Skip to main content

Gamete Preservation

  • Chapter
  • First Online:
Oncofertility

Part of the book series: Cancer Treatment and Research ((CTAR,volume 156))

Abstract

With the increase in survivorship following cancer for women in their reproductive years, as well as an increase in survivorship with childhood cancers, there is a demand for perfecting current fertility preservation methods and generating new options for patients who are unable to pursue the conventional course of fertility treatments. Cryopreservation using a slow-cooling method for embryos is currently the standard-of-care for women wishing to preserve their fertility; other options, such as oocyte cryopreservation and embryo vitrification, have become increasingly accepted methods of fertility preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker TG. A quantitative and cytological study of germ cells in human ovaries. Proc R Soc Lond B Biol Sci. 1963; 158:417–33.

    Article  PubMed  CAS  Google Scholar 

  2. Baker TG, Sum W. Development of the ovary and oogenesis. Clin Obstet Gynaecol. 1976; 3(1):3–26.

    PubMed  CAS  Google Scholar 

  3. Faddy MJ. Follicle dynamics during ovarian ageing. Mol Cell Endocrinol. 2000; 163(1–2):43–8.

    Article  PubMed  CAS  Google Scholar 

  4. Gougeon A. Dynamics of follicular growth in the human: a model from preliminary results. Hum Reprod. 1986; 1(2):81–7.

    PubMed  CAS  Google Scholar 

  5. Sforza C, Vizzotto L, Ferrario VF, Forabosco A. Position of follicles in normal human ovary during definitive histogenesis. Early Hum Dev. 2003; 74(1):27–35.

    Article  PubMed  Google Scholar 

  6. Macklon NS, Fauser BC. Aspects of ovarian follicle development throughout life. Horm Res. 1999; 52(4):161–70.

    Article  PubMed  CAS  Google Scholar 

  7. Peters H, Himelstein-Braw R, Faber M. The normal development of the ovary in childhood. Acta Endocrinol (Copenh). 1976; 82(3):617–30.

    CAS  Google Scholar 

  8. Zhao M, Dean J. The zona pellucida in folliculogenesis, fertilization and early development. Rev Endocr Metab Disord. 2002; 3(1):19–26.

    Article  PubMed  Google Scholar 

  9. Levy DP, Navarro JM, Schattman GL, Davis OK, Rosenwaks Z. The role of LH in ovarian stimulation: exogenous LH: let’s design the future. Hum Reprod. 2000; 15(11):2258–65.

    Article  PubMed  CAS  Google Scholar 

  10. Colonna R, Mangia F. Mechanisms of amino acid uptake in cumulus-enclosed mouse oocytes. Biol Reprod. 1983; 28(4):797–803.

    Article  PubMed  CAS  Google Scholar 

  11. Haghighat N, Van Winkle LJ. Developmental change in follicular cell-enhanced amino acid uptake into mouse oocytes that depends on intact gap junctions and transport system Gly. J Exp Zool. 1990; 253(1):71–82.

    Article  PubMed  CAS  Google Scholar 

  12. Furger C, Cronier L, Poirot C, Pouchelet M. Human granulosa cells in culture exhibit functional cyclic AMP-regulated gap junctions. Mol Hum Reprod. 1996; 2(8):541–8.

    Article  PubMed  CAS  Google Scholar 

  13. Sela-Abramovich S, Edry I, Galiani D, Nevo N, Dekel N. Disruption of gap junctional communication within the ovarian follicle induces oocyte maturation. Endocrinology. 2006; 147(5):2280–6.

    Article  PubMed  CAS  Google Scholar 

  14. Saito T, Hiroi M, Kato T. Development of glucose utilization studied in single oocytes and preimplantation embryos from mice. Biol Reprod. 1994; 50(2):266–70.

    Article  PubMed  CAS  Google Scholar 

  15. Johnson MT, Freeman EA, Gardner DK, Hunt PA. Oxidative metabolism of pyruvate is required for meiotic maturation of murine oocytes in vivo. Biol Reprod. 2007; 77(1):2–8.

    Article  PubMed  CAS  Google Scholar 

  16. Gilchrist RB, Nayudu PL, Nowshari MA, Hodges JK. Meiotic competence of marmoset monkey oocytes is related to follicle size and oocyte-somatic cell associations. Biol Reprod. 1995; 52(6):1234–43.

