Skip to main content

Diversity of Insect Nicotinic Acetylcholine Receptor Subunits

  • Chapter
Insect Nicotinic Acetylcholine Receptors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 683))

Abstract

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate fast synaptic transmission in the insect nervous system and are targets of a major group of insecticides, the neonicotinoids. They consist of five subunits arranged around a central ion channel. Since the subunit composition determines the functional and pharmacological properties of the receptor the presence of nAChR families comprising several subunit-encoding genes provides a molecular basis for broad functional diversity. Analyses of genome sequences have shown that nAChR gene families remain compact in diverse insect species, when compared to their nematode and vertebrate counterparts. Thus, the fruit fly (Drosophila melanogaster), malaria mosquito (Anopheles gambiae), honey bee (Apis mellifera), silk worm (Bombyx mori) and the red flour beetle (Tribolium castaneum) possess 10–12 nAChR genes while human and the nematode Caenorhabditis elegans have 16 and 29 respectively. Although insect nAChR gene families are amongst the smallest known, receptor diversity can be considerably increased by the posttranscriptional processes alternative splicing and mRNA A-to-I editing which can potentially generate protein products which far outnumber the nAChR genes. These two processes can also generate species-specific subunit isoforms. In addition, each insect possesses at least one highly divergent nAChR subunit which may perform species-specific functions. Species-specific subunit diversification may offer promising targets for future rational design of insecticides that target specific pest insects while sparing beneficial species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sine SM, Engel AG. Recent advances in Cys-loop receptor structure and function. Nature 2006; 440:448–455.

    Article  CAS  PubMed  Google Scholar 

  2. Connolly CN, Wafford KA. The Cys-loop superfamily of ligand-gated ion channels: the impact of receptor structure on function. Biochem Soc Trans. 2004; 32:529–534.

    Article  CAS  PubMed  Google Scholar 

  3. Changeux JP, Taly A. Nicotinic receptors, allosteric proteins and medicine. Trends Mol Med. 2008; 14:93–102.

    CAS  PubMed  Google Scholar 

  4. Green WN, Wanamaker CP. The role of the cystine loop in acetylcholine receptor assembly. J Biol Chem. 1997; 272:20945–20953.

    Article  CAS  PubMed  Google Scholar 

  5. Grutter T, de Carvalho LP, Dufresne V et al. Molecular tuning of fast gating in pentameric ligand-gated ion channels. Proc Natl Acad Sci. USA 2005; 102:18207–18212.

    Article  CAS  PubMed  Google Scholar 

  6. Corringer PJ, Le Novere N, Changeux JP. Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol. 2000; 40:431–458.

    Article  CAS  PubMed  Google Scholar 

  7. Kao PN, Karlin A. Acetylcholine receptor binding site contains a disulfide cross-link between adjacent half-cystinyl residues. J Biol Chem. 1986; 261:8085–8088.

    CAS  PubMed  Google Scholar 

  8. Millar NS, Gotti C. Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology. 2009;56(1):237–46

    Article  CAS  PubMed  Google Scholar 

  9. Unwin N. Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol. 2005; 346:967–989.

    Article  CAS  PubMed  Google Scholar 

  10. Dellisanti CD, Yao Y, Stroud JC et al. Crystal structure of the extracellular domain of nAChR alpha1 bound to alpha-bungarotoxin at 1.94 A resolution. Nat Neurosci. 2007; 10:953–962.

    Article  CAS  PubMed  Google Scholar 

  11. Changeux JP, Kasai M, Lee CY. Use of a snake venom toxin to characterize the cholinergic receptor protein. Proc Natl Acad Sci USA. 1970; 67:1241–1247.

    Article  CAS  PubMed  Google Scholar 

  12. Brejc K, van Dijk WJ, Klaassen RV et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 2001; 411:269–276.

    Article  CAS  PubMed  Google Scholar 

  13. Hilf RJ, Dutzler R. X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 2008; 452:375–379.

    Article  CAS  PubMed  Google Scholar 

  14. Hogg RC, Bertrand D. Nicotinic acetylcholine receptors as drug targets. Curr Drug Targets CNS Neurol Disord. 2004; 3:123–130.

