Skip to main content

Modelling Climate Change and Malaria Transmission

  • Chapter
Modelling Parasite Transmission and Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 673))

Abstract

The impact of climate change on human health has received increasing attention in recent years, with potential impacts due to vector-borne diseases only now beginning to be understood. As the most severe vector-borne disease, with one million deaths globally in 2006, malaria is thought most likely to be affected by changes in climate variables due to the sensitivity of its transmission dynamics to environmental conditions. While considerable research has been carried out using statistical models to better assess the relationship between changes in environmental variables and malaria incidence, less progress has been made on developing process-based climate-driven mathematical models with greater explanatory power. Here, we develop a simple model of malaria transmission linked to climate which permits useful insights into the sensitivity of disease transmission to changes in rainfall and temperature variables. Both the impact of changes in the mean values of these key external variables and importantly temporal variation in these values are explored. We show that the development and analysis of such dynamic climate-driven transmission models will be crucial to understanding the rate at which P. falciparum and P. vivax may either infect, expand into or go extinct in populations as local environmental conditions change. Malaria becomes endemic in a population when the basic reproduction number R 0 is greater than unity and we identify an optimum climate-driven transmission window for the disease, thus providing a useful indicator for determing how transmission risk may change as climate changes. Overall, our results indicate that considerable work is required to better understand ways in which global malaria incidence and distribution may alter with climate change. In particular, we show that the roles of seasonality, stochasticity and variability in environmental variables, as well as ultimately anthropogenic effects, require further study. The work presented here offers a theoretical framework upon which this future research may be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Martens P. Global atmospheric change and human health: an integrated modelling approach. Clim Res 1996; 6(2):107–112.

    Article  Google Scholar 

  2. Patz JA, Balbus JM. Methods for assessing public health vulnerability to global climate change. Clim Res 1996; 6:113–125.

    Article  Google Scholar 

  3. Patz JA, Epstein PR, Burke TA et al. Global climate change and emerging infectious diseases. JAMA 1996; 275(3):217–223.

    Article  CAS  PubMed  Google Scholar 

  4. Martens P. Health and Climate Change: Modelling the Impacts of Global Warming and Ozone Depletion). London: Earthscan Publications Ltd:1998.

    Google Scholar 

  5. Department of Health. Health effects of climate change in the UK. Department of Health 2001.

    Google Scholar 

  6. IPCC. IPCC Fourth Assessment Report, Cambridge University Press 2007.

    Google Scholar 

  7. Martens P, Niessen LW, Rotmans J et al. Potential impact of global climate change on malaria risk. Environ Health Perspect 1995; 103(5):458–464.

    Article  CAS  PubMed  Google Scholar 

  8. Martens P, Kovats RS, Nijhof S et al. Climate change and future populations at risk of malaria. Glob Environ Change 1999; 89:89–107.

    Article  Google Scholar 

  9. Rogers DJ, Randolph SE. The Global Spread of Malaria in a Future, Warmer World. Science 2000; 289:1763–1766.

    Article  CAS  PubMed  Google Scholar 

  10. World Health Organization. World Malaria Report 2008. WHO 2008.

    Google Scholar 

  11. Martens WJM, Jetten TH, Focks DA. Sensitivity of malaria, schistosomiasis and dengue to global warming. Clim Change 1997; 35(2):145–156.

    Article  Google Scholar 

  12. Bi P, Tong S, Donald K et al. Climate Variables and Transmission of Malaria: A 12-Year Data Analysis in Shuchen County, China. Public Health Reports 2003; 118:65–71.

    Article  PubMed  Google Scholar 

  13. Koenraadt CJM, Paaijmans KP, Githeko AK et al. Egg hatching, larval movement and larval survival of the malaria vector Anopheles gambiae in desiccating habitats. Malar J 2003; 2:20.

    Article  PubMed  Google Scholar 

  14. Thomson MC, Mason SJ, Phindela T et al. Use of rainfall and sea surface temperature monitoring for malaria early warning in Botswana. Am J Trop Med Hyg 2005; 73(1):214–221.

    PubMed  Google Scholar 

  15. Wiwanitkit V. Correlation between rainfall and the prevalence of malaria in Thailand. J Infect 2006; 52:227–230.

    Article  PubMed  Google Scholar 

  16. Briet OJT, Vounatsou P, Gunawardena DM et al. Temporal correlation between malaria and rainfall in Sri Lanka. Malar J 2008; 7:77.

    Article  PubMed  Google Scholar 

  17. Molineaux L, Storey J, Cohen JE et al. A longitudinal study of human malaria in the west African savanna in the absence of control measures: relationships between different Plasmodium species, in particular P. falciparum and P. malariae. Am J Trop Med Hyg 1980; 29:725–737.

    CAS  PubMed  Google Scholar 

  18. Muir DA. Anopheline mosquitos: vector reproduction, life-cycle and biotope. In: Wernsdorfer WH, McGregor I, eds. Malaria: Principles and Practice of Malariology. London: Churchill Livingstone; 1988. 431–451.

    Google Scholar 

  19. Charlwood JD, Kihonda J, Sama S et al. The rise and fall of Anopheles arabiensis (Diptera: Culicidae) in a Tanzanian village. Bull Entomol Res 1995; 85:37–44.

    Article  Google Scholar 

  20. Hoshen MB, Morse AP. A weather-driven model of malaria transmission. Malar J 2004; 3:32.

    Article  PubMed  Google Scholar 

  21. Koenraadt CJM, Githeko AK, Takken W. The effects of rainfall and evapotranspiration on the temporal dynamics of Anopheles gambiae s.s. and Anopheles arabiensis in a Kenyan village. Acta Tropica 2004; 90:141–153.

