Skip to main content

LTBR-Pathway in Sjogren’s Syndrome: CXCL13 Levels and B-cell-Enriched Ectopic Lymphoid Aggregates in NOD Mouse Lacrimal Glands Are Dependent on LTBR

  • Conference paper
  • First Online:
Advances in TNF Family Research

Abstract

The fact that TNF receptor family members are involved in the control of diverse gene products that effect both pro-inflammatory and homeostatic functions related to immune protection offers multiple targets for clinical intervention in a range of disease contexts. The stunning success of anti-TNF-alpha therapy in the treatment of the inflammatory disease rheumatoid arthritis perhaps best illustrates the vast potential of antagonism of TNF family members in clinical medicine [1]. The involvement of other family members, such as CD40, in many other immune regulated diseases will also no doubt lead to similar success stories. In contrast to the pro-inflammatory pathways controlled by TNF-alpha, our lab has begun to determine whether antagonism of the “homeostatic” pathways in secondary and “ectopic” or tertiary lymphoid tissues that are under the control of the TNF receptor family member lymphotoxin-beta receptor (LTBR) might represent a useful target in the treatment of certain diseases such as Sjogren’s syndrome where frank inflammation is not the primary pathogenic impetus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feldmann M (2002) Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev Immunol 2:364–371

    Article  CAS  PubMed  Google Scholar 

  2. Drayton DL, Liao S, Mounzer HR, and Ruddle HN (2006) Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol 7:344–353

    Article  CAS  PubMed  Google Scholar 

  3. Roozendaal R, Mempel RT, Pitcher AL, Gonzalez SF, Verschoor A, Mebius RE, von Andrian UH, and Carroll MC (2009) Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 30:264–276

    Article  CAS  PubMed  Google Scholar 

  4. Grabner R, Lotzer K, Dopping S, Hildner M, Radke D, Beer M, Spanbroek R, Lippert B, Reardon CA, Getz GS, Fu YX, Hehlgans T, Mebius RE, van der Wall M, Kruspe D, Englert C, Lovas A, Hu D, Randolph GJ, Weih F, Habenicht AJ (2009) Lymphotoxin beta receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE-/- mice. J Exp Med 206:233–248

    Article  PubMed  Google Scholar 

  5. Bombardieri M, Barone F, Humby F, Kelly S, McGurk M, Morgan P, Challacombe S, De Vita S, Valesini G, Spencer J, Pitzalis C (2007) Activation-induced cytidine deaminase expression in follicular dendritic cell networks and interfollicular large B cells supports functionality of ectopic lymphoid neogenesis in autoimmune sialoadenitis and MALT lymphoma in Sjogren’s syndrome. J Immunol 179:4929–4938

    CAS  PubMed  Google Scholar 

  6. Manzo A, Pitzalis C (2007) Lymphoid tissue reactions in rheumatoid arthritis. Autoimmun Rev 7:30–34

    Article  CAS  PubMed  Google Scholar 

  7. de Boer BA, Voigt I, Kim HJ, Camacho SA, Lipp M, Forster R, Berek C (2000) Affinity maturation in ectopic germinal centers. Curr Top Microbiol Immunol 251:191–195

    PubMed  Google Scholar 

  8. Nasr IW, Reel M, Oberbarnscheidt MH, Mounzer RH, Baddoura FK, Ruddle NH, Lakkis FG (2007) Tertiary lymphoid tissues generate effector and memory T cells that lead to allograft rejection. Am J Transplant 7:1071–1079

    Article  CAS  PubMed  Google Scholar 

  9. Humphreys-Beher MG, Hu Y, Nakagawa Y, Wang PL, Purushotham KR (1994) Utilization of the non-obese diabetic (NOD) mouse as an animal model for the study of secondary Sjogren’s syndrome. Adv Exp Med Biol 350:631–636

    CAS  PubMed  Google Scholar 

  10. Jonsson MV, Delaleu N, Jonsson R (2007) Animal models of Sjogren’s syndrome. Clin Rev Allergy Immunol 32:215–224

    Article  CAS  PubMed  Google Scholar 

  11. Doyle ME, Boggs L, Attia R, Cooper LR, Saban DR, Nguyen CQ, Peck AB (2007) Autoimmune dacryoadenitis of NOD/LtJ mice and its subsequent effects on tear protein composition. Am J Pathol 171:1224–1236

    Article  CAS  PubMed  Google Scholar 

  12. Pozzilli P, Signore A, Williams AJ, Beales PE (1993) NOD mouse colonies around the world – recent facts and figures. Immunol Today 14:193–196

    Article  CAS  PubMed  Google Scholar 

  13. Gatumu MK, Skarstein K, Papandile A, Browning JL, Fava RA, Bolstad AI (2009) Blockade of lymphotoxin-beta receptor signaling reduces aspects of Sjogren’s syndrome in salivary glands of non-obese diabetic mice. Arthritis Res Ther 11:R24

