Skip to main content

Genetics and Genomics of Neuroblastoma

  • Chapter
  • First Online:
Cancer Genetics

Part of the book series: Cancer Treatment and Research ((CTAR,volume 155))

Abstract

Neuroblastoma is a pediatric cancer of the developing sympathetic nervous system that most often affects young children. It remains an important pediatric problem because it accounts for approximately 15% of childhood cancer mortality. The disease is clinically heterogeneous, with the likelihood of cure varying greatly according to age at diagnosis, extent of disease, and tumor biology. This extreme clinical heterogeneity reflects the complexity of genetic and genomic events associated with development and progression of disease. Inherited genetic variants and mutations that initiate tumorigenesis have been identified in neuroblastoma and multiple somatically acquired genomic alterations have been described that are relevant to disease progression. This chapter focuses on recent genome-wide studies that have utilized high-density single nucleotide polymorphism (SNP) genotyping arrays to discover genetic factors predisposing to tumor initiation such as rare mutations at locus 2p23 (in ALK gene) for familial neuroblastoma, common SNPs at 6p22 (FLJ22536 and FLJ44180) and 2q35 (BARD1), and a copy number polymorphism at 1q21.1 (NBPF23) for sporadic neuroblastoma. It also deals with well known and recently reported somatic changes in the tumor genome such as mutations, gain of alleles and activation of oncogenes, loss of alleles, or changes in tumor-cell ploidy leading to the diverse clinical behavior of neuroblastomas. Finally, this chapter reviews gene expression profiles of neuroblastoma associated with pathways of the signaling of neurotrophins and apoptotic factors that could have a role in neuroblastoma development and progression. Looking forward, a major challenge will be to understand how inherited genetic variation and acquired somatic alterations in the tumor genome interact to exact phenotypic differences in neuroblastoma, and cancer in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gurney JG et al (1997) Infant cancer in the U.S.: histology-specific incidence and trends, 1973 to 1992. J Pediatr Hematol Oncol 19:428–432

    Article  PubMed  CAS  Google Scholar 

  2. Brodeur GM, Maris JM (2006) Neuroblastoma. In: Pizzo PPD (ed) Principles and practice of pediatric oncology. J B Lippincott Company, Philadelphia, PA, pp 933–970

    Google Scholar 

  3. Brodeur GM, Maris JM (2002) Neuroblastoma. In: Pizzo P, Poplack D (eds) Principles and practices of pediatric oncology. J B Lippincott Company, Philadelphia, PA, pp 895–937

    Google Scholar 

  4. Maris JM, Hogarty MD, Bagatell R, Cohn SL (2007) Neuroblastoma. Lancet 369:2106–2120

    Article  PubMed  CAS  Google Scholar 

  5. Knudson AG Jr, Strong LC (1972) Mutation and cancer: neuroblastoma and pheochromocytoma. Am J Hum Genet 24:514–532

    PubMed  Google Scholar 

  6. Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3:203–216

    Article  PubMed  CAS  Google Scholar 

  7. Biegel JA et al (1993) Constitutional 1p36 deletion in a child with neuroblastoma. Am J Hum Genet 52:176–182

    PubMed  CAS  Google Scholar 

  8. Satge D et al (2003) Abnormal constitutional karyotypes in patients with neuroblastoma: a report of four new cases and review of 47 others in the literature. Cancer Genet Cytogenet 147:89–98

    Article  PubMed  CAS  Google Scholar 

  9. Mosse Y et al (2003) Identification and high-resolution mapping of a constitutional 11q deletion in an infant with multifocal neuroblastoma. Lancet Oncol 4:769–771

    Article  PubMed  CAS  Google Scholar 

  10. Bower RJ, Adkins JC (1980) Ondine’s curse and neurocristopathy. Clin Pediatr (Phila) 19:665–668

    Article  CAS  Google Scholar 

  11. Maris JM, Chatten J, Meadows AT, Biegel JA, Brodeur GM (1997) Familial neuroblastoma: a three-generation pedigree and a further association with Hirschsprung disease. Med Pediatr Oncol 28:1–5

    Article  PubMed  CAS  Google Scholar 

  12. Knudson AG Jr, Meadows AT (1976) Developmental genetics of neuroblastoma. J Natl Cancer Inst 57:675–682

    PubMed  Google Scholar 

  13. Knudson AG Jr, Amromin GD (1966) Neuroblastoma and ganglioneuroma in a child with multiple neurofibromatosis. Implications for the mutational origin of neuroblastoma. Cancer 19:1032–1037