    Article  CAS  PubMed  Google Scholar 

  15. Combi R, Dalpra L, Tenchini ML et al. Autosomal dominant nocturnal frontal lobe epilepsy—a critical overview. J Neurol. 2004; 251:923–934.

    Article  CAS  PubMed  Google Scholar 

  16. Engel AG, Sine SM. Current understanding of congenital myasthenic syndromes. Curr Opin Pharmacol. 2005; 5:308–321.

    Article  CAS  PubMed  Google Scholar 

  17. Hughes BW, Moro De Casillas ML, Kaminski HJ. Pathophysiology of myasthenia gravis. Semin Neurol. 2004; 24:21–30.

    Article  PubMed  Google Scholar 

  18. Watson R, Jepson JE, Bermudez I et al. Alpha7-acetylcholine receptor antibodies in two patients with Rasmussen encephalitis. Neurology 2005; 65:1802–1804.

    Article  CAS  PubMed  Google Scholar 

  19. Gotti C, Zoli M, Clementi F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci. 2006; 27:482–491.

    Article  CAS  PubMed  Google Scholar 

  20. Brown LA, Jones AK, Buckingham SD et al. Contributions from Caenorhabditis elegans functional genetics to antiparasitic drug target identification and validation: nicotinic acetylcholine receptors, a case study. Int J Parasitol. 2006; 36:617–624.

    Article  CAS  PubMed  Google Scholar 

  21. Kaminsky R, Ducray P, Jung M et al. A new class of anthelmintics effective against drug-resistant nematodes. Nature 2008; 452:176–180.

    Article  CAS  PubMed  Google Scholar 

  22. Baylis HA, Sattelle DB, Lane NJ. Genetic analysis of cholinergic nerve terminal function in invertebrates. J Neurocytol. 1996; 25:747–762.

    Article  CAS  PubMed  Google Scholar 

  23. Matsuda K, Buckingham SD, Kleier D et al. Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol Sci. 2001; 22:573–580.

    Article  CAS  PubMed  Google Scholar 

  24. Jeschke P, Nauen R. Neonicotinoids-from zero to hero in insecticide chemistry. Pest Manag Sci. 2008; 64(11):1084–98.

    Article  CAS  PubMed  Google Scholar 

  25. Lind RJ, Clough MS, Reynolds SE et al. H-3 imidacloprid labels high-and low-affinity nicotinic acetylcholine receptor-like binding sites in the aphid Myzus persicae (Hemiptera: Aphididae). Pesticide Bioch Physiol. 1998; 62:3–14.

    Article  CAS  Google Scholar 

  26. Liu M-Y, Casida JE. High-affinity binding of H-3 imidacloprid in the insect acetylcholine receptor. Pesticide Biochem Physiol. 1993; 46:40–46.

    Article  CAS  Google Scholar 

  27. Zhang A, Kayser H, Maienfisch P et al. Insect nicotinic acetylcholine receptor: conserved neonicotinoid specificity of [(3)H]imidacloprid binding site. J Neurochem. 2000; 75:1294–1303.

    Article  CAS  PubMed  Google Scholar 

  28. Bai B, Lummis SCR, Leicht W et al. Actions of imidacloprid and a related nitromethylene on cholinergic receptors of an identified insect motor-neuron. Pescticide Sci. 1991; 33:197–204.

    Article  CAS  Google Scholar 

  29. Jepson JE, Brown LA, Sattelle DB. The actions of the neonicotinoid imidacloprid on cholinergic neurons of Drosophila melanogaster. Invert Neurosci. 2006; 6:33–40.

    Article  CAS  PubMed  Google Scholar 

  30. Brown LA, Ihara M, Buckingham SD et al. Neonicotinoid insecticides display partial and super agonist actions on native insect nicotinic acetylcholine receptors. J Neurochem. 2006; 99:608–615.

