Skip to main content

Crossbridge Mechanism(s) Examined by Temperature Perturbation Studies on Muscle

  • Chapter
  • First Online:
Muscle Biophysics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 682))

Abstract

An overall view of the contractile process that has emerged from ­temperature-studies on active muscle is outlined. In isometric muscle, a small rapid temperature-jump (T-jump) enhances an early, pre-phosphate release, step in the acto-myosin (crossbridge) ATPase cycle and induces a characteristic rise in force indicating that crossbridge force generation is endothermic (force rises when heat is absorbed). Sigmoidal temperature dependence of steady force is largely due to the endothermic nature of force generation. During shortening, when muscle force is decreased, the T-jump force generation is enhanced; conversely, when a muscle is lengthening and its force increased, the T-jump force generation is inhibited. Taking T-jump force generation as a signature of the crossbridge – ATPase cycle, the results suggest that during lengthening the ATPase cycle is truncated before endothermic force generation, whereas during shortening this step and the ATPase cycle, are accelerated; this readily provides a molecular basis for the Fenn effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bershitsky SY, Tsaturyan AK (1992) Tension responses to joule temperature jump in skinned rabbit muscle fibres. J Physiol 447:425–448

    PubMed  CAS  Google Scholar 

  • Bershitsky SY, Tsaturyan AK (2002) The elementary force generation process probed by temperature and length perturbations in muscle fibres from the rabbit. J Physiol 540:971–988

    Article  PubMed  CAS  Google Scholar 

  • Bershitsky SY, Tsaturyan AK, Bershitskaya ON, Mashanov GI, Brown P, Burns R, Ferenczi MA (1997) Muscle force is generated by myosin heads stereospecifically attached to actin. Nature 388:188–190

    Google Scholar 

  • Cooke R, Pate, E (1985) The effects of ADP and phosphate on the contraction of muscle fibers. Biophys J 48:789–798

    Article  PubMed  CAS  Google Scholar 

  • Coupland ME, Ranatunga KW (2003) Force generation induced by rapid temperature jumps in intact mammalian (rat) muscle fibres. J Physiol 548:439–449

    Article  PubMed  CAS  Google Scholar 

  • Coupland ME, Puchert E, Ranatunga KW (2001) Temperature dependence of active tension in mammalian (rabbit psoas) muscle fibres: effect of inorganic phosphate. J Physiol 536:879–891

    Article  PubMed  CAS  Google Scholar 

  • Coupland ME, Pinniger GJ, Ranatunga KW (2005) Endothermic force generation, temperature-jump experiments and effects of increased [MgADP] in rabbit psoas muscle fibres. J Physiol 567:471–492

    Article  PubMed  CAS  Google Scholar 

  • Curtin NA, Davies RE (1973) Chemical and mechanical changes during stretching of activated frog skeletal muscle. Cold Spring Harb Symp Quant Biol 37:619–626

    Article  Google Scholar 

  • Dantzig JA, Hibberd MG, Trentham DR, Goldman YE (1991) Crossbridge kinetics in the presence of MgADP investigated by photolysis of caged ATP in rabbit psoas muscles. J Physiol 432:639–680

    PubMed  CAS  Google Scholar 

  • Dantzig JA, Goldman YE, Millar NC, Lacktis J, Homsher E (1992) Reversal of the cross-bridge force-generating transition by photogeneration of phosphate in rabbit psoas muscle fibres. J Physiol 451:247–278

    PubMed  CAS  Google Scholar 

  • Davis JS (1998) Force generation simplified. Insights from laser temperature-jump experiments on contracting muscle fibers. In Mechanisms of Work Production and Work Absorption in Muscle, ed. Sugi H & Pollack GH, pp. 343–352. Plenum Press, New York

    Chapter  Google Scholar 

  • Davis JS, Epstein ND (2007) Mechanism of tension generation in muscle: an analysis of the forward and reverse rate constants. Biophys J 92:2865–2874

    Article  PubMed  CAS  Google Scholar 

  • Davis JS, Harrington W (1987) Force generation by muscle fibers in rigor: a laser temperature-jump study. Proc Natl Acad Sci U S A 84:975–979

    Article  PubMed  CAS  Google Scholar 

  • Davis JS, Harrington W (1993) A single order-disorder transition generates tension during the Huxley-Simmons phase 2 in muscle. Biophys J 65:1886–1898

