Skip to main content

Contractile Performance of Striated Muscle

  • Chapter
  • First Online:
Muscle Biophysics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 682))

Abstract

The single muscle fiber preparation provides an excellent tool for studying the mechanical behaviour of the contractile system at sarcomere level. The present article gives an overview of studies based on intact single fibers from frog and mouse skeletal muscle. The following aspects of muscle function are treated: (1) The length–tension relationship. (2) The biphasic force–velocity relationship. (3) The maximum speed of shortening, its independence of sarcomere length and degree of activation. (4) Force enhancement during stretch, its relation to sarcomere length and myofilament lattice width. (5) Residual force enhancement after stretch. (6) Force reduction after loaded shortening. (7) Deactivation by active shortening. (8) Differences in kinetic properties along individual muscle fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott BC, Aubert XM (1952) The force exerted by active striated muscle during and after change of length. J Physiol 117:77–86

    PubMed  CAS  Google Scholar 

  • Aubert X (1956) Le couplage energetique de la contraction musculaire. These d’agregation l’enseignement superieur. Editions Arsaia, Bruxelles

    Google Scholar 

  • Bailey K (1937) Composition of the myosins and myogen of skeletal muscle. Biochem J 31:1406–1413

    PubMed  CAS  Google Scholar 

  • Bárány M (1967) ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol 50:197–218

    Article  PubMed  Google Scholar 

  • Bárány EH, Edman KAP, Palis A (1951a) The influence of electrolytes on the rate of viscosity drop in ATP-actomyosin mixtures. Acta Physiol Scand 24:361–367

    Article  Google Scholar 

  • Bárány EH, Edman KAP, Högberg F, Rosner H (1951b) A recording viscosimeter for study of rapid viscosity changes. Acta Physiol Scand 23:128–136

    Article  PubMed  Google Scholar 

  • Bárány EH, Edman KAP, Palis A (1952) The influence of potassium chloride concentration on the rate of drop of viscosity in ATP-actomyosin mixtures. Acta Soc Med Ups 56:269–272

    Google Scholar 

  • Blinks JR, Rudel R, Taylor SR (1978) Calcium transients in isolated amphibian skeletal muscle fibres: detection with aequorin. J Physiol 277:291–323

    Article  Google Scholar 

  • Blix M (1894) Die Länge und die Spannung des Muskels. Skand. Arch. Physiol 5:173–206

    Article  Google Scholar 

  • Bloom W, Fawcett DW (1975) A Textbook of Histology, p. 328. Philadelphia: W.B. Saunders Company

    Google Scholar 

  • Bottinelli R, Reggiani C (2000) Human skeletal muscle fibres: molecular and functional diversity. Prog Biophys and Mol Biol 73:195–262

    Article  CAS  Google Scholar 

  • Briden KL, Alpert NR (1972) The effect of shortening on the time-course of active state decay. J Gen Physiol 60:202–220

    Article  PubMed  CAS  Google Scholar 

  • Brown LM, Hill L (1991) Some observations on variations in filament overlap in tetanized muscle fibres and fibres stretched during a tetanus, detected in the electron microscope after rapid fixation. J Muscle Res Cell Motil 12:171–182

    Article  PubMed  CAS  Google Scholar 

  • Buchthal F, Schmalbruch H (1980) Motor unit of mammalian muscle. Physiol Rev 60:90–142

    PubMed  CAS  Google Scholar 

  • Caputo C, Edman KAP, Lou F, Sun YB (1994) Variation in myoplasmic Ca2+ concentration during contraction and relaxation studied by the indicator flyo-3 in frog muscle fibres. J Physiol 478:137–148

    PubMed  CAS  Google Scholar 

  • Cavagna GA, Citterio G (1974) Effect of stretching on the elastic characteristics and the contractile component of frog striated muscle. J Physiol 239:1–14

    PubMed  CAS  Google Scholar 

  • Close R (1972) Dynamic properties of mammalian skeletal muscles. Physiol Rev 52:129–197

    PubMed  CAS  Google Scholar 

  • Devrome AN, MacIntosh BR (2007) The biphasic force–velocity relationship in whole rat skeletal muscle in situ. J Appl Physiol 102:2294–2300