    Article  PubMed  Google Scholar 

  14. Weese-Mayer DE et al (2003) Idiopathic congenital central hypoventilation syndrome: analysis of genes pertinent to early autonomic nervous system embryologic development and identification of mutations in PHOX2b. Am J Med Genet A 123A:267–278

    Article  PubMed  Google Scholar 

  15. Amiel J et al (2003) Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet 33:459–461

    Article  PubMed  CAS  Google Scholar 

  16. Mosse YP et al (2004) Germline PHOX2B mutation in hereditary neuroblastoma. Am J Hum Genet 75:727–730

    Article  PubMed  CAS  Google Scholar 

  17. Trochet D et al (2004) Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Am J Hum Genet 74:761–764

    Article  PubMed  CAS  Google Scholar 

  18. Raabe EH et al (2008) Prevalence and functional consequence of PHOX2B mutations in neuroblastoma. Oncogene 27:469–476

    Article  PubMed  CAS  Google Scholar 

  19. Mosse YP et al (2008) Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455(7215):930–935

    Article  PubMed  CAS  Google Scholar 

  20. Morris SW et al (1994) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263:1281–1284

    Article  PubMed  CAS  Google Scholar 

  21. Griffin CA et al (1999) Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors. Cancer Res 59:2776–2780

    PubMed  CAS  Google Scholar 

  22. Jazii FR et al (2006) Identification of squamous cell carcinoma associated proteins by proteomics and loss of beta tropomyosin expression in esophageal cancer. World J Gastroenterol 12:7104–7112

    PubMed  CAS  Google Scholar 

  23. Soda M et al (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–566

    Article  PubMed  CAS  Google Scholar 

  24. Rikova K et al (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131:1190–1203

    Article  PubMed  CAS  Google Scholar 

  25. Torkamani A, Schork NJ (2007) Accurate prediction of deleterious protein kinase polymorphisms. Bioinformatics 23:2918–2925

    Article  PubMed  CAS  Google Scholar 

  26. Torkamani A, Schork NJ (2008) Prediction of cancer driver mutations in protein kinases. Cancer Res 68:1675–1682

    Article  PubMed  CAS  Google Scholar 

  27. Maris JM et al (2008) Chromosome 6p22 locus associated with clinically aggressive neuroblastoma. N Engl J Med 358:2585–2593

    Article  PubMed  CAS  Google Scholar 

  28. Capasso M et al (2009) Common variations in BARD1 influence susceptibility to high-risk neuroblastoma. Nat Genet 41:718–723

    Article  PubMed  CAS  Google Scholar 

  29. Wu LC et al (1996) Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat Genet 14:430–440

    Article  PubMed  CAS  Google Scholar 

  30. Diskin SJ et al (2009) Copy number variation at 1q21.1 associated with neuroblastoma. Nature 18:987–991

    Article  CAS  Google Scholar 

  31. Kaneko Y et al (1987) Different karyotypic patterns in early and advanced stage neuroblastomas. Cancer Res 47:311–318

    PubMed  CAS  Google Scholar 

  32. Kaneko Y et al (1990) Current urinary mass screening for catecholamine metabolites at 6 months of age may be detecting only a small portion of high-risk neuroblastomas: a chromosome and N-myc amplification study. J Clin Oncol 8:2005–2013

    PubMed  CAS  Google Scholar 

  33. Look AT, Hayes FA, Nitschke R, McWilliams NB, Green AA (1984) Cellular DNA content as a predictor of response to chemotherapy in infants with unresectable neuroblastoma. N Engl J Med 311:231–235

    Article  PubMed  CAS  Google Scholar 

  34. Look AT et al (1991) Clinical relevance of tumor cell ploidy and N-myc gene amplification in childhood neuroblastoma: a Pediatric Oncology Group study. J Clin Oncol 9:581–591

    PubMed  CAS  Google Scholar 

  35. George RE et al (2005) Hyperdiploidy plus nonamplified MYCN confers a favorable prognosis in children 12 to 18 months old with disseminated neuroblastoma: a Pediatric Oncology Group study. J Clin Oncol 23:6466–6473

    Article  PubMed  CAS  Google Scholar 

  36. Janoueix-Lerosey I et al (2009) Overall genomic pattern is a predictor of outcome in neuroblastoma. J Clin Oncol 27:1026–1033