    Article  PubMed  CAS  Google Scholar 

  • De Ruiter CJ, De Haan A (2001) Similar effects of cooling and fatigue on eccentric and concentric force-velocity relationships in human muscle. J Appl Physiol 6:2109–2116

    Article  PubMed  Google Scholar 

  • Edman KA, Tsuchiya T (1996) Strain of passive elements during force enhancement by stretch in frog muscle fibres. J Physiol 490:191–205

    PubMed  CAS  Google Scholar 

  • Fenn WO (1924) The relationship between the work performed and the energy liberated in muscular contraction. J Physiol 59:373–395

    Google Scholar 

  • Ferenczi MA, Bershitsky SY, Koubassova N, Siththanandan V, Helsby WI, Pannie P, Roessle M, Narayanan T, Tsaturyan AK (2005) The ‘Roll and Lock’ mechanism of force generation in muscle. Structure 13:131–141

    Article  PubMed  CAS  Google Scholar 

  • Ford LE, Huxley AF, Simmons RM (1977) Tension responses to sudden length change in stimulated frog muscle fibres near slack length. J Physiol 269:441–515

    PubMed  CAS  Google Scholar 

  • Fortune, NS, Geeves MA, Ranatunga, KW (1991) Tension responses to rapid pressure release in glycerinated rabbit muscle fibers. Proc Natl Acad Sci U S A 88:7323–7327

    Article  PubMed  CAS  Google Scholar 

  • Galler S, Hilber K (1998) Tension/stiffness ratio of skinned rat skeletal muscle fibre types at various temperatures. Acta Physiol Scand 162:119–126

    Article  PubMed  CAS  Google Scholar 

  • Geeves MA, Holmes KC (1999) Structural mechanism of muscle contraction. Ann Rev Biochem 68:687–728

    Article  PubMed  CAS  Google Scholar 

  • Getz, EB, Cooke R, Lehman SL (1998) Phase transition in force during ramp stretches of skeletal muscle. Biophys J 75:2971–2983

    Article  PubMed  CAS  Google Scholar 

  • Gilbert SH, Ford LE (1988) Heat changes during transient tension responses to small releases in active frog muscle. Biophys J 54:611–677

    Article  PubMed  CAS  Google Scholar 

  • Goldman YE, Hibberd MG, Trentham DR (1984) Relaxation of rabbit psoas muscle fibres from rigor by photochemical generation of adenosine-5′-triphosphate. J Physiol 354:577–604

    PubMed  CAS  Google Scholar 

  • Goldman YE, McCray JA, Ranatunga KW (1987) Transient tension changes initiated by laser temperature jumps in rabbit psoas muscle fibres. J Physiol 392:71–95

    PubMed  CAS  Google Scholar 

  • Gutfreund H, Ranatunga KW (1999) Simulation of molecular steps in muscle force generation. Proc Roy Soc B 266:1471–1475

    Article  CAS  Google Scholar 

  • Hadju S. (1951) Behaviour of frog and rat muscle at higher temperatures. Enzymologia 14:187–190

    Google Scholar 

  • He, Z-H, Chillingworth RK, Brune M, Corrie JET, Trentham DR, Webb MR, Ferenczi MA (1997) ATPase kinetics on activation of rabbit and frog permeabilised isometric muscle fibres: a real time phosphate assay. J Physiol 501:125–148

    Article  PubMed  CAS  Google Scholar 

  • He, Z-H, Chillingworth RK, Brune M, Corrie JET, Webb MR, Ferenczi MA (1999) The efficiency of contraction in rabbit skeletal muscle fibres, determined from the rate of release of inorganic phosphate. J Physiol 517:839–854

    Article  PubMed  CAS  Google Scholar 

  • He, Z-H, Bottinelli R, Pellegrino MA, Ferenczi MA, Reggiani C (2000) ATP consumption and efficiency of human single muscle fibers with different myosin isoform composition. Biophys J 79:945–961

    Article  PubMed  CAS  Google Scholar 

  • Hibberd MG, Dantzig JA, Trentham DR, Goldman YE (1985) Phosphate release and force generation in skeletal muscles fibers. Science 228:1317–1319

    Article  PubMed  CAS  Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc Roy Soc Lond B 126:136–195

    Article  Google Scholar 

  • Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys 7:285–318

    Google Scholar 

  • Huxley HE (1969) Mechanism of muscle contraction. Science 164:1356–1366

    Article  PubMed  CAS  Google Scholar 

  • Huxley AF, Simmons RM (1971) Proposed mechanism of force generation in striated muscle. Nature 233:533–538