    Article  PubMed  CAS  Google Scholar 

  • Duke TA (1999) Molecular model of muscle contraction. Proc Nat Acad Sci U S A 96:2770–2775

    Article  CAS  Google Scholar 

  • Edman KAP (1950) The action of ouabain on heart actomyosin. Acta Physiol Scand 21:230–237

    Article  PubMed  CAS  Google Scholar 

  • Edman KAP (1951) The action of ouabain on actomyosin from striated musculature. Acta Physiol Scand 23:137–142

    Article  PubMed  CAS  Google Scholar 

  • Edman KAP (1953) Action of cardiac glycosides on the ATP-induced contraction of glycerinated muscle fibers. Acta Physiol Scand 30:69–79

    Article  PubMed  CAS  Google Scholar 

  • Edman KAP (1959a) Relaxation of glycerol-extracted muscle fibre bundles induced by zinc in the presence of ATP and other polyphosphates. Acta Physiol Scand 46:62–87

    Article  CAS  Google Scholar 

  • Edman KAP (1959b) The binding of zinc to glycerol-extracted muscle, and its relaxing effect. Acta Physiol Scand 46:209–227

    Article  PubMed  CAS  Google Scholar 

  • Edman KAP (1966) The relation between sarcomere length and active tension in isolated semitendinosus fibres of the frog. J Physiol 183:407–417

    PubMed  CAS  Google Scholar 

  • Edman KAP (1975) Mechanical deactivation induced by active shortening in isolated muscle fibres of the frog. J Physiol 246:255–275

    PubMed  CAS  Google Scholar 

  • Edman KAP (1979) The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres. J Physiol 291:143–159

    PubMed  CAS  Google Scholar 

  • Edman KAP (1980) Depression of mechanical performance by active shortening during twitch and tetanus of vertebrate muscle fibres. Acta Physiol Scand 109:15–26

    Article  PubMed  CAS  Google Scholar 

  • Edman KAP (1981) Deactivation of the contractile system induced by shortening of striated muscle. In The regulation of muscle contraction: excitation-contraction coupling. Eds.: Grinnell AD, Brazier, MAB. Academic Press, New York, pp. 281–296

    Google Scholar 

  • Edman KAP (1988) Double-hyperbolic force–velocity relation in frog muscle fibres. J Physiol 404:301–321

    PubMed  CAS  Google Scholar 

  • Edman KAP (1999) The force bearing capacity of frog muscle fibres during stretch: its relation to sarcomere length and fibre width. J Physiol 519:515–526

    Article  PubMed  CAS  Google Scholar 

  • Edman KAP (2005) Contractile properties of mouse single muscle fibers, a comparison with amphibian muscle fibers. J Exp Biol 208:1905–1913

    Article  PubMed  CAS  Google Scholar 

  • Edman KAP, Andersson KE (1968) The variation in active tension with sarcomere length in vertebrate skeletal muscle and its relation to fibre width. Experientia 24:134–136

    Article  PubMed  CAS  Google Scholar 

  • Edman KAP, Hwang JC (1977) The force–velocity relationship in vertebrate muscle fibres at varied tonicity of the extracellular medium. J Physiol 269:255–272

    PubMed  CAS  Google Scholar 

  • Edman KAP, Kiessling A (1971) The time course of the active state in relation to sarcomere length and movement studied in single skeletal muscle fibres of the frog. Acta Physiol Scand 81:182–196

    Article  PubMed  CAS  Google Scholar 

  • Edman KAP, Lou F (1992) Myofibrillar fatigue versus failure of activation during repetitive stimulation of frog muscle fibres J Physiol 457:655–673

    PubMed  CAS  Google Scholar 

  • Edman KAP, Mulieri LA, Scubon-Mulieri B (1976) Non-hyperbolic force-velocity relationship in single muscle fibres. Acta Physiol Scand 98:143–156

    PubMed  CAS  Google Scholar 

  • Edman KAP, Nilsson E (1968) The mechanical parameters of myocardial contraction studied at a constant length of the contractile element. Acta Physiol Scand 72:205–219