    Article  PubMed  Google Scholar 

  37. Schwab M, Tonini GP, Benard J (1993) Human neuroblastoma. Recent advances in clinical and genetic analysis. Harwood Academic Publishers, Chur, Switzerland, pp 101–111

    Google Scholar 

  38. Brodeur GM, Seeger RC (1986) Gene amplification in human neuroblastomas: basic mechanisms and clinical implications. Cancer Genet Cytogenet 19:101–111

    Article  PubMed  CAS  Google Scholar 

  39. Brodeur GM et al (1987) Consistent N-myc copy number in simultaneous or consecutive neuroblastoma samples from sixty individual patients. Cancer Res 47: 4248–4253

    PubMed  CAS  Google Scholar 

  40. Schwab M et al (1983) Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature 305:245–248

    Article  PubMed  CAS  Google Scholar 

  41. Seeger RC et al (1988) Expression of N-myc by neuroblastomas with one or multiple copies of the oncogene. Prog Clin Biol Res 271:41–49

    PubMed  CAS  Google Scholar 

  42. Seeger RC et al (1985) Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 313:1111–1116

    Article  PubMed  CAS  Google Scholar 

  43. Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM (1984) Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224:1121–1124

    Article  PubMed  CAS  Google Scholar 

  44. Cohn SL et al (1995) Lack of correlation of N-myc gene amplification with prognosis in localized neuroblastoma: a Pediatric Oncology Group study. Cancer Res 55:721–726

    PubMed  CAS  Google Scholar 

  45. Perez CA et al (2000) Biologic variables in the outcome of stages I and II neuroblastoma treated with surgery as primary therapy: a children’s cancer group study. J Clin Oncol 18:18–26

    PubMed  CAS  Google Scholar 

  46. Katzenstein HM et al (1998) Prognostic significance of age, MYCN oncogene amplification, tumor cell ploidy, and histology in 110 infants with stage D(S) neuroblastoma: the pediatric oncology group experience – a pediatric oncology group study. J Clin Oncol 16:2007–2017

    PubMed  CAS  Google Scholar 

  47. Janoueix-Lerosey I et al (2008) Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455:967–970

    Article  PubMed  CAS  Google Scholar 

  48. George RE et al (2008) Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 455:975–978

    Article  PubMed  CAS  Google Scholar 

  49. Chen Y et al (2008) Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455:971–974

    Article  PubMed  CAS  Google Scholar 

  50. Brodeur GM, Maris JM, Yamashiro DJ, Hogarty MD, White PS (1997) Biology and genetics of human neuroblastomas. J Pediatr Hematol Oncol 19:93–101

    Article  PubMed  CAS  Google Scholar 

  51. Jinbo T, Iwamura Y, Kaneko M, Sawaguchi S (1989) Coamplification of the L-myc and N-myc oncogenes in a neuroblastoma cell line. Jpn J Cancer Res 80:299–301

    Article  PubMed  CAS  Google Scholar 

  52. Corvi R et al (1985) Non-syntenic amplification of MDM2 and MYCN in human neuroblastoma. Oncogene 10:1081–1086

    Google Scholar 

  53. Van Roy N et al (1995) Identification of two distinct chromosome 12-derived amplification units in neuroblastoma cell line NGP. Cancer Genet Cytogenet 82:151–154

    Article  PubMed  Google Scholar 

  54. Gilbert F et al (1984) Human neuroblastomas and abnormalities of chromosomes 1 and 17. Cancer Res 44:5444–5449

    PubMed  CAS  Google Scholar 

  55. Caron H (1995) Allelic loss of chromosome 1 and additional chromosome 17 material are both unfavourable prognostic markers in neuroblastoma. Med Pediatr Oncol 24:215–221

    Article  PubMed  CAS  Google Scholar 

  56. Bown N et al (1999) Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N Engl J Med 340:1954–1961

    Article  PubMed  CAS  Google Scholar 

  57. Schleiermacher G et al (2004) Variety and complexity of chromosome 17 translocations in neuroblastoma. Genes Chromosomes Cancer 39:143–150

    Article  PubMed  CAS  Google Scholar 

  58. Islam A et al (2000) High expression of Survivin, mapped to 17q25, is significantly associated with poor prognostic factors and promotes cell survival in human neuroblastoma. Oncogene 19:617–623

