizes to aggresomes under proteasome inhibition. J Cell Sci 2008; 121:4079–88.

    Article  CAS  PubMed  Google Scholar 

  72. Iwata A, Riley BE, Johnston JA et al. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem 2005; 280:40282–92.

    Article  CAS  PubMed  Google Scholar 

  73. Pandey UB, Nie Z, Batlevi Y et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 2007; 447:859–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Groettrup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Pelzer, C., Groettrup, M. (2010). FAT10. In: Groettrup, M. (eds) Conjugation and Deconjugation of Ubiquitin Family Modifiers. Subcellular Biochemistry, vol 54. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6676-6_19

Download citation

Publish with us

Policies and ethics