    Article  PubMed  CAS  Google Scholar 

  • Edman KAP, Nilsson E (1972) Relationship between between force and velocity of shortening in rabbit papillary muscle. Acta Physiol Scand 85:488–500

    Article  PubMed  CAS  Google Scholar 

  • Edman KAP, Reggiani C (1984) Redistribution of sarcomere length during isometric contraction of frog muscle fibres and its relation to tension creep. J Physiol 351:169–198

    PubMed  CAS  Google Scholar 

  • Edman KAP, Reggiani C, teKronnie G (1985) Differences in maximum velocity of shortening along single muscle fibres of the frog. J Physiol 365:147–163

    PubMed  CAS  Google Scholar 

  • Edman KAP, Reggiani C (1987) The sarcomere length–tension relation determined in short segments of intact muscle fibres of the frog. J Physiol 385:709–732

    PubMed  CAS  Google Scholar 

  • Edman KAP, Schild HO (1962) The need for calcium in the contractile responses induced by acetylcholine and potassium in rat uterus. J Physiol 161:424–441

    PubMed  CAS  Google Scholar 

  • Edman KAP, Schild HO (1963) Calcium and the stimuland and inhibitory effects of adrenaline in depolarized smooth muscle. J Physiol 169:404–411

    PubMed  CAS  Google Scholar 

  • Edman KAP, Tsuchiya T (1996) Strain of passive elements during force enhancement by stretch in frog muscle fibres. J Physiol 490:191–205

    PubMed  CAS  Google Scholar 

  • Edman KAP, Elzinga G, Noble MIM (1978) Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibres. J Physiol 281:139–155

    PubMed  CAS  Google Scholar 

  • Edman KAP, Elzinga G, Noble MIM (1982) Residual force enhancement after stretch of contracting frog single muscle fibers. J Gen Physiol 80:769–784

    Article  PubMed  CAS  Google Scholar 

  • Edman KAP, Reggiani C, Schiaffino S, te Kronnie G (1988) Maximum velocity of shortening related to myosin isoform composition in frog skeletal muscle fibres. J Physiol 395:679–694

    PubMed  CAS  Google Scholar 

  • Edman KAP, Caputo C, Lou F (1993) Depression of tetanic force induced by loaded shortening of frog muscle fibres. J Physiol 446:535–552

    Google Scholar 

  • Edman KAP, MÃ¥nsson A, Caputo C (1997) The biphasic force–velocity relationship in frog muscle fibres and its evaluation in terms of cross-bridge function. J Physiol 503:141–156

    Article  PubMed  CAS  Google Scholar 

  • Edman KAP, Radzyukevich T, Kronborg B (2002) Contractile properties of isolated muscle spindles of the frog. J Physiol 541:905–916

    Article  PubMed  CAS  Google Scholar 

  • Ekelund MC, Edman KAP (1982) Shortening induced deactivation of skinned fibres of frog and mouse striated muscle. Acta Physiol Scand 116:189–199

    Article  PubMed  CAS  Google Scholar 

  • Elliott A, Offer G (1978) Shape and flexibility of the myosin molecule. J Mol Biol 123:505–519

    Article  PubMed  CAS  Google Scholar 

  • Elliott GF, Lowy J, Worthington CR (1963) An X-ray and light-diffraction study of the filament lattice of striated muscle in the living state and in rigor. J Mol Biol 6:295–305

    Article  Google Scholar 

  • Engelhardt WA, Ljubimowa MN (1939) Myosine and Adenosinetriphosphatase. Nature 144:668–669

    Article  CAS  Google Scholar 

  • Evans CL, Hill AV (1914) The relation of length to tension development and heat production on contraction in muscle. J Physiol 49:10–16

    PubMed  CAS  Google Scholar 

  • Fenn WO (1924) The relationship between work performed and the energy liberated in muscular contraction. J Physiol 58:373–395

    PubMed  CAS  Google Scholar 

  • Fenn WO, Marsh BS (1935) Muscular force at different speeds of shortening. J Physiol 85:277–297