    Article  PubMed  CAS  Google Scholar 

  59. Godfried MB et al (2002) The N-myc and c-myc downstream pathways include the chromosome 17q genes nm23-H1 and nm23-H2. Oncogene 21:2097–2101

    Article  PubMed  CAS  Google Scholar 

  60. Saito-Ohara F et al (2003) PPM1D is a potential target for 17q gain in neuroblastoma. Cancer Res 63:1876–1883

    PubMed  CAS  Google Scholar 

  61. Brinkschmidt C et al (1997) Comparative genomic hybridization (CGH) analysis of neuroblastomas–an important methodological approach in paediatric tumour pathology. J Pathol 181:394–400

    Article  PubMed  CAS  Google Scholar 

  62. Lastowska M et al (1997) Comparative genomic hybridization study of primary neuroblastoma tumors. United Kingdom Children’s Cancer Study Group. Genes Chromosomes Cancer 18:162–169

    Article  PubMed  CAS  Google Scholar 

  63. Vandesompele J et al (1998) Genetic heterogeneity of neuroblastoma studied by comparative genomic hybridization. Genes Chromosomes Cancer 23:141–152

    Article  PubMed  CAS  Google Scholar 

  64. Mosse YP et al (2007) Neuroblastomas have distinct genomic DNA profiles that predict clinical phenotype and regional gene expression. Genes Chromosomes Cancer 46:936–949

    Article  PubMed  CAS  Google Scholar 

  65. White PS et al (1995) A region of consistent deletion in neuroblastoma maps within human chromosome 1p36.2-36.3. Proc Natl Acad Sci U S A 92:5520–5524

    Article  PubMed  CAS  Google Scholar 

  66. White PS et al (2001) Detailed molecular analysis of 1p36 in neuroblastoma. Med Pediatr Oncol 36:37–41

    Article  PubMed  CAS  Google Scholar 

  67. White PS et al (2005) Definition and characterization of a region of 1p36.3 consistently deleted in neuroblastoma. Oncogene 24:2684–2694

    Article  PubMed  CAS  Google Scholar 

  68. Gehring M, Berthold F, Edler L, Schwab M, Amler LC (1995) The 1p deletion is not a reliable marker for the prognosis of patients with neuroblastoma. Cancer Res 55:5366–5369

    PubMed  CAS  Google Scholar 

  69. Martinsson T, Sjoberg RM, Hedborg F, Kogner P (1995) Deletion of chromosome 1p loci and microsatellite instability in neuroblastomas analyzed with short-tandem repeat polymorphisms. Cancer Res 55:5681–5686

    PubMed  CAS  Google Scholar 

  70. Schmidt ML et al (2005) Favorable prognosis for patients 12 to 18 months of age with stage 4 nonamplified MYCN neuroblastoma: a Children’s Cancer Group Study. J Clin Oncol 23:6474–6480

    Article  PubMed  CAS  Google Scholar 

  71. Shimada H et al (1984) Histopathologic prognostic factors in neuroblastic tumors: definition of subtypes of ganglioneuroblastoma and an age-linked classification of neuroblastomas. J Natl Cancer Inst 73:405–416

    PubMed  CAS  Google Scholar 

  72. Caron H et al (1996) Allelic loss of chromosome 1p as a predictor of unfavorable outcome in patients with neuroblastoma. N Engl J Med 334:225–230

    Article  PubMed  CAS  Google Scholar 

  73. Maris JM et al (2000) Loss of heterozygosity at 1p36 independently predicts for disease progression but not decreased overall survival probability in neuroblastoma patients: a Children’s Cancer Group study. J Clin Oncol 18:1888–1899

    PubMed  CAS  Google Scholar 

  74. Spitz R et al (2002) Fluorescence in situ hybridization analyses of chromosome band 1p36 in neuroblastoma detect two classes of alterations. Genes Chromosomes Cancer 34:299–305

    Article  PubMed  CAS  Google Scholar 

  75. George RE et al (2007) Genome-wide analysis of neuroblastomas using high-density single nucleotide polymorphism arrays. PLoS ONE 2:e255