    Article  CAS  PubMed  Google Scholar 

  31. Tomizawa M, Casida JE. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol. 2003; 48:339–364.

    Article  CAS  PubMed  Google Scholar 

  32. Nishiwaki H, Nakagawa Y, Kuwamura M et al. Correlations of the electrophysiological activity of neonicotinoids with their binding and insecticidal activities. Pest Manag Sci 2003; 59:1023–1030.

    Article  CAS  PubMed  Google Scholar 

  33. Ballivet M, Patrick J, Lee J et al. Molecular cloning of cDNA coding for the gamma subunit of Torpedo acetylcholine receptor. Proc Natl Acad Sci USA. 1982; 79:4466–4470.

    Article  CAS  PubMed  Google Scholar 

  34. Devillers-Thiery A, Giraudat J, Bentaboulet M et al. Complete mRNA coding sequence of the acetylcholine binding alpha-subunit of Torpedo marmorata acetylcholine receptor: a model for the transmembrane organization of the polypeptide chain. Proc Natl Acad Sci USA. 1983; 80:2067–2071.

    Article  CAS  PubMed  Google Scholar 

  35. Noda M, Takahashi H, Tanabe T et al. Primary structure of alpha-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 1982; 299:793–797.

    Article  CAS  PubMed  Google Scholar 

  36. Noda M, Takahashi H, Tanabe T et al. Primary structures of beta-and delta-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature 1983; 301:251–255.

    Article  CAS  PubMed  Google Scholar 

  37. Sumikawa K, Houghton M, Smith JC et al. The molecular cloning and characterisation of cDNA coding for the alpha subunit of the acetylcholine receptor. Nucleic Acids Res. 1982; 10:5809–5822.

    Article  CAS  PubMed  Google Scholar 

  38. Hermans-Borgmeyer I, Zopf D, Ryseck RP et al. Primary structure of a developmentally regulated nicotinic acetylcholine receptor protein from Drosophila. EMBO J. 1986; 5:1503–1508.

    CAS  PubMed  Google Scholar 

  39. Bossy B, Ballivet M, Spierer P. Conservation of neural nicotinic acetylcholine receptors from Drosophila to vertebrate central nervous systems. EMBO J. 1988; 7:611–618.

    CAS  PubMed  Google Scholar 

  40. Grauso M, Reenan RA, Culetto E et al. Novel putative nicotinic acetylcholine receptor subunit genes, Dalpha5, Dalpha6 and Dalpha7, in Drosophila melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-to-I pre-mRNA editing. Genetics 2002; 160:1519–1533.

    CAS  PubMed  Google Scholar 

  41. Jonas P, Baumann A, Merz B et al. Structure and developmental expression of the D alpha 2 gene encoding a novel nicotinic acetylcholine receptor protein of Drosophila melanogaster. FEBS Lett. 1990; 269:264–268.

    Article  CAS  PubMed  Google Scholar 

  42. Lansdell SJ, Millar NS. Cloning and heterologous expression of Dalpha4, a Drosophila neuronal nicotinic acetylcholine receptor subunit: identification of an alternative exon influencing the efficiency of subunit assembly. Neuropharmacology 2000; 39:2604–2614.

    Article  CAS  PubMed  Google Scholar 

  43. Lansdell SJ, Millar NS. Dbeta3, an atypical nicotinic acetylcholine receptor subunit from Drosophila: molecular cloning, heterologous expression and coassembly. J Neurochem. 2002; 80:1009–1018.

    Article  CAS  PubMed  Google Scholar 

  44. Sawruk E, Schloss P, Betz H et al. Heterogeneity of Drosophila nicotinic acetylcholine receptors: SAD, a novel developmentally regulated alpha-subunit. EMBO J. 1990; 9:2671–2677.

    CAS  PubMed  Google Scholar 

  45. Sawruk E, Udri C, Betz H et al. SBD, a novel structural subunit of the Drosophila nicotinic acetylcholine receptor, shares its genomic localization with two alpha-subunits. FEBS Lett. 1990; 273:177–181.