    Article  PubMed  Google Scholar 

  14. Mikulowska-Mennis A, Xu B, Berberian JM, Michie SA (2001) Lymphocyte migration to inflamed lacrimal glands is mediated by vascular cell adhesion molecule-1/alpha(4)beta(1) integrin, peripheral node addressin/l-selectin, and lymphocyte function-associated antigen-1 adhesion pathways. Am J Pathol 159:671–681

    CAS  PubMed  Google Scholar 

  15. Browning JL, Allaire N, Ngam A-Ek, Notidis E, Hunt J, Perrin S, Fava RA (2005) Lymphotoxin-beta receptor signaling is required for the homeostatic control of HEV differentiation and function. Immunity 23:539–550

    Article  CAS  PubMed  Google Scholar 

  16. Allen CD, Cyster JG (2008) Follicular dendritic cell networks of primary follicles and germinal centers: phenotype and function. Semin Immunol 20:14–25

    Article  CAS  PubMed  Google Scholar 

  17. Carlsen HS, Baekkevold ES, Morton HC, Haraldsen G, Brandtzaeg P (2004) Monocyte-like and mature macrophages produce CXCL13 (B cell-attracting chemokine 1) in inflammatory lesions with lymphoid neogenesis. Blood 104:3021–3027

    Article  CAS  PubMed  Google Scholar 

  18. Luther SA, Ansel KM, Cyster JG (2003) Overlapping roles of CXCL13, interleukin 7 receptor alpha, and CCR7 ligands in lymph node development. J Exp Med 197:1191–1198

    Article  CAS  PubMed  Google Scholar 

  19. Kim CH, Lim HW, Kim JR, Rott L, Hillsamer P, Butcher EC (2004) Unique gene expression program of human germinal center T helper cells. Blood 104:1952–1960

    Article  CAS  PubMed  Google Scholar 

  20. Chtanova T, Tangye SG, Newton R, Frank N, Hodge MR, Rolph MS, Mackay CR (2004) T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J Immunol 173:68–78

    CAS  PubMed  Google Scholar 

  21. Katakai T, Shimizu A (2008) Undesired meeting of lymphocytes: organ-specific infiltration and the organization of ectopic lymphoid tissue in a murine experimental autoimmune gastritis. Immunol Lett 118:103–109

    Article  CAS  PubMed  Google Scholar 

  22. Katakai T, Suto H, Sugai M, Gonda H, Togawa A, Suematsu S, Ebisuno Y, Katagiri K, Kinashi T, Shimizu A (2008) Organizer-like reticular stromal cell layer common to adult secondary lymphoid organs. J Immunol 181:6189–6200

    CAS  PubMed  Google Scholar 

  23. Nagatake T, Fukuyama S, Kim DY, Goda K, Igarashi O, Sato S, Nochi T, Sagara H, Yokota Y, Jetten AM, Kaisho T, Akira S, Mimuro H, Sasakawa C, Fukui Y, Fujihashi K, Akiyama T, Inoue J, Penninger JM, Kunisawa J, Kiyono H (Oct 26, 2009) Id2-, RORgammat-, and LTbetaR-independent initiation of lymphoid organogenesis in ocular immunity. J Exp Med 206(11):2351–2364. Epub 2009 Oct 12

    Google Scholar 

  24. Vondenhoff MF, Greuter M, Goverse G, Elewaut D, Dewint P, Ware CF, Hoorweg K, Kraal G, Mebius RE (2009) LTbetaR signaling induces cytokine expression and up-regulates lymphangiogenic factors in lymph node anlagen. J Immunol 182:5439–5445

    Article  CAS  PubMed  Google Scholar 

  25. van de Pavert SA, Olivier BJ, Goverse G, Vondenhoff MF, Greuter M, Beke P, Kusser K, Höpken UE, Lipp M, Niederreither K, Blomhoff R, Sitnik K, Agace WW, Randall TD, de Jonge WJ, Mebius RE (Nov 2009) Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. Nat Immunol 10(11):1193–1199

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy A. Fava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Fava, R.A., Browning, J.L., Gatumu, M., Skarstein, K., Bolstad, AI. (2011). LTBR-Pathway in Sjogren’s Syndrome: CXCL13 Levels and B-cell-Enriched Ectopic Lymphoid Aggregates in NOD Mouse Lacrimal Glands Are Dependent on LTBR. In: Wallach, D., Kovalenko, A., Feldmann, M. (eds) Advances in TNF Family Research. Advances in Experimental Medicine and Biology, vol 691. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6612-4_39

Download citation

Publish with us

Policies and ethics