    Article  PubMed  CAS  Google Scholar 

  17. Zeleznik AJ. The physiology of follicle selection. Reprod Biol Endocrinol. 2004; 2:31.

    Article  PubMed  Google Scholar 

  18. Fuller B, Paynter S. Fundamentals of cryobiology in reproductive medicine. Reprod Biomed Online. 2004; 9(6):680–91.

    Article  PubMed  Google Scholar 

  19. Mullen SF, Critser JK. The science of cryobiology. In: Woodruff TK, Snyder KA, Eds. Oncofertility: fertility preservation for cancer survivors. New York: Springer; 2007:83–103.

    Chapter  Google Scholar 

  20. Mazur P Slow-freezing injury in mammalian cells. Ciba Found Symp. 1977; 52:19–48.

    PubMed  Google Scholar 

  21. Whittingham DG Some factors affecting embryo storage in laboratory animals. Ciba Found Symp. 1977; 52:97–127.

    PubMed  Google Scholar 

  22. Leibo SP Fundamental cryobiology of mouse ova and embryos. Ciba Found Symp. 1977; 52:69–96.

    PubMed  Google Scholar 

  23. Leibo SP, McGrath JJ, Cravalho EG. Microscopic observation of intracellular ice formation in unfertilized mouse ova as a function of cooling rate. Cryobiology. 1978; 15(3):257–71.

    Article  PubMed  CAS  Google Scholar 

  24. Mazur P, Leibo SP, Chu EH. A two-factor hypothesis of freezing injury. Evidence from Chinese hamster tissue-culture cells. Exp Cell Res. 1972; 71(2):345–55.

    Article  PubMed  CAS  Google Scholar 

  25. Lovelock JE. The haemolysis of human red blood-cells by freezing and thawing. Biochim Biophys Acta. 1953; 10(3):414–26.

    Article  PubMed  CAS  Google Scholar 

  26. Lovelock JE. The mechanism of the protective action of glycerol against haemolysis by freezing and thawing. Biochim Biophys Acta. 1953; 11(1):28–36.

    Article  PubMed  CAS  Google Scholar 

  27. De Santis L, Coticchio G, Paynter S, Albertini D, Hutt K, Cino I, Iaccarino M, Gambardella A, Flamigni C, Borini A. Permeability of human oocytes to ethylene glycol and their survival and spindle configurations after slow cooling cryopreservation. Hum Reprod. 2007; 22(10):2776–83.

    Article  PubMed  Google Scholar 

  28. Karlsson JO, Younis AI, Chan AW, Gould KG, Eroglu A. Permeability of the rhesus monkey oocyte membrane to water and common cryoprotectants. Mol Reprod Dev. 2009; 76(4):321–33.

    Article  PubMed  CAS  Google Scholar 

  29. Liu J, Mullen S, Meng Q, Critser J, Dinnyes A. Determination of oocyte membrane permeability coefficients and their application to cryopreservation in a rabbit model. Cryobiology. 2009; 59(2):127–34.

    Article  PubMed  CAS  Google Scholar 

  30. Jackowski S, Leibo SP, Mazur P. Glycerol permeabilities of fertilized and infertilized mouse ova. J Exp Zool. 1980; 212(3):329–41.

    Article  PubMed  CAS  Google Scholar 

  31. Kasai M, Iritani A, Chang MC. Fertilization in vitro of rat ovarian oocytes after freezing and thawing. Biol Reprod. 1979; 21(4):839–44.

    Article  PubMed  CAS  Google Scholar 

  32. Pedro PB, Yokoyama E, Zhu SE, Yoshida N, Valdez DM Jr, Tanaka M, Edashige K, Kasai M. Permeability of mouse oocytes and embryos at various developmental stages to five cryoprotectants. J Reprod Dev. 2005; 51(2):235–46.

    Article  PubMed  CAS  Google Scholar 

  33. Songsasen N, Yu IJ, Ratterree MS, VandeVoort CA, Leibo SP. Effect of chilling on the organization of tubulin and chromosomes in rhesus monkey oocytes. Fertil Steril. 2002; 77(4):818–25.

    Article  PubMed  Google Scholar 

  34. Paynter SJ, O’Neil L, Fuller BJ, Shaw RW. Membrane permeability of human oocytes in the presence of the cryoprotectant propane-1,2-diol. Fertil Steril. 2001; 75(3):532–8.