    Article  CAS  PubMed  Google Scholar 

  46. Schulz R, Sawruk E, Mulhardt C et al. D alpha3, a new functional alpha subunit of nicotinic acetylcholine receptors from Drosophila. J Neurochem. 1998; 71:853–862.

    Article  CAS  PubMed  Google Scholar 

  47. Adams MD, Celniker SE, Holt RA et al. The genome sequence of Drosophila melanogaster. Science 2000; 287:2185–2195.

    Article  PubMed  Google Scholar 

  48. Littleton JT, Ganetzky B. Ion channels and synaptic organization: analysis of the Drosophila genome. Neuron 2000; 26:35–43.

    Article  CAS  PubMed  Google Scholar 

  49. Jones AK, Davis P, Hodgkin J et al. The nicotinic acetylcholine receptor gene family of the nematode Caenorhabditis elegans: an update on nomenclature. Invert Neurosci. 2007; 7:129–131.

    Article  CAS  PubMed  Google Scholar 

  50. Fayyazuddin A, Zaheer MA, Hiesinger PR et al. The nicotinic acetylcholine receptor Dalpha7 is required for an escape behavior in Drosophila. PLoS Biol. 2006; 4:e63.

    Article  PubMed  CAS  Google Scholar 

  51. Chamaon K, Smalla KH, Thomas U et al. Nicotinic acetylcholine receptors of Drosophila: three subunits encoded by genomically linked genes can co-assemble into the same receptor complex. J Neurochem. 2002; 80:149–157.

    Article  CAS  PubMed  Google Scholar 

  52. Buckingham SD, Pym L, Sattelle DB. Oocytes as an expression system for studying receptor/channel targets of drugs and pesticides. Methods Mol Biol. 2006; 322:331–345.

    Article  CAS  PubMed  Google Scholar 

  53. Towers PR, Sattelle DB. A Drosophila melanogaster cell line (S2) facilitates postgenome functional analysis of receptors and ion channels. Bioessays 2002; 24:1066–1073.

    Article  CAS  PubMed  Google Scholar 

  54. Ihara M, Matsuda K, Otake M et al. Diverse actions of neonicotinoids on chicken alpha7, alpha4beta2 and Drosophila-chicken SADbeta2 and ALSbeta2 hybrid nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. Neuropharmacology 2003; 45:133–144.

    Article  CAS  PubMed  Google Scholar 

  55. Matsuda K, Buckingham SD, Freeman JC et al. Effects of the alpha subunit on imidacloprid sensitivity of recombinant nicotinic acetylcholine receptors. Br J Pharmacol. 1998; 123:518–524.

    Article  CAS  PubMed  Google Scholar 

  56. Shimomura M, Yokota M, Matsuda K et al. Roles of loop C and the loop B-C interval of the nicotinic receptor alpha subunit in its selective interactions with imidacloprid in insects. Neurosci Lett. 2004; 363:195–198.

    Article  CAS  PubMed  Google Scholar 

  57. Shimomura M, Yokota M, Ihara M et al. Role in the selectivity of neonicotinoids of insect-specific basic residues in loop D of the nicotinic acetylcholine receptor agonist binding site. Mol Pharmacol. 2006; 70:1255–1263.

    Article  CAS  PubMed  Google Scholar 

  58. Shimomura M, Yokota M, Okumura M et al. Combinatorial mutations in loops D and F strongly influence responses of the alpha7 nicotinic acetylcholine receptor to imidacloprid. Brain Res. 2003; 991:71–77.

    Article  CAS  PubMed  Google Scholar 

  59. Shimomura M, Okuda H, Matsuda K et al. Effects of mutations of a glutamine residue in loop D of the alpha7 nicotinic acetylcholine receptor on agonist profiles for neonicotinoid insecticides and related ligands. Br J Pharmacol. 2002; 137:162–169.

    Article  CAS  PubMed  Google Scholar 

  60. Amiri S, Shimomura M, Vijayan R et al. A role for Leu118 of loop E in agonist binding to the alpha 7 nicotinic acetylcholine receptor. Mol Pharmacol. 2008; 73:1659–1667.

    Article  CAS  PubMed  Google Scholar 

  61. Ihara M, Shimomura M, Ishida C et al. A hypothesis to account for the selective and diverse actions of neonicotinoid insecticides at their molecular targets, nicotinic acetylcholine receptors: catch and release in hydrogen bond networks. Invert Neurosci. 2007; 7:47–51.

    Article  CAS  PubMed  Google Scholar 

  62. Ihara M, Okajima T, Yamashita A et al. Crystal structures of Lymnaea stagnalis AChBP in complex with neonicotinoid insecticides imidacloprid and clothianidin. Invert Neurosci. 2008; 8:71–81.

    Article  CAS  PubMed  Google Scholar 

  63. Tomizawa M, Maltby D, Talley TT et al. Atypical nicotinic agonist bound conformations conferring subtype selectivity. Proc Natl Acad Sci USA. 2008; 105:1728–1732.

    Article  CAS  PubMed  Google Scholar 

  64. Bret BL. Biological properties of spinosad. Down Earth 1997; 52:6–13.

    Google Scholar 

  65. Salgado VL. The modes of action of spinosad and other insect control products. Down Earth 1997; 52:35–43.

    Google Scholar 

  66. Salgado VL. Studies on the mode of action of spinosad: insect symptoms and physiological correlates. Pestic Biochem Physiol. 1998; 60:91–102.

    Article  CAS  Google Scholar 

  67. Perry T, McKenzie JA, Batterham P. A Dalpha6 knockout strain of Drosophila melanogaster confers a high level of resistance to spinosad. Insect Biochem Mol Biol. 2007; 37:184–188.

    Article  CAS  PubMed  Google Scholar 

  68. Holt RA, Subramanian GM, Halpern A et al. The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002; 298:129–149.

    Article  CAS  PubMed  Google Scholar 

  69. Jones AK, Grauso M, Sattelle DB. The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae. Genomics. 2005; 85:176–187.

    Article  CAS  PubMed  Google Scholar 

  70. Jones AK, Raymond-Delpech V, Thany SH et al. The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera. Genome Res. 2006; 16:1422–1430.

    Article  CAS  PubMed  Google Scholar 

  71. The Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybee Apis mellifera. Nature. 2006; 443:931–949.

    Article  CAS  Google Scholar 

  72. Jones AK, Sattelle DB. The cys-loop ligand-gated ion channel gene superfamily of the red flour beetle, Tribolium castaneum. BMC Genomics. 2007; 8:327.

    Article  PubMed  CAS  Google Scholar 

  73. Richards S, Gibbs RA, Weinstock GM et al. The genome of the model beetle and pest Tribolium castaneum. Nature. 2008; 452:949–955.

    Article  CAS  PubMed  Google Scholar 

  74. Shao YM, Dong K, Zhang CX. The nicotinic acetylcholine receptor gene family of the silkworm, Bombyx mori. BMC Genomics. 2007; 8:324.

    Article  PubMed  CAS  Google Scholar 

  75. Xia Q, Zhou Z, Lu C et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science. 2004; 306:1937–1940.

    Article  PubMed  Google Scholar 

  76. Jones AK, Brown LA, Sattelle DB. Insect nicotinic acetylcholine receptor gene families: from genetic model organism to vector, pest and beneficial species. Invert Neurosci. 2007; 7(1):67–73.

    Article  CAS  PubMed  Google Scholar 

  77. Thany SH, Lenaers G, Raymond-Delpech V et al. Exploring the pharmacological properties of insect nicotinic acetylcholine receptors. Trends Pharmacol Sci. 2007; 28:14–22.

    Article  CAS  PubMed  Google Scholar 

  78. Mongan NP, Jones AK, Smith GR et al. Novel alpha7-like nicotinic acetylcholine receptor subunits in the nematode Caenorhabditis elegans. Protein Sci. 2002; 11:1162–1171.