    PubMed  CAS  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184:170–192

    PubMed  CAS  Google Scholar 

  • Granzier HL, Pollack GH (1989) Effect of active pre-shortening on isometric and isotonic performance of single frog muscle fibres. J Physiol 415:299–327

    PubMed  CAS  Google Scholar 

  • Herzog W, Lee EJ, Rassier DE (2006) Residual force enhancement in skeletal muscle. J Physiol 574:635–642

    Article  PubMed  CAS  Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B 126:136–195

    Article  Google Scholar 

  • Hill AV, Howarth JV (1959) The reversal of chemical reactions in contracting muscle during an applied stretch. Proc R Soc Lond B 151:169–193

    Article  Google Scholar 

  • Huxley HE (1969) The mechanism of muscular contraction. Science 164:1356–1366

    Article  PubMed  CAS  Google Scholar 

  • Huxley HE (1973) Molecular basis of contraction in cross-striated muscles. In The Structure and Function of Muscle, vol. 1, 2nd edn., ed Bourne, G., pp. 301–387. New York: Academic Press

    Google Scholar 

  • Huxley HE, Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their natural interpretation. Nature 173:973–977

    Article  PubMed  CAS  Google Scholar 

  • Huxley AF (1957) Muscle structure and theories of contraction. Progr Biophys biophys Chem 7:255–311

    Article  PubMed  CAS  Google Scholar 

  • Huxley AF, Niedergerke R (1954) Structural changes in muscle during contraction: Interference microscopy of living muscle fibres. Nature 173:971–973

    Article  PubMed  CAS  Google Scholar 

  • Jewell BR, Wilkie DR (1960) The mechanical properties of relaxing muscle. J Physiol 152:30–47

    PubMed  CAS  Google Scholar 

  • Joumaa V, Leonard TR, Herzog W (2008) Residual force enhancement in myofibrils and sarcomeres. Proc Biol Sci 275:1411–1419

    Article  PubMed  CAS  Google Scholar 

  • Joyce GC, Rack PMH, Westbury DR (1969) The mechanical properties of cat soleus muscle during controlled lengthening and shortening movements. J Physiol 204:461–474

    Article  PubMed  CAS  Google Scholar 

  • Julian FJ, Morgan DL (1979) The effect on tension of non-uniform distribution of length changes applied to frog muscle fibres. J Physiol 293:379–392

    PubMed  CAS  Google Scholar 

  • Julian FJ, Moss RL, Waller GS (1981) Mechanical properties and myosin light chain composition of skinned muscle fibres from adult and new-born rabbits. J Physiol 311:201–218

    PubMed  CAS  Google Scholar 

  • Katz B (1939) The relation between force and speed in muscular contraction. J Physiol 96:54–64

    Google Scholar 

  • Lännergren J, Hoh JFY (1984) Myosin isoenzymes in single muscle fibres of Xenopus laevis: analysis of five different functional types. Proc R Soc Lond B 222:401–408

    Article  PubMed  Google Scholar 

  • Lee EJ, Herzog W (2008) Residual force enhancement exceeds the isometric force at optimal sarcomere length for optimized stretch conditions. J Appl Physiol 105:457–462

    Article  PubMed  Google Scholar 

  • Lou F, Sun Y-B (1993) The high-force region of the force–velocity relation in frog skinned muscle fibres. Acta Physiol Scand 148:243–252

    Article  PubMed  CAS  Google Scholar 

  • Maréchal G, Plaghki L (1979) The deficit of the isometric tetanic tension redeveloped after a release of frog muscle at constant velocity. J Gen Physiol 73:453–467

    Article  PubMed  Google Scholar 

  • Millman BM (1998) The filament lattice of striated muscle. Physiol Rev 78:359–391

    PubMed  CAS  Google Scholar 

  • Mitsui T, Chiba H (1996) Proposed modification of the Huxley-Simmons model for myosin head motion along an actin filament. J Theor Biol 182:147–159

    Article  PubMed  CAS  Google Scholar 

  • Nielsen BG (2003) Unfolding transitions in myosin give rise to the double hyperbolic force–velocity relation in muscle. J Phys Condens Matter 15:1759–1765