    Article  PubMed  CAS  Google Scholar 

  76. Attiyeh EF et al (2005) Chromosome 1p and 11q deletions and outcome in neuroblastoma. N Engl J Med 353:2243–2253

    Article  PubMed  CAS  Google Scholar 

  77. Guo C et al (1999) Allelic deletion at 11q23 is common in MYCN single copy neuroblastomas. Oncogene 18:4948–4957

    Article  PubMed  CAS  Google Scholar 

  78. Srivatsan ES, Ying KL, Seeger RC (1993) Deletion of chromosome 11 and of 14q sequences in neuroblastoma. Genes Chromosomes Cancer 7:32–37

    Article  PubMed  CAS  Google Scholar 

  79. Carr J et al (2007) High-resolution analysis of allelic imbalance in neuroblastoma cell lines by single nucleotide polymorphism arrays. Cancer Genet Cytogenet 172:127–138

    Article  PubMed  CAS  Google Scholar 

  80. Suzuki T et al (1989) Frequent loss of heterozygosity on chromosome 14q in neuroblastoma. Cancer Res 49:1095–1098

    PubMed  CAS  Google Scholar 

  81. Thompson PM et al (2001) Loss of heterozygosity for chromosome 14q in neuroblastoma. Med Pediatr Oncol 36:28–31

    Article  PubMed  CAS  Google Scholar 

  82. Yano H, Chao MV (2000) Neurotrophin receptor structure and interactions. Pharm Acta Helv 74:253–260

    Article  PubMed  CAS  Google Scholar 

  83. Patapoutian A, Reichardt LF (2001) Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol 11:272–280

    Article  PubMed  CAS  Google Scholar 

  84. Nakagawara A, Azar CG, Scavarda NJ, Brodeur GM (1994) Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol 14:759–767

    PubMed  CAS  Google Scholar 

  85. Matsumoto K, Wada RK, Yamashiro JM, Kaplan DR, Thiele CJ (1995) Expression of brain-derived neurotrophic factor and p145TrkB affects survival, differentiation, and invasiveness of human neuroblastoma cells. Cancer Res 55:1798–1806

    PubMed  CAS  Google Scholar 

  86. Svensson T et al (1997) Coexpression of mRNA for the full-length neurotrophin receptor trk-C and trk-A in favourable neuroblastoma. Eur J Cancer 33:2058–2063

    Article  PubMed  CAS  Google Scholar 

  87. Ryden M et al (1996) Expression of mRNA for the neurotrophin receptor trkC in neuroblastomas with favourable tumour stage and good prognosis. Br J Cancer 74:773–779

    Article  PubMed  CAS  Google Scholar 

  88. Yamashiro DJ, Nakagawara A, Ikegaki N, Liu XG, Brodeur GM (1996) Expression of TrkC in favorable human neuroblastomas. Oncogene 12:37–41

    PubMed  CAS  Google Scholar 

  89. Casaccia-Bonnefil P, Gu C, Chao MV (1999) Neurotrophins in cell survival/death decisions. Adv Exp Med Biol 468:275–282

    Article  PubMed  CAS  Google Scholar 

  90. Hempstead BL (2002) The many faces of p75NTR. Curr Opin Neurobiol 12:260–267

    Article  PubMed  CAS  Google Scholar 

  91. Nakagawara A et al (1993) Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med 328:847–854

    Article  PubMed  CAS  Google Scholar 

  92. Suzuki T, Bogenmann E, Shimada H, Stram D, Seeger RC (1993) Lack of high-affinity nerve growth factor receptors in aggressive neuroblastomas. J Natl Cancer Inst 85:377–384

    Article  PubMed  CAS  Google Scholar 

  93. Kogner P et al (1993) Coexpression of messenger RNA for TRK protooncogene and low affinity nerve growth factor receptor in neuroblastoma with favorable prognosis. Cancer Res 53:2044–2050

    PubMed  CAS  Google Scholar 

  94. Brodeur GM, Castle VP (1999) Role of apoptosis in human neuroblastomas. In: Hickman JAD, Dive C (eds) Apoptosis and cancer chemotherapy. Humana, Totowa, NJ, pp 305–318

    Google Scholar 

  95. Bunone G, Mariotti A, Compagni A, Morandi E, Della Valle G (1997) Induction of apoptosis by p75 neurotrophin receptor in human neuroblastoma cells. Oncogene 14:1463–1470

    Article  PubMed  CAS  Google Scholar 

  96. Fulda S, Sieverts H, Friesen C, Herr I, Debatin KM (1997) The CD95 (APO-1/Fas) system mediates drug-induced apoptosis in neuroblastoma cells. Cancer Res 57:3823–3829