    Article  CAS  PubMed  Google Scholar 

  79. Williamson SM, Walsh TK, Wolstenholme AJ. The cys-loop ligand-gated ion channel gene family of Brugia malayi and Trichinella spiralis: a comparison with Caenorhabditis elegans. Invert Neurosci. 2007; 7:219–226.

    Article  CAS  PubMed  Google Scholar 

  80. Bentley GN, Jones AK, Oliveros Parra WG et al. ShAR1alpha and ShAR1beta: novel putative nicotinic acetylcholine receptor subunits from the platyhelminth blood fluke Schistosoma. Gene. 2004; 329:27–38.

    Article  CAS  PubMed  Google Scholar 

  81. Bass C, Lansdell SJ, Millar NS et al. Molecular characterisation of nicotinic acetylcholine receptor subunits from the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). Insect Biochem Mol Biol. 2006; 36:86–96.

    Article  CAS  PubMed  Google Scholar 

  82. Hermsen B, Stetzer E, Thees R et al. Neuronal nicotinic receptors in the locust Locusta migratoria. Cloning and expression. J Biol Chem. 1998; 273:18394–18404.

    Article  CAS  PubMed  Google Scholar 

  83. Gao JR, Deacutis JM, Scott JG. Characterization of the nicotinic acetylcholine receptor subunit gene Mdalpha2 from the house fly, Musca domestica. Arch Insect Biochem Physiol. 2007; 64:30–42.

    Article  CAS  PubMed  Google Scholar 

  84. Gao JR, Deacutis JM, Scott JG. The nicotinic acetylcholine receptor subunits Mdalpha5 and Mdbeta3 on autosome 1 of Musca domestica are not involved in spinosad resistance. Insect Mol Biol. 2007; 16:691–701.

    Article  CAS  PubMed  Google Scholar 

  85. Gao JR, Deacutis JM, Scott JG. The nicotinic acetylcholine receptor subunit Mdalpha6 from Musca domestica is diversified via posttranscriptional modification. Insect Mol Biol. 2007; 16:325–334.

    Article  CAS  PubMed  Google Scholar 

  86. Huang Y, Williamson MS, Devonshire AL et al. Cloning, heterologous expression and co-assembly of Mpbeta1, a nicotinic acetylcholine receptor subunit from the aphid Myzus persicae. Neurosci Lett. 2000; 284:116–120.

    Article  CAS  PubMed  Google Scholar 

  87. Sgard F, Fraser SP, Katkowska MJ et al. Cloning and functional characterisation of two novel nicotinic acetylcholine receptor alpha subunits from the insect pest Myzus persicae. J Neurochem. 1998; 71:903–912.

    Article  CAS  PubMed  Google Scholar 

  88. Liu Z, Williamson MS, Lansdell SJ et al. A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). Proc Natl Acad Sci USA. 2005; 102:8420–8425.

    Article  CAS  PubMed  Google Scholar 

  89. Jones AK, Marshall J, Blake AD et al. Sgbeta1, a novel locust (Schistocerca gregaria) non-alpha nicotinic acetylcholine receptor-like subunit with homology to the Drosophila melanogaster Dbeta1 subunit. Invert Neurosci. 2005; 5:147–155.

    Article  CAS  PubMed  Google Scholar 

  90. Marshall J, Buckingham SD, Shingai R et al. Sequence and functional expression of a single alpha subunit of an insect nicotinic acetylcholine receptor. EMBO J. 1990; 9:4391–4398.

    CAS  PubMed  Google Scholar 

  91. Jensen ML, Schousboe A, Ahring PK. Charge selectivity of the Cys-loop family of ligand-gated ion channels. J Neurochem. 2005; 92:217–225.

    Article  CAS  PubMed  Google Scholar 

  92. Jin Y, Tian N, Cao J et al. RNA editing and alternative splicing of the insect nAChR subunit alpha6 transcript: evolutionary conservation, divergence and regulation. BMC Evol Biol. 2007; 7:98.