    Article  CAS  PubMed  Google Scholar 

  22. Ndiaye PI, Bicout DJ, Mondet B et al. Rainfall triggered dynamics of Aedes mosquito aggressiveness. J Theor Biol 2006; 243:222–229.

    Article  CAS  PubMed  Google Scholar 

  23. Martens P, Hall L. Malaria on the move: Human population movement and its impact on malaria transmission. Emerg Infect Dis 2000; 6(2):7–13.

    Article  Google Scholar 

  24. Gubler DJ, Reiter P, Ebi KL et al. Climate Variability and Change in the United States: Potential Impacts on Vector-and Rodent-Borne Diseases. Environmental Health Perspectives 2001; 109(2):223–233.

    Article  PubMed  Google Scholar 

  25. Tatem AJ, Hay SI, Rogers DJ. Global traffic and disease vector dispersal. PNAS 2006; 203(16): 6242–6247.

    Article  Google Scholar 

  26. Lindsay SW, Birley MH. Climate change and malaria transmission. Ann Trop Med Parasitol 1996; 90:573–588.

    CAS  PubMed  Google Scholar 

  27. Lindsay SW, Martens P. Malaria in the African highlands: past, present and future. Bull World Health Organ 1998; 76(1):33–45.

    CAS  PubMed  Google Scholar 

  28. Craig MH, Snow RW, le Sueur D. A Climate-based distribution model of malaria transmission in Sub-Saharan Africa. Parasitol Today 1999; 15(3):105–111.

    Article  CAS  PubMed  Google Scholar 

  29. Altizer S, Dobson A, Hosseini P et al. Seasonality and population dynamics: infectious diseases as case studies. Ecol Letters 2006; 9:467–484.

    Article  Google Scholar 

  30. Grassly NC, Fraser C. Seasonal infectious disease epidemiology. Proc R Soc B 2006; 273:2541–2550.

    Article  PubMed  Google Scholar 

  31. Jepson WF, Moutia A, Courtois C. The malaria problem in Mauritius: the bionomics of Mauritian anophelines. Bull Entomol Res 1947; 38:177–208.

    Article  CAS  PubMed  Google Scholar 

  32. Depinay JMO, Mbogo CM, Killeen G et al. A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malar J 2004; 3(29).

    Google Scholar 

  33. Paaijmans KP, Wandago MO, Githeko AK et al. Unexpected high losses of Anopheles gambiae larvae due to rainfall. PLoS ONE 2007; 2(11):e1146.

    Article  PubMed  Google Scholar 

  34. Detinova TS. Age-grouping methods in diptera of medical importance. WHO Monograph 1962; 47: World Health Organisation, Geneva.

    Google Scholar 

  35. Macdonald G. The epidemiology and control of malaria. London: Oxford University Press:1957.

    Google Scholar 

  36. Warrell DA. Essential malariology, Arnold 2002.

    Google Scholar 

  37. Anderson RM, May RM. Infectious Diseases of Humans: Dynamics and Control. London: Oxford University Press:1991.

    Google Scholar 

  38. Bacaër N, Guernaoui S. The epidemic threshold of vector-borne diseases with seasonality. J Math Biol 2006; 53:421–436.

    Article  PubMed  Google Scholar 

  39. Bacaër N. Approximation of the basic reproduction number R0 for vector-borne diseases with a periodic vector population. Bull Math Biol 2007; 69:1067–1091.

    Article  PubMed  Google Scholar 

  40. Bacaër N, Ouifki R. Growth rate and basic reproduction number for population models with a simple periodic factor. Math Biosci 2007; 210:647–658.

    Article  PubMed  Google Scholar 

  41. Hijmans RJ, Cameron SE, Parra JL et al. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 2005; 25:1965–1978.

    Article  Google Scholar 

  42. Debnath L. Nonlinear Partial Differential Equations for Scientists and Engineers. Berlin: Springer 1997.

    Google Scholar 

  43. Reiter P. Climate change and mosquito-borne disease: knowing the horse before hitching the cart. Rev Sci Tech 2008; 27(2):383–398.

    CAS  PubMed  Google Scholar 

  44. Bouma MJ, van der Kaay HJ. The El Nino Southern Oscillation and the historic malaria epidemics on the Indian subcontinent and Sri Lanka: an early warning system for future epidemics? Trop Med Int Health 1996; 1(1):86–96.

    Article  CAS  PubMed  Google Scholar 

  45. Bouma MJ, Poveda G, Rojas W et al. Predicting high-risk years for malaria in Colombia using parameters of El Nino Southern Oscillation. Trop Med Int Health 1997; 2(12):1122–1127.

    Article  CAS  PubMed  Google Scholar 

  46. Hay SI, Myers MF, Burke DS et al. Etiology of interepidemic periods of mosquito-borne disease. PNAS 2000; 97(16):9335–9339.

    Article  CAS  PubMed  Google Scholar 

  47. Bi P, Parton KA, Tong S. El-Nino-Southern Oscillation and Vector-Borne Diseases in Anhui, China. Vector Borne Zoonotic Dis 2005; 5(2):95–100.

    Article  PubMed  Google Scholar 

  48. Levin SA. The problem of pattern and scale in ecology. Ecology 1992; 73(6):1943–1967.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Parham, P.E., Michael, E. (2010). Modelling Climate Change and Malaria Transmission. In: Michael, E., Spear, R.C. (eds) Modelling Parasite Transmission and Control. Advances in Experimental Medicine and Biology, vol 673. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6064-1_13

Download citation

Publish with us

Policies and ethics