    PubMed  CAS  Google Scholar 

  97. Castle VP et al (1993) Expression of the apoptosis-suppressing protein bcl-2, in neuroblastoma is associated with unfavorable histology and N-myc amplification. Am J Pathol 143:1543–1550

    PubMed  CAS  Google Scholar 

  98. Oue T et al (1996) In situ detection of DNA fragmentation and expression of bcl-2 in human neuroblastoma: relation to apoptosis and spontaneous regression. J Pediatr Surg 31:251–257

    Article  PubMed  CAS  Google Scholar 

  99. Dole M et al (1994) Bcl-2 inhibits chemotherapy-induced apoptosis in neuroblastoma. Cancer Res 54:3253–3259

    PubMed  CAS  Google Scholar 

  100. Dole MG et al (1995) Bcl-xL is expressed in neuroblastoma cells and modulates chemotherapy-induced apoptosis. Cancer Res 55:2576–2582

    PubMed  CAS  Google Scholar 

  101. Nakagawara A et al (1997) High levels of expression and nuclear localization of interleukin-1 beta converting enzyme (ICE) and CPP32 in favorable human neuroblastomas. Cancer Res 57:4578–4584

    PubMed  CAS  Google Scholar 

  102. Park JG, Kramer BS, Lai SL, Goldstein LJ, Gazdar AF (1990) Chemosensitivity patterns and expression of human multidrug resistance-associated MDR1 gene by human gastric and colorectal carcinoma cell lines. J Natl Cancer Inst 82:193–198

    Article  PubMed  CAS  Google Scholar 

  103. Chan HS et al (1991) P-glycoprotein expression as a predictor of the outcome of therapy for neuroblastoma. N Engl J Med 325:1608–1614

    Article  PubMed  CAS  Google Scholar 

  104. Norris MD et al (1996) Expression of the gene for multidrug-resistance-associated protein and outcome in patients with neuroblastoma. N Engl J Med 334:231–238

    Article  PubMed  CAS  Google Scholar 

  105. Hailat N et al (1991) High levels of p19/nm23 protein in neuroblastoma are associated with advanced stage disease and with N-myc gene amplification. J Clin Invest 88:341–345

    Article  PubMed  CAS  Google Scholar 

  106. Leone A et al (1993) Evidence for nm23 RNA overexpression, DNA amplification and mutation in aggressive childhood neuroblastomas. Oncogene 8:855–865

    PubMed  CAS  Google Scholar 

  107. Chang CL et al (1994) Nm23-H1 mutation in neuroblastoma. Nature 370:335–336

    Article  PubMed  CAS  Google Scholar 

  108. Kim NW et al (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015

    Article  PubMed  CAS  Google Scholar 

  109. Hiyama E et al (1995) Correlating telomerase activity levels with human neuroblastoma outcomes. Nat Med 1:249–255

    Article  PubMed  CAS  Google Scholar 

  110. Hiyama E et al (1997) Telomerase activity in neuroblastoma: is it a prognostic indicator of clinical behaviour? Eur J Cancer 33:1932–1936

    Article  PubMed  CAS  Google Scholar 

  111. Reynolds CP et al (1997) Telomerase expression in primary neuroblastomas. Eur J Cancer 33:1929–1931

    Article  PubMed  CAS  Google Scholar 

  112. Brinkschmidt C et al (1998) Comparative genomic hybridization and telomerase activity analysis identify two biologically different groups of 4 s neuroblastomas. Br J Cancer 77:2223–2229

    Article  PubMed  CAS  Google Scholar 

  113. Asgharzadeh S et al (2006) Prognostic significance of gene expression profiles of metastatic neuroblastomas lacking MYCN gene amplification. J Natl Cancer Inst 98:1193–1203

    Article  PubMed  CAS  Google Scholar 

  114. Caren H et al (2008) High-resolution array copy number analyses for detection of deletion, gain, amplification and copy-neutral LOH in primary neuroblastoma tumors: four cases of homozygous deletions of the CDKN2A gene. BMC Genomics 9:353

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Capasso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Capasso, M., Diskin, S.J. (2010). Genetics and Genomics of Neuroblastoma. In: Pasche, B. (eds) Cancer Genetics. Cancer Treatment and Research, vol 155. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6033-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6033-7_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6032-0

  • Online ISBN: 978-1-4419-6033-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics