Skip to main content

The Edar Subfamily in Hair and Exocrine Gland Development

  • Conference paper
  • First Online:
Advances in TNF Family Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 691))

Abstract

The Edar subfamily of TNFRs includes three receptors, Edar, Troy, and Xedar, with similar extracellular but unrelated intracellular domains. All three receptors are expressed in the embryonic ectoderm and/or its appendages, such as hair follicle, tooth, and sweat and mammary gland. While the function of the Edar pathway, mutated in human hypohidrotic ectodermal syndrome (HED), has been conserved during vertebrate evolution, considerably less is known about the physiological role of Troy and Xedar. Research on the Edar pathway has focused on hair follicle and tooth biology, but recent progress has been made in uncovering its relevance in morphogenesis of glandular appendages as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belmadani A, Jung H, Ren D, Miller RJ (2009) The chemokine SDF-1/CXCL12 regulates the migration of melanocyte progenitors in mouse hair follicles. Differentiation 77:395–411

    Article  CAS  PubMed  Google Scholar 

  2. Blecher SR, Kapalanga J, Lalonde D (1990) Induction of sweat glands by epidermal growth factor in murine X-linked anhidrotic ectodermal dysplasia. Nature 345:542–544

    Article  CAS  PubMed  Google Scholar 

  3. Bossen C, Ingold K, Tardivel A et al (2006) Interactions of tumor necrosis factor (TNF) and TNF receptor family members in the mouse and human. J Biol Chem 281:13964–13971

    Article  CAS  PubMed  Google Scholar 

  4. Casal ML, Lewis JR, Mauldin EA et al (2007) Significant correction of disease after postnatal administration of recombinant ectodysplasin A in canine X-linked ectodermal dysplasia. Am J Hum Genet 81:1050–1056.

    Article  CAS  PubMed  Google Scholar 

  5. Chang SH, Jobling S, Brennan K, Headon DJ (2009) Enhanced Edar signalling has pleiotropic effects on craniofacial and cutaneous glands. PLoS One 4:e7591

    Article  PubMed  Google Scholar 

  6. Clarke A, Phillips DI, Brown R, Harper PS (1987) Clinical aspects of X-linked hypohidrotic ectodermal dysplasia. Arch Dis Child 62:989–996

    Article  CAS  PubMed  Google Scholar 

  7. Courtney JM, Blackburn J, Sharpe PT (2005) The Ectodysplasin and NFκB signalling pathways in odontogenesis. Arch Oral Biol 50:159–163

    Article  CAS  PubMed  Google Scholar 

  8. Courtois G, Smahi A (2006) NF-κB-related genetic diseases. Cell Death Differ 13:843–851

    Article  CAS  PubMed  Google Scholar 

  9. Cui CY, Schlessinger D (2006) EDA signaling and skin appendage development. Cell Cycle 5:2477–2483

    Article  CAS  PubMed  Google Scholar 

  10. Cui CY, Durmowicz M, Ottolenghi C et al (2003) Inducible mEDA-A1 transgene mediates sebaceous gland hyperplasia and differential formation of two types of mouse hair follicles. Hum Mol Genet 12:2931–2940

    Article  CAS  PubMed  Google Scholar 

  11. Cui CY, Hashimoto T, Grivennikov SI et al (2006) Ectodysplasin regulates the lymphotoxin-β pathway for hair differentiation. Proc Natl Acad Sci (USA) 103:9142–9147

    Article  CAS  PubMed  Google Scholar 

  12. Cui CY, Kunisada M, Esibizione D et al (2009) Analysis of the temporal requirement for eda in hair and sweat gland development. J Invest Dermatol 129:984–993

    Article  CAS  PubMed  Google Scholar 

  13. Demicco EG, Kavanagh KT, Romieu-Mourez R et al (2005) RelB/p52 NF-κB complexes rescue an early delay in mammary gland development in transgenic mice with targeted superrepressor IκB-α expression and promote carcinogenesis of the mammary gland. Mol Cell Biol 25:10136–10147

    Article  CAS  PubMed  Google Scholar 

  14. Drew CF, Lin CM, Jiang TX et al (2007) The Edar subfamily in feather placode formation. Dev Biol 305:232–245

    Article  CAS  PubMed  Google Scholar 

  15. Drögemüller C, Distl O, Leeb T (2001) Partial deletion of the bovine ED1 gene causes anhidrotic ectodermal dysplasia in cattle. Genome Res 11:1699–1705

    Article  PubMed  Google Scholar 

  16. Fliniaux I, Mikkola ML, Lefebvre S, Thesleff I (2008) Identification of dkk4 as a target of Eda-A1/Edar pathway reveals an unexpected role of ectodysplasin as inhibitor of Wnt signalling in ectodermal placodes. Dev Biol 320:60–71

    Article  CAS  PubMed  Google Scholar 

  17. Fuchs E (2007) Scratching the surface of skin development. Nature 445:834–842

    Article  CAS  PubMed  Google Scholar 

  18. Fujimoto A, Ohashi J, Nishida N et al (2008) A replication study confirmed the EDAR gene to be a major contributor to population differentiation regarding head hair thickness in Asia. Hum Genet 124:179–185

    Article  PubMed  Google Scholar 

  19. Gaide O, Schneider P (2003) Permanent correction of an inherited ectodermal dysplasia with recombinant EDA. Nat Med 9:614–618

    Article  CAS  PubMed  Google Scholar 

  20. Grüneberg H (1971) The glandular aspects of the tabby syndrome in the mouse. J Embryol Exp Morphol 25:1–19

    PubMed  Google Scholar 

  21. Hammerschmidt B, Schlake T (2007) Localization of Shh expression by Wnt and Eda affects axial polarity and shape of hairs. Dev Biol 305:246–261

    Article  CAS  PubMed  Google Scholar 

  22. Harris MP, Rohner N, Schwarz H et al (2008) Zebrafish eda and edar mutants reveal conserved and ancestral roles of ectodysplasin signaling in vertebrates. PLoS Genet 4:e1000206

    Article  PubMed  Google Scholar 

  23. Hashimoto T, Schlessinger D, Cui CY (2008) Troy binding to lymphotoxin-α activates NFκB mediated transcription. Cell Cycle 7:106–111

    Article  CAS  PubMed  Google Scholar 

  24. Hayden MS, Ghosh S (2008) Shared principles in NF-κB signaling. Cell 132:344–62

    Article  CAS  PubMed  Google Scholar 

  25. Headon DJ (2009) Ectodysplasin signaling in cutaneous appendage development: dose, duration, and diversity. J Invest Dermatol 129:817–819

    Article  CAS  PubMed  Google Scholar 

  26. Jaskoll T, Zhou YM, Trump G, Melnick M (2003) Ectodysplasin receptor-mediated signaling is essential for embryonic submandibular salivary gland development. Anat Rec A Discov Mol Cell Evol Biol 271:322–331

    Article  PubMed  Google Scholar 

  27. Kunisada M, Cui CY, Piao Y et al (2009) Requirement for Shh and Fox family genes at different stages in sweat gland development. Hum Mol Genet 18:1769–1778

    Article  CAS  PubMed  Google Scholar 

  28. Laurikkala J, Pispa J, Jung HS et al (2002) Regulation of hair follicle development by the TNF signal ectodysplasin and its receptor Edar. Development 129:2541–2553

    CAS  PubMed  Google Scholar 

  29. Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501

    Article  CAS  PubMed  Google Scholar 

  30. Mauldin EA, Gaide O, Schneider P, Casal ML (2009) Neonatal treatment with recombinant ectodysplasin prevents respiratory disease in dogs with X-linked ectodermal dysplasia. Am J Med Genet A 149A:2045–2049

    Article  PubMed  Google Scholar 

  31. Melnick M, Phair RD, Lapidot SA, Jaskoll T (2009) Salivary gland branching morphogenesis: a quantitative systems analysis of the Eda/Edar/NFκB paradigm. BMC Dev Biol 9:32

    Article  PubMed  Google Scholar 

  32. Mégarbané H, Cluzeau C, Bodemer C et al (2008) Unusual presentation of a severe autosomal recessive anhydrotic ectodermal dysplasia with a novel mutation in the EDAR gene. Am J Med Genet A 146A:2657–2662

    Article  PubMed  Google Scholar 

  33. Mikkola ML (2008) TNF superfamily in skin appendage development. Cytokine Growth Factor Rev 19:219–230

    Article  CAS  PubMed  Google Scholar 

  34. Mikkola ML (2009) Molecular aspects of hypohidrotic ectodermal dysplasia. Am J Med Genet A 149A:2031–2036

    Article  CAS  PubMed  Google Scholar 

  35. Mikkola ML, Millar SE (2006) The mammary bud as a skin appendage: unique and shared aspects of development. J Mammary Gland Biol Neoplasia 11:187–203

    Article  PubMed  Google Scholar 

  36. Mikkola ML, Thesleff I (2003) Ectodysplasin signalling in development. Cytokine Growth Factor Rev 4:211–224

    Article  Google Scholar 

  37. Mou C, Jackson B, Schneider P et al (2006) Generation of the primary hair follicle pattern. Proc Natl Acad Sci (USA) 103:9075–9080

    Article  CAS  Google Scholar 

  38. Mustonen T, Pispa J, Mikkola ML et al (2003) Stimulation of ectodermal organ development by Ectodysplasin-A1. Dev Biol 259:123–136

    Article  CAS  PubMed  Google Scholar 

  39. Mustonen T, Ilmonen M, Pummila M et al (2004) Ectodysplasin A1 promotes placodal cell fate during early morphogenesis of ectodermal appendages. Development 131:4907–4919

    Article  CAS  PubMed  Google Scholar 

  40. Närhi K, Järvinen E, Birchmeier W et al (2008) Sustained epithelial beta-catenin activity induces precocious hair development but disrupts hair follicle down-growth and hair shaft formation. Development 135:1019–1028

    Article  PubMed  Google Scholar 

  41. Pantalacci S, Chaumot A, Benoît G et al (2008) Conserved features and evolutionary shifts of the EDA signaling pathway involved in vertebrate skin appendage development. Mol Biol Evol 25:912–928

    Article  CAS  PubMed  Google Scholar 

  42. Pispa J, Pummila M, Barker PA (2008) Edar and Troy signalling pathways act redundantly to regulate initiation of hair follicle development. Hum Mol Genet 17:3380–3391.

    Article  CAS  PubMed  Google Scholar 

  43. Pratt MA, Tibbo E, Robertson SJ et al (2009) The canonical NF-κB pathway is required for formation of luminal mammary neoplasias and is activated in the mammary progenitor population. Oncogene 28:2710–2722

    Article  CAS  PubMed  Google Scholar 

  44. Pummila M, Fliniaux I, Jaatinen R et al (2007) Ectodysplasin has a dual role in ectodermal organogenesis: inhibition of Bmp activity and induction of Shh expression. Development 134:117–125

    Article  CAS  PubMed  Google Scholar 

  45. Rawlins EL, Hogan BL (2005) Intercellular growth factor signaling and the development of mouse tracheal submucosal glands. Dev Dyn 233:1378–1385

    Article  CAS  PubMed  Google Scholar 

  46. Robinson GW (2007) Cooperation of signalling pathways in embryonic mammary gland development. Nat Rev Genet 8:963–972

    Article  CAS  PubMed  Google Scholar 

  47. Schmidt-Ullrich R, Aebischer T, Hulsken J et al (2001) Requirement of NF-κB/Rel for the development of hair follicles and other epidermal appendices. Development 128:3843–3853

    CAS  PubMed  Google Scholar 

  48. Schmidt-Ullrich R, Tobin DJ, Lenhard D et al (2006) NF-κB transmits Eda A1/EdaR signalling to activate Shh and cyclin D1 expression, and controls post-initiation hair placode down growth. Development 133:1045–1057

    Article  CAS  PubMed  Google Scholar 

  49. Schneider MR, Schmidt-Ullrich R, Paus R (2009) The hair follicle as a dynamic miniorgan. Curr Biol 19:R132–42.

    Article  CAS  PubMed  Google Scholar 

  50. Sick S, Reinker S, Timmer J, Schlake T (2006) WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science 314:1447–1450

    Article  CAS  PubMed  Google Scholar 

  51. Swee LK, Ingold-Salamin K, Tardivel A et al (2009) Biological activity of ectodysplasin A is conditioned by its collagen and heparan sulfate proteoglycan-binding domains. J Biol Chem 284:27567–27576

    Article  CAS  PubMed  Google Scholar 

  52. Ulvmar MH, Sur I, Mémet S, Toftgård R (2009) Timed NF-κB inhibition in skin reveals dual independent effects on development of HED/EDA and chronic inflammation. J Invest Dermatol 129:2584–2593

    Article  CAS  PubMed  Google Scholar 

  53. Veltmaat JM, Mailleux AA, Thiery JP, Bellusci S (2003) Mouse embryonic mammogenesis as a model for the molecular regulation of pattern formation. Differentiation 71:1–17

    Article  CAS  PubMed  Google Scholar 

  54. Yan MH, Wang LC, Hymowitz SG et al (2000) Two-amino acid molecular switch in an epithelial morphogen that regulates binding to two distinct receptors. Science 290:523–527

    Article  CAS  PubMed  Google Scholar 

  55. Zhang Y, Andl T, Yang SH et al (2008) Activation of β-catenin signaling programs embryonic epidermis to hair follicle fate. Development 135:2161–2172

    Article  CAS  PubMed  Google Scholar 

  56. Zhang Y, Tomann P, Andl T et al (2009) Reciprocal requirements for EDA/EDAR/NF-κB and Wnt/β-catenin signaling pathways in hair follicle induction. Dev Cell 17:49–61

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marja L. Mikkola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Mikkola, M.L. (2011). The Edar Subfamily in Hair and Exocrine Gland Development. In: Wallach, D., Kovalenko, A., Feldmann, M. (eds) Advances in TNF Family Research. Advances in Experimental Medicine and Biology, vol 691. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6612-4_3

Download citation

Publish with us

Policies and ethics