    Article  PubMed  CAS  Google Scholar 

  • Huxley HE, Reconditi M, Stewart A, Irving T (2006) X-ray interference studies of crossbridge action in muscle contraction: evidence from muscles during steady shortening. J Mol Biol 363:762–772

    Article  PubMed  CAS  Google Scholar 

  • Jahn W, Urbanke C, Wray J (1999) Fluorescence temperature-jump studies of myosin S1 structures. Biophys J 76:A146

    Google Scholar 

  • Katz B (1939) The relations between force and speed in muscular contraction. J Physiol 96:45–64

    PubMed  CAS  Google Scholar 

  • Kawai M (2003) What do we learn by studying the temperature effect on isometric tension and tension transients in mammalian striated muscle fibres? J Musc Res Cell Motil 24:127–138

    Article  Google Scholar 

  • Kawai M, Halvorson HR (1991) Two step mechanism of phosphate release and the mechanism of force generation in chemically skinned fibers of rabbit psoas muscle. Biophys J 59:329–342

    Article  PubMed  CAS  Google Scholar 

  • Kawai M, Kido T, Vogel M, Fink RHA, Ishiwata S (2006) Temperature change does not affect force between regulated actin filaments and heavy meromyosin in single molecule experiments. J Physiol 574:877–878

    Article  PubMed  CAS  Google Scholar 

  • Kodama T (1985) Thermodynamic analysis of muscle ATPase mechanisms. Physiol Rev 65:467–551

    PubMed  CAS  Google Scholar 

  • Linari M, Woledge RC, Curtin NA (2003) Energy storage during stretch of active single fibres from frog skeletal muscle. J Physiol 548:461–474

    Article  PubMed  CAS  Google Scholar 

  • Lombardi V, Piazzesi G (1990) The contractile response during steady lengthening of stimulated frog muscle fibres. J Physiol 431:141–171

    PubMed  CAS  Google Scholar 

  • Lu Z, Moss RL, Walker JW (1993) Tension transients initiated by photogeneration of MgADP in skinned skeletal muscle fibers. J Gen Physiol 101:867–888

    Article  PubMed  CAS  Google Scholar 

  • Lu Z, Swartz DR, Metzger JM, Moss RL, Walker JW (2001) Regulation of force development studied by photolysis of caged ADP in rabbit skinned psoas fibers. Biophys J 81:334–344

    Article  PubMed  CAS  Google Scholar 

  • Lymn RW, Taylor EW (1971) Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochem 10:4617–4624

    Article  CAS  Google Scholar 

  • Malnasi-Csizmadia A., Woolley RJ, Bagshaw CR (2000) Resolution of conformational states of Dictyostelium myosin II motor domain using tryptophan (W501) mutants: Implications for the open-closed transition identified by crystallography. Biochem 39:16135–16146

    Article  CAS  Google Scholar 

  • Millar NC, Howarth JV, Gutfreund H (1987) A transient kinetic study of enthalpy changes during the reaction of myosin subfragment 1 with ATP. Biochem J 248:683–690

    PubMed  CAS  Google Scholar 

  • Piazzesi G, Reconditi M, Koubassova N, Decostre V, Linari M, Lucil L, Lombardi V (2003) Temperature dependence of the force-generating process in single from the frog skeletal muscle. J Physiol 549:93–106

    Article  PubMed  CAS  Google Scholar 

  • Pinniger G J, Ranatunga KW, Offer GW (2006) Crossbridge and non-crossbridge contributions to tension in lengthening rat muscle: force-induced reversal of the power stroke. J Physiol 573:627–643

    Article  PubMed  CAS  Google Scholar 

  • Ranatunga KW (1984) The force-velocity relation of rat fast- and slow-twitch muscles examined at different temperatures. J Physiol 351:517–529

    PubMed  CAS  Google Scholar 

  • Ranatunga KW (1994) Thermal stress and Ca-independent contractile activation in mammalian skeletal muscle fibers at high temperatures. Biophys J 66:1531–1541

    Article  PubMed  CAS  Google Scholar 

  • Ranatunga KW (1996) Endothermic force generation in fast and slow mammalian (rabbit) muscle fibers. Biophys J 71:1905–1913

    Article  PubMed  CAS  Google Scholar 

  • Ranatunga KW (1998) Temperature dependence of mechanical power output in mammalian (rat) skeletal muscle. Exp Physiol 83:371–376

    PubMed  CAS  Google Scholar 

  • Ranatunga KW (1999a) Effects of inorganic phosphate on endothermic force generation in muscle. Proc R Soc Lond B 266:1381–1385

    Article  CAS  Google Scholar 

  • Ranatunga KW (1999b) Endothermic force generation in skinned cardiac muscle from rat. J Musc Res Cell Motil 20:489–490

    Article  CAS  Google Scholar 

  • Ranatunga KW, Wylie SR (1983) Temperature-dependent transitions in isometric contractions of rat muscle. J Physiol 339:87–95

    PubMed  CAS  Google Scholar 

  • Ranatunga KW, Fortune NS, Geeves MA (1990) Hydrostatic compression in glycerinated rabbit muscle fibres. Biophys J 58:1401–1410

    Article  PubMed  CAS  Google Scholar 

  • Ranatunga KW, Coupland ME, Mutungi G (2002) An asymmetry in the phosphate dependence of tension transients induced by length perturbation in mammalian (rabbit psoas) muscle fibres. J Physiol 542:899–910

    Article  PubMed  CAS  Google Scholar 

  • Ranatunga KW, Coupland ME, Pinniger GJ, Roots H, Offer GW (2007) Force generation examined by laser temperature-jumps in shortening and lengthening mammalian (rabbit psoas) muscle fibres. J Physiol 585:263–277

    Article  PubMed  CAS  Google Scholar 

  • Rassier DE (2008) Pre-power stroke cross bridges contribute to force during stretch of skeletal muscle myofibrils. Proc R Soc B 275, 2577–2586

    Article  PubMed  Google Scholar 

  • Roots H, Ranatunga KW (2008) An analysis of temperature-dependence of force, during shortening at different velocities, in (mammalian) fast muscle fibres. J Musc Res Cell Motil 29:9–24

    Article  CAS  Google Scholar 

  • Roots H, Ball G, Talbot-Ponsonby J, King M, McBeath K, Ranatunga KW (2009) Muscle fatigue examined at different temperatures in experiments on intact mammalian (rat) muscle fibers. J Appl Physiol 106:378–384

    Article  PubMed  CAS  Google Scholar 

  • Seow CY, Ford LE (1997) Exchange of ADP on high-force cross-bridges of skinned muscle fibers. Biophys J 72:2719–2735

    Article  PubMed  CAS  Google Scholar 

  • Siemankowski RF, Wiseman MO, White HD (1985) ADP dissociation from actomyosin sub fragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle. Proc Nat Acad Sci U S A 82:658–662

    Article  CAS  Google Scholar 

  • Smith GA, Sleep J (2004) Mechanokinetics of rapid tension recovery in muscle: the myosin working stroke is followed by a slower release of phosphate. Biophys J 87:442–456

    Article  PubMed  CAS  Google Scholar 

  • Smith NP, Barclay CJ, Loiselle DS (2005) The efficiency of muscle contraction. Prog Biophys Mol Biol 88:1–58

    Article  PubMed  CAS  Google Scholar 

  • Tesi C, Colomo F, Nencini S, Piroddi N, Poggesi C (2000) The effect of inorganic phosphate on force generation in single myofibrils from rabbit skeletal muscle. Biophys J 78:3081–3092

    Article  PubMed  CAS  Google Scholar 

  • Vawda F, Geeves MA, Ranatunga KW (1999) Force generation upon hydrostatic pressure release in tetanized intact frog muscle fibres. J Musc Res Cell Motil 20:477–488

    Article  CAS  Google Scholar 

  • Zhao Y, Kawai M (1994) Kinetic and thermodynamic studies of the cross-bridge cycle in rabbit psoas muscle fibers. Biophys J 67:1655–1668

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Wellcome Trust Foundation for financial support of our research, Dr. Gerald Offer (Bristol) for valuable discussions and Blackwell Publishing and Springer for permission to include data we had published in the Journal of Physiology and the Journal of Muscle Research and Cell Motility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. W. Ranatunga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ranatunga, K.W., Coupland, M.E. (2010). Crossbridge Mechanism(s) Examined by Temperature Perturbation Studies on Muscle. In: Rassier, D. (eds) Muscle Biophysics. Advances in Experimental Medicine and Biology, vol 682. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6366-6_14

Download citation

Publish with us

Policies and ethics