Skip to main content

Genetic Enhancement of Sorghum for Biomass Utilization

  • Chapter
  • First Online:
Genomics of the Saccharinae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 11))

Abstract

Biomass produced from sorghum can be utilized as forage and silage to feed ruminant animals and as feedstock for biofuels and bio-based products. The efficiency of biomass utilization is a function of biomass composition and plant architecture. This chapter provides a description of the cell wall polymers that make up the bulk of sorghum biomass, along with information on the genes involved in their biosynthesis. The close evolutionary relationships among the grasses makes it possible to infer gene function across species. Newly developed genomics and bioinformatics resources offer exciting opportunities for the genetic enhancement of sorghum as a biomass crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    PubMed  Google Scholar 

  • Appenzeller L, Doblin M, Barreiro R, Wang H, Niu X, Kollipara K, Carrigan L, Tomes D, Chapman M, Dhugga KS (2004) Cellulose synthesis in maize: isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose 11:287–299

    CAS  Google Scholar 

  • Argillier O, Barrière Y, Hébert Y (1995) Genetic variation and selection criteria for digestibility traits of forage maize. Euphytica 82:175–184

    Google Scholar 

  • Arioli T, Peng L, Betzner AS, Burn J, Wittke W, Herth W, Camilleri C, Höfte H, Plazinski J, Birch R, Cork A, Glover J, Redmond J, Williamson RE (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–720

    PubMed  CAS  Google Scholar 

  • Ayyangar GNR, Ponnaiya BWX (1941) The occurrence and inheritance of a bloomless sorghum. Curr Sci 10:408–409

    Google Scholar 

  • Bai L, Singh M, Pitt L, Sweeney M, Brutnell TP (2007) Generating novel allelic variation through Activator insertional mutagenesis in maize. Genetics 175:981–992

    PubMed  CAS  Google Scholar 

  • Barrière Y, Guillet C, Goffner D, Pichon M (2003) Genetic variation and breeding strategies for improved cell wall digestibility in annual forage crops. A review. Anim Res 52:193–228

    CAS  Google Scholar 

  • Boon JJ (1989) An introduction to pyrolysis mass spectrometry of lignocellulosic material: case studies of barley straw, corn stem and Agropyron. In: Chesson A, Ørskov ER (eds) Physico-chemical characterization of plant residues for industrial and feed use. Elsevier Applied Science, London, pp 25–49

    Google Scholar 

  • Bout S, Vermerris W (2003) A candidate gene-approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Mol Genet Genomics 269:205–214

    PubMed  CAS  Google Scholar 

  • Brinkmann K, Blaschke L, Polle A (2002) Comparison of different methods for lignin determination as a basis for calibration of near-infrared reflectance spectroscopy and implications of lignoproteins. J Chem Ecol 28:2483–2501

    PubMed  CAS  Google Scholar 

  • Brown L, Torget R (1996) Laboratory Analytical Protocol 009: enzymatic saccharification of lignocellulosic biomass. National Renewable Energy Laboratory, Golden, CO. http://www1.eere.energy.gov/analytical_procedures.html

  • Burlison AJ, Hodgson J, Illius AW (1991) Sward canopy structure and the bite dimensions and bite weight of grazing sheep. Grass Forage Sci 46:29–38

    Google Scholar 

  • Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Medhurst A, Stone BA, Newbigin EJ, Bacic A, Fincher GB (2006) Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-β-d-Glucans. Science 311:1940–1942

    PubMed  CAS  Google Scholar 

  • Busk PK, Møller BL (2002) Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants. Plant Physiol 129:1222–1231

    PubMed  CAS  Google Scholar 

  • Cao P, Jung K-H, Ronald PC (2010) A survey of databases for analysis of plant cell wall-related enzymes. Bioenergy Res 3:108–114

    Google Scholar 

  • Carpita NC (1996) Structure and biogenesis of the cell walls of grasses. Annu Rev Plant Physiol Plant Mol Biol 47:445–476

    PubMed  CAS  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of the primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the wall during growth. Plant J 3:1–30

    PubMed  CAS  Google Scholar 

  • Carpita NC, McCann MC (2008) Maize and sorghum: genetic resources for bioenergy grasses. Trends Plant Sci 11:314–320