    Article  PubMed  CAS  Google Scholar 

  93. Revah F, Bertrand D, Galzi JL et al. Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 1991; 353:846–849.

    Article  CAS  PubMed  Google Scholar 

  94. Borges LS, Ferns M. Agrin-induced phosphorylation of the acetylcholine receptor regulates cytoskeletal anchoring and clustering. J Cell Biol. 2001; 153:1–12.

    Article  CAS  PubMed  Google Scholar 

  95. Hopfield JF, Tank DW, Greengard P et al. Functional modulation of the nicotinic acetylcholine receptor by tyrosine phosphorylation. Nature. 1988; 336:677–680.

    Article  CAS  PubMed  Google Scholar 

  96. Sattelle DB, Jones AK, Sattelle BM et al. Edit, cut and paste in the nicotinic acetylcholine receptor gene family of Drosophila melanogaster. Bioessays. 2005; 27:366–376.

    Article  CAS  PubMed  Google Scholar 

  97. Smit AB, Brejc K, Syed N et al. Structure and function of AChBP, homologue of the ligand-binding domain of the nicotinic acetylcholine receptor. Ann N Y Acad Sci. 2003; 998:81–92.

    Article  CAS  PubMed  Google Scholar 

  98. Saragoza PA, Modir JG, Goel N et al. Identification of an alternatively processed nicotinic receptor alpha7 subunit RNA in mouse brain. Brain Res Mol Brain Res 2003; 117:15–26.

    Article  CAS  PubMed  Google Scholar 

  99. Seeburg PH. A-to-I editing: new and old sites, functions and speculations. Neuron 2002; 35:17–20.

    Article  CAS  PubMed  Google Scholar 

  100. Hoopengardner B, Bhalla T, Staber C et al. Nervous system targets of RNA editing identified by comparative genomics. Science 2003; 301:832–836.

    Article  CAS  PubMed  Google Scholar 

  101. Tonkin LA, Saccomanno L, Morse DP et al. RNA editing by ADARs is important for normal behavior in Caenorhabditis elegans. EMBO J 2002; 21:6025–6035.

    Article  CAS  PubMed  Google Scholar 

  102. Palladino MJ, Keegan LP, O’Connell MA et al. A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell 2000; 102:437–449.

    Article  CAS  PubMed  Google Scholar 

  103. Higuchi M, Maas S, Single FN et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 2000; 406:78–81.

    Article  CAS  PubMed  Google Scholar 

  104. Guzman GR, Santiago J, Ricardo A et al. Tryptophan scanning mutagenesis in the alphaM3 transmembrane domain of the Torpedo californica acetylcholine receptor: functional and structural implications. Biochemistry 2003; 42:12243–12250.

    Article  CAS  PubMed  Google Scholar 

  105. Tamamizu S, Lee Y, Hung B et al. Alteration in ion channel function of mouse nicotinic acetylcholine receptor by mutations in the M4 transmembrane domain. J Membr Biol 1999; 170:157–164.

    Article  CAS  PubMed  Google Scholar 

  106. Gehle VM, Walcott EC, Nishizaki T et al. N-glycosylation at the conserved sites ensures the expression of properly folded functional ACh receptors. Brain Res Mol Brain Res 1997; 45:219–229.

    Article  CAS  PubMed  Google Scholar 

  107. Nishizaki T. N-glycosylation sites on the nicotinic ACh receptor subunits regulate receptor channel desensitization and conductance. Brain Res Mol Brain Res 2003; 114:172–176.

    Article  CAS  PubMed  Google Scholar 

  108. Yang Y, Lv J, Gui B et al. A-to-I RNA editing alters less-conserved residues of highly conserved coding regions: implications for dual functions in evolution. RNA 2008; 14:1516–1525.

    Article  CAS  PubMed  Google Scholar 

  109. Clark AG, Eisen MB, Smith DR et al. Evolution of genes and genomes on the Drosophila phylogeny. Nature 2007; 450:203–218.

    Article  PubMed  CAS  Google Scholar 

  110. Nene V, Wortman JR, Lawson D et al. Genome sequence of Aedes aegypti, a major arbovirus vector. Science 2007; 316:1718–1723.