    Article  Google Scholar 

  • Page SG (1968) Fine structure of tortoise skeletal muscle. J Physiol 197:709–715

    Article  PubMed  CAS  Google Scholar 

  • Ralston HJ, Inman VT, Strait LA, Shaffrath MD (1947) Mechanics of human isolated voluntary muscle. Am J Physiol 151:612–620

    PubMed  CAS  Google Scholar 

  • Ramsey RW, Street SF (1940) The isometric length tension diagram of isolated skeletal muscle fibres of the frog. J Cell Comp Physiol 15:11–34

    Google Scholar 

  • Rassier DE, Herzog W (2004a) Effects of shortening on stretch-induced force enhancement in single skeletal muscle fibers. J Biomech 37:1305–1312

    Article  PubMed  Google Scholar 

  • Rassier DE, Herzog W (2004b) Considerations on the history dependence of muscle contraction. J Appl Physiol 96:419–427

    Article  PubMed  Google Scholar 

  • Rassier DE, Herzog W, Pollack GH (2003) Dynamics of individual sarcomeres during and after stretch in activated single myofibrils. Proc Biol Sci 270:1735–1740

    Article  PubMed  Google Scholar 

  • Rayment I, Rypniewsky WR, Schmidt-Bäse K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58

    Article  PubMed  CAS  Google Scholar 

  • Reggiani C (2007) When fibres go slack and cross bridges are free to run: a brilliant method to study kinetic properties of acto-myosin interaction. J Physiol 583:5–7

    Article  PubMed  CAS  Google Scholar 

  • Schachar R, Herzog W, Leonard TR (2004) The effects of muscle stretching and shortening on isometric forces on the descending limb of the force-length relationship. J Biomech 37:917–926

    Article  PubMed  CAS  Google Scholar 

  • Schiaffino S, Reggiani C (1996) Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev 76:371–423

    PubMed  CAS  Google Scholar 

  • Sosa H, Popp D, Ouyang G, Huxley HE (1994) Ultrastructure of skeletal muscle fibers studied by a plunge quick freezing method: myofilament lengths. Biophys J 67:283–292

    Article  PubMed  CAS  Google Scholar 

  • Spurway NC, Rowlerson AM (1989) Quantitative analysis of histochemical and immunohisto­chemical reactions in skeletal muscle fibres of Rana and Xenopus. Histochem J 21:461–471

    Article  PubMed  CAS  Google Scholar 

  • Straub FB (1942) Actin. Studies from the Institute of Medical Chemistry University Szeged, 2:3–15

    CAS  Google Scholar 

  • Sugi H (1972) Tension changes during and after stretch in frog muscle fibers. J Physiol 225:237–253

    PubMed  CAS  Google Scholar 

  • Sugi H, Tsuchiya T (1988) Stiffness changes during enhancement and deficit of isometric force by slow length changes in frog skeletal muscle fibres. J Physiol 407:215–229

    PubMed  CAS  Google Scholar 

  • Szent-Györgyi A (1944) Studies on muscle. Acta Physiol Scand 9, suppl. 25:1–128.

    Google Scholar 

  • Talbot JA, Morgan DL (1996) Quantitative analysis of sarcomere non-uniformities in active muscle following a stretch. J Muscle Res Cell Motil 17:261–268

    Article  PubMed  CAS  Google Scholar 

  • Telley IA, Stehle R, Ranatunga KW, Pfitzer G, Stüssi E, Denoth J (2006) Dynamic behaviour of half-sarcomeres during and after stretch in activated rabbit psoas myofibrils: sarcomere asymmetry but no ‘sarcomere popping’. J Physiol 573:173–185

    Article  PubMed  CAS  Google Scholar 

  • Weber HH, Portzehl H (1952) Kontraktion, ATP-Cyclus und fibrilläre Proteine des Muskels. Ergeb Physiol 47:369–468

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. P. Edman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Edman, K.A.P. (2010). Contractile Performance of Striated Muscle. In: Rassier, D. (eds) Muscle Biophysics. Advances in Experimental Medicine and Biology, vol 682. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6366-6_2

Download citation

Publish with us

Policies and ethics