    Google Scholar 

  • Casler MD, Carpenter JA (1989) Morphological and chemical responses to selection for in vitro dry matter digestibility in smooth bromegrass. Crop Sci 29:924–928

    Google Scholar 

  • Chacon EA, Stobbs TH (1976) Influence of progressive defoliation of a grass sward in the eating behaviour of cattle. Aust J Agric Res 27:709–727

    Google Scholar 

  • Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761

    PubMed  CAS  Google Scholar 

  • Cherney JH, Cherney DJR, Akin DE, Axtell JD (1991a) Potential of brown-midrib, low-lignin mutants for improving forage quality. Adv Agron 46:157–198

    CAS  Google Scholar 

  • Cherney DJ, Mertens DR, Moore JE (1991b) Fluid and particulate retention times in sheep as influenced by intake level and forage morphological composition. J Anim Sci 69:413–422

    PubMed  CAS  Google Scholar 

  • Cocuron JC, Lerouxel O, Drakakai G, Alonso AP, Liepman AH, Keegstra K, Raikhel N, Wilkerson CG (2007) A gene from the cellulose synthase-like C family encodes a β-1,4 glucan synthase. Proc Natl Acad Sci U S A 104:8550–8555

    PubMed  CAS  Google Scholar 

  • Corredor DY, Salazar JM, Hohn KL, Bean S, Bean B, Wang D (2008) Evaluation and characterization of forage sorghum as feedstock for fermentable sugar production. Appl Biochem Biotechnol 158:164–179

    PubMed  Google Scholar 

  • Dahlberg JA (2000) Classification and characterization of sorghum. In: Smith CW, Frederiksen RA (eds) Sorghum. Origin, history, technology, and production. Wiley, New York, pp 99–130

    Google Scholar 

  • Davison BH, Drescher SR, Tuskan GA, Davis MF, Nghiem NP (2006) Variation of S/G ratio and lignin content in a Populus family influences the release of xylose by dilute acid hydrolysis. Appl Biochem Biotechnol 129–132:427–435

    PubMed  Google Scholar 

  • De Boever JL, Cottyn BG, Andries JI, Buysse FX, Vanacker JM (1988) The use of cellulase technique to predict digestibility, metabolizable and net energy of forage. Anim Feed Sci Technol 19:247–260

    Google Scholar 

  • Delmer DP (1999) Cellulose biosynthesis: Exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Biol 50:245–276

    Google Scholar 

  • Desprez T, Vernhettes S, Fagard M, Refregier G, Desnos T, Aletti E, Py N, Pelletier S, Höfte H (2002) Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESA6. Plant Physiol 128:482–490

    PubMed  CAS  Google Scholar 

  • Desprez T, Juraniec M, Crowell EF, Jouy H, Pochylova Z, Parcy F, Höfte H, Gonneau M, Vernhettes S (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 104:15572–15577

    PubMed  CAS  Google Scholar 

  • Dhugga KS, Barreiro R, Whitten B, Stecca K, Hazebroek J, Randhawa GS, Dolan M, Kinney AJ, Tomes D, Nichols S, Anderson P (2004) Guar seed β-mannan synthase is a member of the cellulose synthase super gene family. Science 303:363–366

    PubMed  CAS  Google Scholar 

  • Dien BS, Sarath G, Pedersen JF, Satler SE, Chen H, Funnell-Harris DL, Nichols NN, Cotta MA (2009) Improved sugar conversion and ethanol yield for forage sorghum (Sorghum bicolor (L.) Moench) lines with reduced lignin contents. BioEnergy Res 2:153–164

    Google Scholar 

  • Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606

    PubMed  CAS  Google Scholar 

  • Djè Y, Heuertz M, Lefèbvre C, Vekemans X (2000) Assessment of genetic diversity within and among germplasm accessions in cultivated sorghum using microsatellite markers. Theor Appl Genet 100:918–925

    Google Scholar 

  • Dowe N, McMillan J (2008) SSF Experimental Protocols - Lignocellulosic Biomass Hydrolysis and Fermentation. Laboratory Analytical Procedure (LAP). Technical Report NREL/TP-510-42630. http://www.nrel.gov/biomass/pdfs/42630.pdf

    Google Scholar 

  • Ehlke NJ, Casler MD (1985) Anatomical characteristics of smooth bromegrass clones selected for in vitro dry matter digestibility. Crop Sci 35:513–517

    Google Scholar 

  • Evans RJ, Milne TA (1987) Molecular characterization of the pyrolysis of biomass. 1. Fundamentals. Energy Fuel 1:123–137

    CAS  Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2007) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18:220–227

    PubMed  CAS  Google Scholar 

  • Fagard M, Desnos T, Desprez T, Goubet F, Refregier G, Mouille G, McCann M, Rayon C, Vernhettes S, Höfte H (2000) PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12:2409–2423

    PubMed  CAS  Google Scholar 

  • Faik A (2010) Xylan biosynthesis: news from the grass. Plant Physiol 153:396–402

    PubMed  CAS  Google Scholar 

  • Fincher GB (2009) Revolutionary times in our understanding of cell wall biosynthesis and remodeling in the grasses. Plant Physiol 149:27–37

    PubMed  CAS  Google Scholar 

  • Fontaine AS, Bout S, Barrière Y, Vermerris W (2003) Variation in cell wall composition among forage maize (Zea Mays L.) inbred lines and its impact on digestibility. Analysis of neutral detergent fiber composition by pyrolysis-gas chromatography-mass spectrometry. J Agric Food Chem 51:8080–8087

    PubMed  CAS  Google Scholar 

  • Gerhardt RL, Fritz JO, Moore KJ, Jaster EH (1994) Digestion kinetics and composition of normal and brown midrib sorghum morphological components. Crop Sci 34:1353–1361

    Google Scholar 

  • Girke T, Lauricha J, Tran H, Keegstra K, Raikhel N (2004) The cell wall navigator database. A systems-based approach to organism-unrestricted mining of protein families involved in cell wall metabolism. Plant Physiol 136:3003–3008

    PubMed  CAS  Google Scholar 

  • Gorz HJ, Haskins FA, Vogel KP (1986) Inheritance of dhurrin contant in mature sorghum leaves. Crop Sci 26:65–67

    CAS  Google Scholar 

  • Gorz HJ, Haskins FA, Morris R, Johnson BE (1987) Identification of chromosomes that condition dhurrin content in sorghum seedlings. Crop Sci 27:201–203

    CAS  Google Scholar 

  • Grenier C, Bramel-Cox PJ, Hamon P (2001a) Core collection of sorghum. I. Stratification based on eco-geographical data. Crop Sci 41:234–240

    Google Scholar 

  • Grenier C, Hamon P, Bramel-Cox PJ (2001b) Core collection of sorghum. II. Comparison of three random sampling strategies. Crop Sci 41:241–246

    Google Scholar 

  • Guillaumie S, San-Clemente H, Deswarte C, Martinez Y, Lapierre C, Murgneux A, Barrière Y, Pichon M, Goffner D (2007) MAIZEWALL. Database and developmental gene expression profiling of cell wall biosynthesis and assembly in maize. Plant Physiol 143:339–363

    PubMed  CAS  Google Scholar 

  • Hamelinck C, Faaij APC (2006) Production of methanol from biomass. In: Minteer S (ed) Alcoholic fuels. Taylor and Francis, Boca Raton, FL, pp 7–50

    Google Scholar 

  • Haney LJ, Coors JG, Lorenz AJ, Raman DR, Anex RP, Scott MP (2008) Development of a fluorescence-based method for monitoring glucose catabolism and its potential use in a biomass hydrolysis assay. Biotechnol Biofuels 1:17

    PubMed  Google Scholar 

  • Hatfield R, Ralph J, Grabber JH (2008) A potential role for sinapyl p-coumarate as a radical transfer mechanism in grass lignin formation. Planta 228:919–928

    PubMed  CAS  Google Scholar 

  • Holland N, Holland D, Helentjaris T, Dhugga KS, Xoconostle-Cazares B, Delmer DP (2000) A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiol 123:1313–1323

    PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    PubMed  CAS  Google Scholar 

  • Humphreys JM, Chapple C (2002) Rewriting the lignin road map. Curr Opin Plant Biol 5:224–229

    PubMed  CAS  Google Scholar 

  • Humphreys JM, Hemm MR, Chapple C (1999) New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci U S A 96:10045–10050

    PubMed  CAS  Google Scholar 

  • Jung HG, Mertens DR, Buxton DR (1998) Forage quality variation among maize inbreds: in vitro fiber digestion kinetics and prediction with NIRS. Crop Sci 38:205–210

    Google Scholar 

  • Kemsley EK (1998) Discriminant analysis and class modelling of spectroscopic data. Wiley, Chichester, UK

    Google Scholar 

  • Kim S-J, Kim M-R, Bedgar DL, Moinuddin SGA, Cardenas CL, Davin LB, Kang C, Lewis NG (2004) Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proc Natl Acad Sci U S A 101:1455–1460

    PubMed  CAS  Google Scholar 

  • Kim J-S, Klein PE, Klein RR, Price HJ, Mullet JE, Stelly DM (2005) Chromosome identification and nomenclature of Sorghum bicolor. Genetics 169:1169–1173

    PubMed  CAS  Google Scholar 

  • Kim CM, Park SH, Il JB, Park SH, Piao HL, Eun MY, Dolan L, Han CD (2007) OsCSLD1, a cellulose synthase-like D1 gene, is required for root hair morphogenesis in rice. Plant Physiol 143:1220–1230

    PubMed  CAS  Google Scholar 

  • Knox JP (2008) Revealing the structural and functional diversity of plant cell walls. Curr Opin Plant Biol 11:308–318

    PubMed  CAS  Google Scholar 

  • Lamb JF, Haskins FA, Gorz HJ, Vogel KP (1987) Inheritance of seedling hydrocyanic acid potential and seed weight in sorghum-sudangrass crosses. Crop Sci 27:522–525

    CAS  Google Scholar 

  • Li B-Z, Balan V, Yuan Y-J, Dale BE (2010) Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment. Bioresour Technol 101:1285–1292

    PubMed  CAS  Google Scholar 

  • Liepman AH, Wilkerson CG, Keegstra K (2005) Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc Natl Acad Sci U S A 102:2221–2226

    PubMed  CAS  Google Scholar 

  • Liu L, Ye XP, Womac AR, Sokhansanj S (2010) Variability of biomass chemical composition and rapid analysis using FT-NIR techniques. Carbohydr Polym 81:820–829

    CAS  Google Scholar 

  • Lorenzana RE, Friskop Lewis M, Jung H-HG, Bernardo R (2010) Quantitative trait loci and trait correlations for maize stover cell wall composition and glucose release for cellulosic ethanol. Crop Sci 50:541–555

    Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    PubMed  CAS  Google Scholar 

  • Mann DGJ, Labbé N, Sykes RW, Gracom K, Kline L, Swamidoss IM, Burris JN, Davis M, Stewart CN (2009) Rapid assessment of lignin content and structure in switchgrass (Panicum virgatum L.) grown under different environmental conditions. Bioenergy Res 2:246–256

    Google Scholar 

  • Marita J, Vermerris W, Ralph J, Hatfield RD (2003) Variations in the cell wall composition of maize brown midrib mutants. J Agric Food Chem 51:1313–1321

    PubMed  CAS  Google Scholar 

  • Marsalis MA, Angadi SV, Contreras-Govea FE (2010) Dry matter yield and nutritive value of corn, forage sorghum, and BMR forage sorghum at different plant populations and nitrogen rates. Field Crops Res 116:52–57

    Google Scholar 

  • McCarty DR, Settles AM, Suzuki M, Tan BC, Latshaw S, Porch T, Robin K, Baier J, Avigne W, Lai J (2005) Steady-state transposon mutagenesis in inbred maize. Plant J 44:52–61

    PubMed  CAS  Google Scholar 

  • Menz MA, Klein RR, Unruh N, Rooney WL, Klein PE, Mullet JE (2004) Genetic diversity of public inbreeds of sorghum determined by mapped AFLP and SSR markers. Crop sci 44:1236–1244

    CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalisylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428

    CAS  Google Scholar 

  • Miron J, Zuckerman E, Adin G, Solomon R, Shoshani E, Nikbachat M, Yosef E, Zenou A, Gershon Weinberg Z, Chen Y, Halachmi I, Ben-Ghedalia D (2007) Comparison of two forage sorghum varieties with corn and the effect of feeding their silages on eating behavior and lactation performance of dairy cows. Anim Feed Sci Technol 139:23–39

    Google Scholar 

  • Mitchell RAC, Dupree P, Shewry PR (2007) A novel bioinformatics approach identifies candidate genes fo the synthesis and feruoylation of arabinoxylan. Plant Physiol 144:43–53

    PubMed  CAS  Google Scholar 

  • Mohanraj K, Gopalan A, Shanmuganathan M (2006) Genetic parameters for hydrocyanic acid content in forage sorghum. J Agric Sci 6:59–62

    Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Biores Technol 96:673–686

    CAS  Google Scholar 

  • Mueller SC, Brown Jr RM (1980) Evidence for an intramembrane component associated with a cellulose microfibril synthesizing complex in higher plants. J Cell Biol 84:315–326

    Google Scholar 

  • Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE, Kresovich S (2008) Genetic improvement of sorghum as a biofuel feedstock II: quantitative loci for stem and leaf structural carbohydrates. Crop Sci 48:2180–2193

    Google Scholar 

  • Myton KE, Fry SC (1994) Intraprotoplasmic feruoylation of arabinoxylans in Festuca arundinacea cell cultures. Planta 193:326–330

    CAS  Google Scholar 

  • Nemeth C, Freeman J, Jones HD, Sparks C, Pellny MD, Wilkinson MD, Dunwell J, Andersson AAM, Ã…man P, Guillon F, Saulnier L, Mitchell RAC, Shewry PR (2010) Down-regulation of the CSLF6 gene results in decreased (1,3;1,4)-β-d-glucan in endosperm of wheat. Plant Physiol 152:1209–1218

    PubMed  CAS  Google Scholar 

  • Oliver AL, Grant RJ, Pedersen JF, O’Rear J (2004) Comparison of brown midrib-6 and -18 forage sorghum with conventional sorghum and corn silage in diets of lactating dairy cows. J Dairy Sci 87:637–644

    PubMed  CAS  Google Scholar 

  • Oliver AL, Klopfenstein TJ, Grant RJ, Pedersen JF (2005a) Comparative effects of the sorghum bmr-6 and bmr-12 genes. I. Forage sorghum yield and quality. Crop Sci 45:2234–2239

    CAS  Google Scholar 

  • Oliver AL, Klopfenstein TJ, Jose HD, Pedersen JF, Grant RJ (2005b) Comparative effects of the sorghum bmr-6 and bmr-12 genes. II. Grain yield, stover yield, and stover quality in grain sorghum. Crop Sci 45:2240–2245

    CAS  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87

    PubMed  CAS  Google Scholar 

  • Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K et al (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10:239–247

    PubMed  CAS  Google Scholar 

  • Palmer NA, Sattler SE, Saathoff AJ, Funnell D, Pedersen JF, Sarath G (2008) Genetic background impacts soluble and cell wall-bound aromatics in brown midrib mutants of sorghum. Planta 229:115–127

    PubMed  CAS  Google Scholar 

  • Palonen H, Tjerneld F, Zacchi G, Tenkanen M (2004) Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 107:65–72

    PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    PubMed  CAS  Google Scholar 

  • Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM (1996) Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit oif cellulose synthase. Proc Natl Acad Sci U S A 93:12637–12642

    PubMed  CAS  Google Scholar 

  • Pedersen JF, Fritz JO (2000) Forages and fodder. In: Smith CW, Frederiksen RA (eds) Sorghum: origin, history, technology, and production. Wiley, New York, pp 797–810

    Google Scholar 

  • Pedersen JF, Funell DL, Toy JJ, Oliver AL, Grant RJ (2006) Registration of seven forage sorghum genetic stocks near-isogenic for the brown midrib genes bmr-6 and bmr-12. Crop Sci 46:490

    Google Scholar 

  • Pedersen JF, Toy JJ, Funnell DL, Sattler SE, Oliver AL, Grant RA (2008) Registration of BN611, AN612, BN612 and BN613 sorghum genetic stocks with stacked bmr-6 and bmr-12 genes. J Plant Registr 2:258–262

    Google Scholar 

  • Penning B, Tayengwa R, Hunter CT III, Eveland A, Vermerris W, Olek A, Koch KE, McCarty DR, Davis M, Thomas SR, McCann M, Carpita N (2009) Genetic resources for functional genomics of maize cell wall biology. Plant Physiol 153:1703–1728

    Google Scholar 

  • Pillonel C, Mulder MM, Boon JJ, Forster B, Binder A (1991) Involvement of cinnamyl-alcohol dehydrogenase in the control of lignin formation in Sorghum bicolor (L.) Moench. Planta 185:538–544

    CAS  Google Scholar 

  • Porter KS, Axtell JD, Lechtenberg VL, Colenbrander VF (1978) Phenotype, fiber composition, and in vitro dry matter disappearance of chemically induced brown midrib (bmr) mutants of sorghum. Crop Sci 18:205–209

    CAS  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    PubMed  CAS  Google Scholar 

  • Ralph J, Grabber JG, Hatfield RD (1995) Lignin-ferulate cross-links in grasses: active incorporation of ferulate polysaccharide esters into ryegrass lignins. Carbohydr Res 275:167–178

    CAS  Google Scholar 

  • Ralph J, Bunzel M, Marita JM, Hatfield RD, Lu F, Kim H, Schatz PF, Grabber JH, Steinhart H (2004a) Peroxidase-dependent cross-linking reactions of p-hydroxycinnamates in plant cell walls. Phytochem Rev 3:79–96

    CAS  Google Scholar 

  • Ralph J, Guillaumie S, Grabber JH, Lapierre C, Barrière Y (2004b) Genetic and molecular basis of grass cell wall biosynthesis and degradability. III. Towards a forage grass idiotype. C R Biol 327:467–479

    PubMed  CAS  Google Scholar 

  • Ralph J, Hatfield RD (1991) Pyrolysis-GC-MS analysis of forage materials. J Agric Food Chem 39:1426-1437

    PubMed  CAS  Google Scholar 

  • Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH, Boerjan W (2004c) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem Rev 3:29–60

    CAS  Google Scholar 

  • Riboulet C, Fabre F, Dénoue D, Martinant JP, Lefèvre B, Barrière Y (2008) QTL mapping and candidate gene research for lignin content and cell digestibility in a top-cross of a flint maize recombinant inbreed line progeny harvested at silage stage. Maydica 53:1–9

    Google Scholar 

  • Robinson AR, Mansfield SD (2009) Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infrared reflectance-based prediction modeling. Plant J 58:706–714

    PubMed  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP, VanDerMark P (2005) MrBayes 3.1 Manual. http://mrbayes.csit.fsu.edu/manual.php

  • Rooney WL, Blumenthal J, Bean B, Mullet JE (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod Bioref 1:147–157

    CAS  Google Scholar 

  • Rose JK, Braam J, Fry SC, Nishitani K (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol 43:1421–1435

    PubMed  CAS  Google Scholar 

  • Saballos A, Vermerris W, Rivera L, Ejeta G (2008) Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). Bioenergy Res 1:3–4

    Google Scholar 

  • Saballos A, Ejeta G, Kang CH, Vermerris W (2009) A genomewide analysis of the cinnamyl alcohol dehydrogenase family in sorghum [Sorghum bicolor (L.) Moench] identifies SbCAD2 as the Brown midrib6 gene. Genetics 181:783–795

    PubMed  CAS  Google Scholar 

  • Samson D, Legeau F, Karsenty E, Reboux S, Veyrieras J-B, Just J, Barillot E (2003) GenoPlante-Info (GPI): a collection of databases and bioinformatics resources for plant genomics. Nucleic Acids Res 31:179–182

    PubMed  CAS  Google Scholar 

  • Sattler SE, Saathoff AJ, Haas EJ, Palmer NA, Funnell-Harris DL, Sarath G, Pedersen JF (2009) A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the sorghum brown midrib6 phenotype. Plant Physiol 150:584–595

    PubMed  CAS  Google Scholar 

  • Sattler SE, Funnell-Harris DL, Pedersen JF (2010) Brown midrib mutations and their importance to the utilization of maize, sorghum, and pearl millet lignocellulosic tissues. Plant Sci 178:229–238

    CAS  Google Scholar 

  • Saxena IM, Brown RM (2005) Cellulose biosynthesis: current views and evolving concepts. Ann Bot 96:9–21

    PubMed  CAS  Google Scholar 

  • Scheible W-R, Eshed R, Richmond T, Delmer D, Somerville C (2001) Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants. Proc Natl Acad Sci U S A 98:10079–10084

    PubMed  CAS  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    PubMed  CAS  Google Scholar 

  • Schwarz AK, Godsey CM, Luebbe MK, Erickson GE, Klopfenstein TL, Mitchell RB, Pedersen JF (2008) Forage quality and grazing performance of beef cattle grazing brown mid-rib grain sorghum residue. 2008 Nebraska Beef Reports. Lincoln, University of Nebraska

    Google Scholar 

  • Sedlak M, Ho NWY (2004) Production of ethanol from cellulosic biomass hydrolyzates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose. Appl Biochem Biotechnol 113:403–416

    PubMed  Google Scholar 

  • Sendich E, Laser M, Kim S, Alizadeh H, Laureano-Perez L, Dale B, Lynd L (2008) Recent process improvement for the ammonia fiber expansion (AFEX) process and resulting reductions in minimum ethanol selling price. Bioresour Technol 99:8429–8434

    PubMed  CAS  Google Scholar 

  • Sewell MM, Davis MF, Tuskan GA, Wheeler NC, Elam CC, Bassoni DL, Neale DB (2002) Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). Theor Appl Genet 104:214–222

    PubMed  CAS  Google Scholar 

  • Shen H, Yin Y, Chen F, Xu Y, Dixon R (2009) A bioinformatic analysis of NAC genes for plant cell wall development in relation to lignocellulosic bioenergy production. Bioenergy Res 2:217–232

    Google Scholar 

  • Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L, Seguin A (2005) Cinnamyl alcohol dehydrogenase-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17:2059–2076

    PubMed  CAS  Google Scholar 

  • Siesler HW, Ozaki Y, Kawata S, Heise HM (2002) Near-infrared spectroscopy: principles, instruments, applications. Wiley, Weinheim

    Google Scholar 

  • Smith CW, Frederiksen RA (2000) Sorghum: origin, history, technology and production. Wiley, New York

    Google Scholar 

  • Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78

    PubMed  CAS  Google Scholar 

  • Studer MH, DeMartini JD, Brethauer S, McKenzie HL, Wyman CE (2010) Engineering of a high-throughput screening system to identify cellulosic biomass, pretreatments, and enzyme formulations that enhance sugar release. Biotechnol Bioeng 105:231–238

    PubMed  CAS  Google Scholar 

  • Taylor NG, Scheible WR, Cutler S, Somerville CR, Turner SR (1999) The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11:769–779

    PubMed  CAS  Google Scholar 

  • Taylor NG, Laurie S, Turner SR (2000) Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12:2529–2539

    PubMed  CAS  Google Scholar 

  • Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci U S A 100:1450–1455

    PubMed  CAS  Google Scholar 

  • Tew TL, Cobill RM, Richard JEP (2008) Evaluation of sweet sorghum and sorghum  ×  sudangrass hybrids as feedstocks for ethanol production. Bioenergy Res 1:147–152

    Google Scholar 

  • Theander O, Ã…man P, Westerlund E, Andersson R, Pettersson D (1995) Total dietary fiber determined as neutral sugar residues, uronic acid residues, and Klason lignin (the Uppsala method): ­collaborative study. J AOAC Int 78:1030–1044

    PubMed  CAS  Google Scholar 

  • Theodorou MK, William BA, Dhanoa MS, McAllan AB, France J (1994) A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Technol 48:185–197

    Google Scholar 

  • Thompson JE, Fry SK (2001) Restructuring of wall-bound xyloglucan by transglycosylation in living plant cells. Plant J 26:23–34

    PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  CAS  Google Scholar 

  • Tilley JMA, Terry RA (1963) A two-stage technique for the in vitro digestion of forage crops. J Br Grassl Soc 18:104–111

    CAS  Google Scholar 

  • Van Soest PJ (1967) Development of a comprehensive system of feed analyses and its application to forages. J Anim Sci 26:119–128

    Google Scholar 

  • Vandenbrink JP, Delgado MP, Frederick JR, Feltus FA (2010) A sorghum diversity panel biofuel feedstock screen for genotypes with high hydrolysis yield potential. Ind Crops Prod 31:444–448

    CAS  Google Scholar 

  • Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11:278–285

    PubMed  CAS  Google Scholar 

  • Venuto B, Kindiger B (2008) Forage and biomass feedstock production from hybrid forage sorghum and sorghum-sudangrass hybrids. Grassland Sci 54:189–196

    Google Scholar 

  • Vermerris W (2009) Cell wall biosynthetic genes of maize and their potential for bioenergy production. In: Bennetzen J, Hake S (eds) Handbook of maize: genetics and genomics. Springer, New York, pp 741–767

    Google Scholar 

  • Vermerris W, Nicholson R (2006) Phenolic compound biochemistry. Springer, Dordrecht

    Google Scholar 

  • Vermerris W, Saballos A, Ejeta G, Mosier NS, Ladisch MR, Carpita NC (2007) Molecular breeding to enhance ethanol production from corn and sorghum Stover. Crop Sci 47:S145–S153

    Google Scholar 

  • Weimer PJ, Dien BS, Springer TL, Vogel KP (2005) In vitro gas production as a surrogate measure of the fermentability of cellulosic biomass to ethanol. Appl Microbiol Biotechnol 67:52–58

    PubMed  CAS  Google Scholar 

  • Wheeler JL, Mulcahy C (1989) Consequences for animal production of cyanogenesis in sorghum forage and hay: a review. Tropical Grasslands 23:193–202

    Google Scholar 

  • Wilson WA, Harrington SE, Woodman WL, Lee M, Sorrells ME, McCouch SR (1999) Inferences on the genome structure of progenitor maize through comparative analysis of rice, maize and the domesticated Panicoids. Genetics 153:453–473

    PubMed  CAS  Google Scholar 

  • Xin Z, Wang ML, Barkley NA, Burow G, Franks C, Pederson G, Burke J (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8:108–140

    Google Scholar 

  • Xin Z, Wang ML, Burow G, Burke J (2009) An induced sorghum mutant population suitable for bioenergy research. Bioenergy Res 2:10–16

    Google Scholar 

  • Xu Z, Zhang D, Hu J, Zhou X, Ye X, Reichel KL, Stewart NR, Syrenne RD, Yang X, Gao P et al (2009) Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom. BMC Bioinformatics 10(Suppl 11):S3

    PubMed  Google Scholar 

  • Yong W, Link B, O’Malley R, Tewari J, Hunter CT, Lu CA, Li X, Bleecker AB, Koch KE, McCann MC, McCarty DR, Staiger C, Thomas SR, Vermerris W, Carpita NC (2005) Genomics of plant cell wall biogenesis. Planta 221:747–751

    PubMed  CAS  Google Scholar 

  • Zhao Q, Gallego-Giraldo L, Wang H, Zeng Y, Ding SY, Chen F, Dixon R (2010) A NAC transcription factor orchestrates multiple features of cell wall development in Medicago truncatula. Plant J. 63:100–114

    Google Scholar 

  • Zugenmaier P (2001) Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26:1341–1417

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the Office of Science (BER), U.S. Department of Energy, grant DE-FG02-07ER64458 for the research on brown midrib genes and NIRS screening of sorghum mutants described in this chapter. We would also like to acknowledge the participation of several colleagues on this project: The sorghum leaf samples were collected by Dr. Ken Lamb (University of Florida) in collaboration with Dr. Zhanguo Xin (USDA-ARS, Lubbock, TX) and his research staff. We thank Drs. Bryan Penning and Nick Carpita (Purdue University) for sharing their most recent data on maize and sorghum CesA genes. The U.S. National Science Foundation Plant Genome Research Program (DBI-0217552) and the University of Florida provided funds to purchase the analytical equipment featured in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfred Vermerris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vermerris, W., Saballos, A. (2013). Genetic Enhancement of Sorghum for Biomass Utilization. In: Paterson, A. (eds) Genomics of the Saccharinae. Plant Genetics and Genomics: Crops and Models, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5947-8_17

Download citation

Publish with us

Policies and ethics