    Article  PubMed  CAS  Google Scholar 

  35. Fuller BJ, Paynter SJ. Cryopreservation of mammalian embryos. Methods Mol Biol. 2007; 368:325–39.

    Article  PubMed  CAS  Google Scholar 

  36. Trad FS, Toner M, Biggers JD. Effects of cryoprotectants and ice-seeding temperature on intracellular freezing and survival of human oocytes. Hum Reprod. 1999; 14(6):1569–77.

    Article  PubMed  CAS  Google Scholar 

  37. Younis AI, Toner M, Albertini DF, Biggers JD. Cryobiology of non-human primate oocytes. Hum Reprod. 1996; 11(1):156–65.

    Article  PubMed  CAS  Google Scholar 

  38. Karlsson JO, Eroglu A, Toth TL, Cravalho EG, Toner M. Fertilization and development of mouse oocytes cryopreserved using a theoretically optimized protocol. Hum Reprod. 1996; 11(6):1296–305.

    Article  PubMed  CAS  Google Scholar 

  39. Toner M, Cravalho EG, Armant DR. Water transport and estimated transmembrane potential during freezing of mouse oocytes. J Membr Biol. 1990; 115(3):261–72.

    Article  PubMed  CAS  Google Scholar 

  40. Pegg DE. Principles of cryopreservation. Methods Mol Biol. 2007; 368:39–57.

    Article  PubMed  CAS  Google Scholar 

  41. Fabbri R. Cryopreservation of human oocytes and ovarian tissue. Cell Tissue Bank. 2006; 7(2):113–22.

    Article  PubMed  Google Scholar 

  42. Fabbri R, Pasquinelli G, Bracone G, Orrico C, Di Tommaso B, Venturoli S. Cryopreservation of human ovarian tissue. Cell Tissue Bank. 2006; 7(2):123–33.

    Article  PubMed  Google Scholar 

  43. Shaw JM. Cryopreservation of oocytes and embryos. In: Trounson AO, Gardner DK, Eds. Handbook of in vitro fertilization. 2nd edn. Boca Raton: CRC Press LLC; 2000:373.

    Google Scholar 

  44. Gracia CR, Ginsberg JP. Fertility risk in pediatric and adolescent cancers. In: Woodruff TK, Snyder KA, Eds. Oncofertility: fertility preservation fro cancer survivors. New York: Springer; 2007:57–68.

    Chapter  Google Scholar 

  45. Ostensen M, Khamashta M, Lockshin M, Parke A, Brucato A, Carp H, Doria A, Rai R, Meroni P, Cetin I, Derksen R, Branch W, Motta M, Gordon C, Ruiz-Irastorza G, Spinillo A, Friedman D, Cimaz R, Czeizel A, Piette JC, Cervera R, Levy RA, Clementi M, De Carolis S, Petri M, Shoenfeld Y, Faden D, Valesini G, Tincani A. Anti-inflammatory and immunosuppressive drugs and reproduction. Arthritis Res Ther. 2006; 8(3):209.

    Article  PubMed  Google Scholar 

  46. Chen SH, Wallach EE. Five decades of progress in management of the infertile couple. Fertil Steril. 1994; 62(4):665–85.

    PubMed  CAS  Google Scholar 

  47. Lee SJ, Schover LR, Partridge AH, Patrizio P, Wallace WH, Hagerty K, Beck LN, Brennan LV, Oktay K. American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J Clin Oncol. 2006; 24(18):2917–31.

    Article  PubMed  Google Scholar 

  48. Medicine TECotASfR. Fertility preservation and reproduction in cancer patients. Report nr. 1556–5653 (Electronic). 2005:1622–8.

    Google Scholar 

  49. Whittingham DG, Leibo SP, Mazur P. Survival of mouse embryos frozen to –196 degrees and –269 degrees C. Science. 1972; 178(59):411–4.

    Article  PubMed  CAS  Google Scholar 

  50. Wilmut I. The effect of cooling rate, warming rate, cryoprotective agent and stage of development on survival of mouse embryos during freezing and thawing. Life Sci II. 1972; 11(22):1071–9.

    Article  PubMed  CAS  Google Scholar 

  51. Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet. 1978; 2(8085):366.

    Article  PubMed  CAS  Google Scholar 

  52. Cohen J, Simons RF, Edwards RG, Fehilly CB, Fishel SB. Pregnancies following the frozen storage of expanding human blastocysts. J In Vitro Fert Embryo Transf. 1985; 2(2):59–64.

    Article  PubMed  CAS  Google Scholar 

  53. Cohen J, Simons RF, Fehilly CB, Fishel SB, Edwards RG, Hewitt J, Rowlant GF, Steptoe PC, Webster JM. Birth after replacement of hatching blastocyst cryopreserved at expanded blastocyst stage. Lancet. 1985; 1(8429):647.

    Article  PubMed  CAS  Google Scholar 

  54. Trounson A, Mohr L. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature. 1983; 305(5936):707–9.

    Article  PubMed  CAS  Google Scholar 

  55. Services UDoHaH. Pregnancy success rates from frozen embryos from non-donor eggs. Assisted reproductive technology (ART). Atlanta: Center for Disease Control and Prevention; 2007.

    Google Scholar 

  56. Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology. 2007; 67(1):73–80.

    Article  PubMed  CAS  Google Scholar 

  57. Stehlik E, Stehlik J, Katayama KP, Kuwayama M, Jambor V, Brohammer R, Kato O. Vitrification demonstrates significant improvement versus slow freezing of human blastocysts. Reprod Biomed Online. 2005; 11(1):53–7.

    Article  PubMed  Google Scholar 

  58. Medicine TPCotASfR. Ovarian tissue and oocyte cryopreservation. Fertil Steril. 2004; 82(4):993–8.

    Google Scholar 

  59. Aigner S, Van der Elst J, Siebzehnrubl E, Wildt L, Lang N, Van Steirteghem AC. The influence of slow and ultra-rapid freezing on the organization of the meiotic spindle of the mouse oocyte. Hum Reprod. 1992; 7(6):857–64.

    PubMed  CAS  Google Scholar 

  60. Gook DA, Osborn SM, Bourne H, Johnston WI. Fertilization of human oocytes following cryopreservation; normal karyotypes and absence of stray chromosomes. Hum Reprod. 1994; 9(4):684–91.

    PubMed  CAS  Google Scholar 

  61. Cobo A, Kuwayama M, Perez S, Ruiz A, Pellicer A, Remohi J. Comparison of concomitant outcome achieved with fresh and cryopreserved donor oocytes vitrified by the Cryotop method. Fertil Steril. 2008; 89(6):1657–64.

    Article  PubMed  Google Scholar 

  62. Oktay K, Cil AP, Bang H. Efficiency of oocyte cryopreservation: a meta-analysis. Fertil Steril. 2006; 86(1):70–80.

    Article  PubMed  Google Scholar 

  63. Chian RC, Gilbert L, Huang JY, Demirtas E, Holzer H, Benjamin A, Buckett WM, Tulandi T, Tan SL. Live birth after vitrification of in vitro matured human oocytes. Fertil Steril. 2009; 91(2):372–6.

    Article  PubMed  CAS  Google Scholar 

  64. Chian RC, Huang JY, Gilbert L, Son WY, Holzer H, Cui SJ, Buckett WM, Tulandi T, Tan SL. Obstetric outcomes following vitrification of in vitro and in vivo matured oocytes. Fertil Steril. 2009; 91(6):2391–8.

    Article  PubMed  Google Scholar 

  65. Katayama KP, Stehlik J, Kuwayama M, Kato O, Stehlik E. High survival rate of vitrified human oocytes results in clinical pregnancy. Fertil Steril. 2003; 80(1):223–4.

    Article  PubMed  Google Scholar 

  66. Kuwayama M, Vajta G, Kato O, Leibo SP. Highly efficient vitrification method for cryopreservation of human oocytes. Reprod Biomed Online. 2005; 11(3):300–8.

    Article  PubMed  Google Scholar 

  67. Nugent D, Meirow D, Brook PF, Aubard Y, Gosden RG. Transplantation in reproductive medicine: previous experience, present knowledge and future prospects. Hum Reprod Update. 1997; 3(3):267–80.

    Article  PubMed  CAS  Google Scholar 

  68. Donnez J, Bassil S. Indications for cryopreservation of ovarian tissue. Hum Reprod Update. 1998; 4(3):248–59.

    Article  PubMed  CAS  Google Scholar 

  69. Meirow D. Ovarian injury and modern options to preserve fertility in female cancer patients treated with high dose radio-chemotherapy for hemato-oncological neoplasias and other cancers. Leuk Lymphoma. 1999; 33(1–2):65–76.

    PubMed  CAS  Google Scholar 

  70. Schmidt KL, Byskov AG, Nyboe Andersen A, Muller J, Yding Andersen C. Density and distribution of primordial follicles in single pieces of cortex from 21 patients and in individual pieces of cortex from three entire human ovaries. Hum Reprod. 2003; 18(6):1158–64.

    Article  PubMed  CAS  Google Scholar 

  71. Parrot DMV. The fertility of mice with orthotopic ovariam grafts derived from frozen tissue. J Reprod Fertil. 1960; 1:230–41.

    Article  Google Scholar 

  72. Sztein J, Sweet H, Farley J, Mobraaten L. Cryopreservation and orthotopic transplantation of mouse ovaries: new approach in gamete banking. Biol Reprod. 1998; 58(4):1071–4.

    Article  PubMed  CAS  Google Scholar 

  73. Gosden RG, Baird DT, Wade JC, Webb R. Restoration of fertility to oophorectomized sheep by ovarian autografts stored at –196 degrees C. Hum Reprod. 1994; 9(4):597–603.

    PubMed  CAS  Google Scholar 

  74. Lee DM, Yeoman RR, Battaglia DE, Stouffer RL, Zelinski-Wooten MB, Fanton JW, Wolf DP. Live birth after ovarian tissue transplant. Nature. 2004; 428(6979):137–8.

    Article  PubMed  CAS  Google Scholar 

  75. Oktay K, Economos K, Kan M, Rucinski J, Veeck L, Rosenwaks Z. Endocrine function and oocyte retrieval after autologous transplantation of ovarian cortical strips to the forearm. JAMA. 2001; 286(12):1490–3.

    Article  PubMed  CAS  Google Scholar 

  76. Kiran G, Kiran H, Coban YK, Guven AM, Yuksel M. Fresh autologous transplantation of ovarian cortical strips to the anterior abdominal wall at the pfannenstiel incision site. Fertil Steril. 2004; 82(4):954–6.

    Article  PubMed  Google Scholar 

  77. Donnez J, Dolmans MM, Demylle D, Jadoul P, Pirard C, Squifflet J, Martinez-Madrid B, van Langendonckt A. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet. 2004; 364(9443):1405–10.

    Article  PubMed  CAS  Google Scholar 

  78. Meirow D, Levron J, Eldar-Geva T, Hardan I, Fridman E, Zalel Y, Schiff E, Dor J. Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med. 2005; 353(3):318–21.

    Article  PubMed  CAS  Google Scholar 

  79. Donnez J, Squifflet J, Van Eyck AS, Demylle D, Jadoul P, Van Langendonckt A, Dolmans MM. Restoration of ovarian function in orthotopically transplanted cryopreserved ovarian tissue: a pilot experience. Reprod Biomed Online. 2008; 16(5):694–704.

    Article  PubMed  CAS  Google Scholar 

  80. Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev. 1996; 17(2):121–55.

    PubMed  CAS  Google Scholar 

  81. Andersen CY, Rosendahl M, Byskov AG, Loft A, Ottosen C, Dueholm M, Schmidt KL, Andersen AN, Ernst E. Two successful pregnancies following autotransplantation of frozen/thawed ovarian tissue. Hum Reprod. 2008; 23(10):2266–72.

    Article  PubMed  Google Scholar 

  82. Donnez J, Squifflet J, Dolmans MM, Martinez-Madrid B, Jadoul P, Van Langendonckt A. Orthotopic transplantation of fresh ovarian cortex: a report of two cases. Fertil Steril. 2005; 84(4):1018.

    Article  PubMed  Google Scholar 

  83. Callejo J, Salvador C, Miralles A, Vilaseca S, Lailla JM, Balasch J Long-term ovarian function evaluation after autografting by implantation with fresh and frozen-thawed human ovarian tissue. J Clin Endocrinol Metab. 2001; 86(9):4489–94.

    Article  PubMed  CAS  Google Scholar 

  84. Oktay K, Karlikaya G. Ovarian function after transplantation of frozen, banked autologous ovarian tissue. N Engl J Med. 2000; 342(25):1919.

    Article  PubMed  CAS  Google Scholar 

  85. Demeestere I, Simon P, Emiliani S, Delbaere A, Englert Y. Orthotopic and heterotopic ovarian tissue transplantation. Hum Reprod Update. 2009; 15(6):649–65.