    Article  CAS  PubMed  Google Scholar 

  111. Pittendrigh BR, Clark JM, Johnston JS et al. Sequencing of a new target genome: the Pediculus humanus humanus (Phthiraptera: Pediculidae) genome project. J Med Entomol 2006; 43:1103–1111.

    Article  CAS  PubMed  Google Scholar 

  112. Harrow ID, Hue B, Pelhate M et al. Cockroach giant interneurones stained by cobalt-backfilling of dissected axons. J Exp Biol 1980; 84:341–343.

    CAS  PubMed  Google Scholar 

  113. Lane NJ, Sattelle DB, Hufnagel LA. Pre-and postsynaptic structures in insect CNS: intramembranous features and sites of alpha-bungarotoxin binding. Tissue Cell 1983; 15:921–937.

    Article  CAS  PubMed  Google Scholar 

  114. Lummis SC, Sattelle DB. Binding of N-[propionyl-3H]propionylated alpha-bungarotoxin and L-[benzilic-4,4′-3H] quinuclidinyl benzilate to CNS extracts of the cockroach Periplaneta americana. Comp Biochem Physiol C 1985; 80:75–83.

    Article  CAS  PubMed  Google Scholar 

  115. Fire A, Xu S, Montgomery MK et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391:806–811.

    Article  CAS  PubMed  Google Scholar 

  116. Kamath RS, Fraser AG, Dong Y et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003; 421:231–237.

    Article  CAS  PubMed  Google Scholar 

  117. Sepp KJ, Hong P, Lizarraga SB et al. Identification of neural outgrowth genes using genome-wide RNAi. PLoS Genet 2008; 4:e1000111.

    Article  PubMed  CAS  Google Scholar 

  118. Thany SH, Gauthier M. Nicotine injected into the antennal lobes induces a rapid modulation of sucrose threshold and improves short-term memory in the honeybee Apis mellifera. Brain Res 2005; 1039:216–219.

    Article  CAS  PubMed  Google Scholar 

  119. Lozano VC, Armengaud C, Gauthier M. Memory impairment induced by cholinergic antagonists injected into the mushroom bodies of the honeybee. J Comp Physiol [A] 2001; 187:249–254.

    Article  CAS  Google Scholar 

  120. Lozano VC, Bonnard E, Gauthier M et al. Mecamylamine-induced impairment of acquisition and retrieval of olfactory conditioning in the honeybee. Behav Brain Res 1996; 81:215–222.

    Article  CAS  PubMed  Google Scholar 

  121. Dacher M, Lagarrigue A, Gauthier M. Antennal tactile learning in the honeybee: effect of nicotinic antagonists on memory dynamics. Neuroscience 2005; 130:37–50.

    Article  CAS  PubMed  Google Scholar 

  122. Hogg RC, Raggenbass M, Bertrand D. Nicotinic acetylcholine receptors: from structure to brain function. Rev Physiol Biochem Pharmacol 2003; 147:1–46.

    Article  CAS  PubMed  Google Scholar 

  123. Rocher A, Marchand-Geneste N. Homology modelling of the Apis mellifera nicotinic acetylcholine receptor (nAChR) and docking of imidacloprid and fipronil insecticides and their metabolites. SAR QSAR Environ Res 2008; 19:245–261.

    Article  CAS  PubMed  Google Scholar 

  124. Altschul SF, Gish W, Miller W et al. Basic local alignment search tool. J Mol Biol 1990; 215:403–410.

    CAS  PubMed  Google Scholar 

  125. Kondrashov FA, Koonin EV. Origin of alternative splicing by tandem exon duplication. Hum Mol Genet 2001; 10:2661–2669.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew K. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Jones, A.K., Sattelle, D.B. (2010). Diversity of Insect Nicotinic Acetylcholine Receptor Subunits. In: Thany, S.H. (eds) Insect Nicotinic Acetylcholine Receptors. Advances in Experimental Medicine and Biology, vol 683. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6445-8_3

Download citation

Publish with us

Policies and ethics