    Article  PubMed  CAS  Google Scholar 

  86. Radford J. Autotransplantation of ovarian tissue and the risk of disease transmission. Eur J Obstet Gynecol Reprod Biol. 2004; 113(Suppl 1):S14–S16.

    Google Scholar 

  87. Shaw JM, Bowles J, Koopman P, Wood EC, Trounson AO. Fresh and cryopreserved ovarian tissue samples from donors with lymphoma transmit the cancer to graft recipients. Hum Reprod. 1996; 11(8):1668–73.

    Article  PubMed  CAS  Google Scholar 

  88. Woods EJ, Benson JD, Agca Y, Critser JK. Fundamental cryobiology of reproductive cells and tissues. Cryobiology. 2004; 48(2):146–56.

    Article  PubMed  CAS  Google Scholar 

  89. Barrett SL, Shea LD, Woodruff TK. Noninvasive index of cryorecovery and growth potential for human follicles in vitro. Biol Reprod. 2010; 82(6):1180–1189.

    Google Scholar 

  90. Dolmans MM, Michaux N, Camboni A, Martinez-Madrid B, Van Langendonckt A, Nottola SA, Donnez J. Evaluation of Liberase, a purified enzyme blend, for the isolation of human primordial and primary ovarian follicles. Hum Reprod. 2006; 21(2):413–20.

    Article  PubMed  CAS  Google Scholar 

  91. Kreeger PK, Fernandes NN, Woodruff TK, Shea LD. Regulation of mouse follicle development by follicle-stimulating hormone in a three-dimensional in vitro culture system is dependent on follicle stage and dose. Biol Reprod. 2005; 73(5):942–50.

    Article  PubMed  CAS  Google Scholar 

  92. Xu M, Woodruff TK, Shea LD. Bioengineering and the ovarian follicle. Cancer Treat Res. 2007; 138:75–82.

    Article  PubMed  Google Scholar 

  93. Xu M, Banc A, Woodruff TK, Shea LD. Secondary follicle growth and oocyte maturation by culture in alginate hydrogel following cryopreservation of the ovary or individual follicles. Biotechnol Bioeng. 2009; 103(2):378–86.

    Article  PubMed  CAS  Google Scholar 

  94. West ER, Xu M, Woodruff TK, Shea LD. Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials. 2007; 28(30):4439–48.

    Article  PubMed  CAS  Google Scholar 

  95. Xu M, Kreeger PK, Shea LD, Woodruff TK. Tissue-engineered follicles produce live, fertile offspring. Tissue Eng. 2006; 12(10):2739–46.

    Article  PubMed  CAS  Google Scholar 

  96. West-Farrell ER, Xu M, Gomberg MA, Chow YH, Woodruff TK, Shea LD. The mouse follicle microenvironment regulates antrum formation and steroid production: alterations in gene expression profiles. Biol Reprod. 2008; 80(3):432–9.

    Article  PubMed  Google Scholar 

  97. Picton HM, Harris SE, Muruvi W, Chambers EL. The in vitro growth and maturation of follicles. Reproduction. 2008; 136(6):703–15.

    Article  PubMed  CAS  Google Scholar 

  98. Xu M, West-Farrell ER, Stouffer RL, Shea LD, Woodruff TK, Zelinski MB. Encapsulated three-dimensional culture supports development of nonhuman primate secondary follicles. Biol Reprod. 2009; 81(3):587–94.

    Article  PubMed  CAS  Google Scholar 

  99. Xu M, Barrett SL, West-Farrell E, Kondapalli LA, Kiesewetter SE, Shea LD, Woodruff TK. In vitro grown human ovarian follicles from cancer patients support oocyte growth. Hum Reprod. 2009; 24(10):2531–2540.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Steve Mullen, Ph.D., for his critical review and input on the cryopreservation section. This research was supported by the oncofertility consortium NIH 8UL1DE019587, 5RL1HD058296. The content is solely the responsibility of the authors and does not necessarily reflect the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan L. Barrett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Barrett, S.L., Woodruff, T.K. (2010). Gamete Preservation. In: Woodruff, T., Zoloth, L., Campo-Engelstein, L., Rodriguez, S. (eds) Oncofertility. Cancer Treatment and Research, vol 156. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6518-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6518-9_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6517-2

  • Online ISBN: 978-1-4419-6518-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics