Skip to main content

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 7))

Abstract

It has been proposed that cortical neurons organize dynamically into functional groups (“cell assemblies”) by the temporal structure of their joint spiking activity. The Unitary Events analysis method detects conspicuous patterns of coincident spike activity among simultaneously recorded single neurons. The statistical significance of a pattern is evaluated by comparing the number of occurrences to the number expected on the basis of the firing rates of the neurons. Key elements of the method are the proper formulation of the null hypothesis and the derivation of the corresponding count distribution of coincidences used in the significance test. Performing the analysis in a sliding window manner results in a time-resolved measure of significant spike synchrony. In this chapter we review the basic components of UE analysis and explore its dependencies on parameters like the allowed temporal imprecision and features of the data like firing rate and coincidence rate. Violations of the assumptions of stationarity of the firing rate within the analysis window and Poisson statistics can be tolerated to a reasonable degree without inducing false positives. We conclude that the UE method is robust already in its basic form. Still, it is preferable to use coincidence distributions for the significance test that are well adapted to particular features of the data. The chapter presents practical advice and solutions based on surrogates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles M (1982) Role of cortical neuron: integrator or coincidence detector?. Israel J Med Sci 18:83–92

    CAS  PubMed  Google Scholar 

  • Abeles M (1991) Corticonics: neural circuits of the cerebral cortex. Cambridge University Press, Cambridge

    Google Scholar 

  • Abeles M, Gat I (2001) Detecting precise firing sequences in experimental data. J Neurosci Methods 107(1–2), 141–154

    Article  CAS  PubMed  Google Scholar 

  • Aertsen A, Gerstein G, Habib M, Palm G (1989) Dynamics of neuronal firing correlation: modulation of “effective connectivity”. J Neurophysiol 61(5), 900–917

    CAS  PubMed  Google Scholar 

  • Baker S, Lemon R (2000) Precise spatiotemporal repeating patterns in monkey primary and supplementary motor areas occur at chance levels. J Neurophysiol 84(4):1770–1780

    CAS  PubMed  Google Scholar 

  • Barlow HB (1972) Single units and sensation: a neuron doctrine for perceptual psychology?. Perception 1:371–394

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shaul Y, Bergman H, Ritov Y, Abeles M (2001) Trial to trial variability in either stimulus or action causes apparent correlation and synchrony in neuronal activity. J Neurosci Methods 111(2):99–110

    Article  CAS  PubMed  Google Scholar 

  • Bernander Ö, Koch C, Usher M (1994) The effect of synchronized inputs at the single neuron level. Neural Comput 6:622–641

    Article  Google Scholar 

  • Brody CD (1999a) Correlations without synchrony. Neural Comput 11:1537–1551

    Article  PubMed  Google Scholar 

  • Brody CD (1999b) Disambiguating different covariation types. Neural Comput 11:1527–1535

    Article  PubMed  Google Scholar 

  • Brown E, Barbieri R, Ventura V, Kass R, Frank L (2002) The time-rescaling theorem and its application to neural spike train data analysis. Neural Comput 14:325–346

    Article  PubMed  Google Scholar 

  • Czanner G, Grün S, Iyengar S (2005) Theory of the snowflake plot and its relations to higher-order analysis methods. Neural Comput 17(7):1456–1479

    Article  PubMed  Google Scholar 

  • Denker M, Riehle A, Diesmann M, Grün S (in press) Estimating the contribution of assembly activity to cortical dynamics from spike and population measures. J Comput Neurosci. doi:10.1007/s10827-010-0241-8

  • Diesmann M, Gewaltig MO, Aertsen A (1999) Stable propagation of synchronous spiking in cortical neural networks. Nature 402(6761):529–533

    Article  CAS  PubMed  Google Scholar 

  • Gerstein G, Aertsen A (1985) Representation of cooperative firing activity among simultaneously recorded neurons. J Neurophysiol 54:1513–1528

    CAS  PubMed  Google Scholar 

  • Gerstein G, Perkel D, Dayhoff J (1985) Cooperative firing activity in simultaneously recorded populations of neurons: detection and measurement. J Neurosci 5:881–889

    CAS  PubMed  Google Scholar 

  • Gerstein G, Bedenbaugh P, Aertsen A (1989) Neuronal assemblies. IEEE Trans Biomed Eng 36(1):4–14

    Article  CAS  PubMed  Google Scholar 

  • Goedeke S, Diesmann M (2008) The mechanism of synchronization in feed-forward neuronal networks. New J Phys 10:015007. doi:10.1088/1367-2630/10/1/015007

    Article  Google Scholar 

  • Grammont F, Riehle A (1999) Precise spike synchronization in monkey motor cortex involved in preparation for movement. Experimental Brain Res 128:118–122

    Article  CAS  Google Scholar 

  • Grammont F, Riehle A (2003) Spike synchronization and firing rate in a population of motor cortical neurons in relation to movement direction and reaction time. Biol Cybernet 88(5):360–373

    Article  CAS  Google Scholar 

  • Grün S (2009) Data-driven significance estimation of precise spike correlation. J Neurophysiol 101(3):1126–1140 (invited review)

    Article  PubMed  Google Scholar 

  • Grün S, Diesmann M, Grammont F, Riehle A, Aertsen A (1999) Detecting unitary events without discretization of time. J Neurosci Methods 94(1):67–79

    Article  PubMed  Google Scholar 

  • Grün S, Diesmann M, Aertsen A (2002a) ‘Unitary Events’ in multiple single-neuron spiking activity. I. Detection and significance. Neural Comput 14(1):43–80

    Article  PubMed  Google Scholar 

  • Grün S, Diesmann M, Aertsen A (2002b) ‘Unitary Events’ in multiple single-neuron spiking activity. II. Non-stationary data. Neural Comput 14(1):81–119

    Article  PubMed  Google Scholar 

  • Grün S, Riehle A, Diesmann M (2003) Effect of cross-trial nonstationarity on joint-spike events. Biol Cybernet 88(5):335–351

    Article  Google Scholar 

  • Gütig R, Aertsen A, Rotter S (2002) Significance of coincident spikes: count-based versus rate-based statistics. Neural Comput 14:121–153

    Article  PubMed  Google Scholar 

  • Harris K (2005) Neural signatures of cell assembly organization. Nature Neurosci Rev 5(6):339–407

    Google Scholar 

  • Harrison M, Geman S (2009) A rate and history-preserving resampling algorithm for neural spike trains. Neural Comput 21(5):1244–1258

    Article  PubMed  Google Scholar 

  • Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New York

    Google Scholar 

  • Ito H (2007) Bootstrap significance test of synchronous spike events – a case study of oscillatory spike trains. Statistical Med 26:3976–3996

    Article  Google Scholar 

  • Ito J, Maldonado P, Singer W, Grün S (submitted) Saccade-related LFP modulations support synchrony of visually elicited spikes

    Google Scholar 

  • Johnson DH (1996) Point process models of single-neuron discharges. J Comput Neurosci 3(4):275–299

    Article  CAS  PubMed  Google Scholar 

  • Kass R, Ventura V (2006) Spike count correlation increases with length of time interval in the presence of trial-to-trial variation. Neural Comput 18(11):2583–2591

    Article  PubMed  Google Scholar 

  • Kilavik B, Roux S, Ponce-Alvarez A, Confais J, Grün S, Riehle A (2009) Long-term modifications in motor cortical dynamics induced by intensive practice. J Neurosci 29(40):12653–12663

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Rotter S, Aertsen A (2008) Conditions for propagating synchronous spiking and asynchronous firing rates in a cortical network model. J Neurosci 28:5268–5280

    Article  CAS  PubMed  Google Scholar 

  • Louis S, Gerstein GL, Grün S, Diesmann M (in press) Surrogate spike train generation through dithering in operational time. Front Comput Neurosci

    Google Scholar 

  • Maldonado P, Babul C, Singer W, Rodriguez E, Berger D, Grün S (2008) Synchronization of neuronal responses in primary visual cortex of monkeys viewing natural images. J Neurophysiol 100:1523–1532

    Article  PubMed  Google Scholar 

  • Marsalek P, Koch C, Maunsel J (1997) On the relationship between synaptic input and spike output jitter in individual neurons. Proc Natl Acad Sci 94:735–740

    Article  CAS  PubMed  Google Scholar 

  • Nawrot M, Aertsen A, Rotter S (1999) Single-trial estimation of neuronal firing rates: from single-neuron spike trains to population activity. J Neurosci Methods 94:81–92

    Article  CAS  PubMed  Google Scholar 

  • Nawrot M, Aertsen A, Rotter S (2003) Elimination of response latency variability in neuronal spike trains. Biol Cybernet 88:321–334

    Article  Google Scholar 

  • Nawrot M, Boucsein C, Rodriguez-Molina V, Aertsen A, Grün S, Rotter S (2007) Serial interval statistics of spontaneous activity in cortical neurons in vivo and in vitro. Neurocomputing 70:1717–1722

    Article  Google Scholar 

  • Nawrot M, Boucsein C, Rodriguez Molina V, Riehle A, Aertsen A, Rotter S (2008a) Measurement of variability dynamics in cortical spike trains. J Neurosci Methods 169:374–390

    Article  PubMed  Google Scholar 

  • Nawrot M, Farkhooi F, Grün S (2008b) Significance of coincident spiking considering inter-spike interval variability and serial interval correlation. In: Frontiers in computational neuroscience. Conference abstract: Bernstein symposium 2008. doi:10.3389/conf.neuro.10.2008.01.017

  • Palm G (1981) Evidence, information and surprise. Biol Cybernet 42:57–68

    Article  CAS  Google Scholar 

  • Pauluis Q, Baker SN (2000) An accurate measure of the instantaneous discharge probability with application to unitary joint-event analysis. Neural Comput 12(3):647–669

    Article  CAS  PubMed  Google Scholar 

  • Pazienti A, Maldonado P, Diesmann M, Grün S (2008) Effectiveness of systematic spike dithering depends on the precision of cortical synchronization. Brain Res 1225:39–46

    Article  CAS  PubMed  Google Scholar 

  • Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophys J 7(4):419–440

    Article  CAS  PubMed  Google Scholar 

  • Perkel DH, Gerstein GL, Smith MS, Tatton WG (1975) Nerve-impulse patterns: a quantitative display technique for three neurons. Brain Res 100:271–296

    Article  CAS  PubMed  Google Scholar 

  • Pipa G, Grün S, van Vreeswijk C (under revision) Impact of spike-train autostructure on probability distribution of joint-spike events. Neural Comput

    Google Scholar 

  • Pipa G, Riehle A, Grün S (2007) Validation of task-related excess of spike coincidences based on NeuroXidence. Neurocomputing 70:2064–2068. Published online 2006: doi:10.1016/j.neucom.2006.10.142

    Article  Google Scholar 

  • Pipa G, van Vreeswijk C, Grün S (in preparation) Impact of spike-train autostructure on Unitary Events

    Google Scholar 

  • Pipa G, Wheeler D, Singer W, Nikolic D (2008) NeuroXidence: reliable and efficient analysis of an excess or deficiency of joint-spike events. J Comput Neurosci 25(1):64–88

    Article  PubMed  Google Scholar 

  • Prut Y, Vaadia E, Bergman H, Haalman I, Hamutal S, Abeles M (1998) Spatiotemporal structure of cortical activity: properties and behavioral relevance. J Neurophysiol 79(6):2857–2874

    CAS  PubMed  Google Scholar 

  • Reyes A (2003) Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro. Nature Neurosci 6:593–599

    Article  CAS  PubMed  Google Scholar 

  • Richmond B (2009) Stochasticity spikes and decoding: sufficiency and utility of order statistics. Biol Cybernet 100(9):447–457

    Article  Google Scholar 

  • Riehle A, Grün S, Diesmann M, Aertsen A (1997) Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278(5345):1950–1953

    Article  CAS  PubMed  Google Scholar 

  • Riehle A, Grammont F, Diesmann M, Grün S (2000) Dynamical changes and temporal precision of synchronized spiking activity in monkey motor cortex during movement preparation. J Physiol (Paris) 94:569–582

    Article  CAS  Google Scholar 

  • Rodriguez-Molina V, Aertsen A, Heck D (2007) Spike timing and reliability in cortical pyramidal neurons: Effects of EPSC kinetics input synchronization and background noise on spike timing. PLoS ONE 2(3):e319. doi:10.1371/journal.pone.0000319

    Article  PubMed  Google Scholar 

  • Roy A, Steinmetz PN, Niebur E (2000) Rate limitations of unitary event analysis. Neural Comput 12:2063–2082

    Article  CAS  PubMed  Google Scholar 

  • Shadlen MN, Movshon AJ (1999) Synchrony unbound: a critical evaluation of the temporal binding hypothesis. Neuron 24:67–77

    Article  CAS  PubMed  Google Scholar 

  • Shimazaki H, Amari S, Brown E, Grün S (2009) State-space analysis on time-varying correlations in parallel spike sequences. In: IEEE international conference on acoustics, speech, and signal processing (ICASSP), pp 3501–3504

    Google Scholar 

  • Shimazaki H, Shinomoto S (2010) Kernel bandwidth optimization in spike rate estimation. J Comput Neurosci. doi:10.1007/s10827-009-0180-4

  • Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations?. Neuron 24(1):49–65

    Article  CAS  PubMed  Google Scholar 

  • Softky WR, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci 13(1):334–350

    CAS  PubMed  Google Scholar 

  • Vaadia E, Haalman I, Abeles M, Bergman H, Prut Y, Slovin H, Aertsen A (1995) Dynamics of neuronal interactions in monkey cortex in relation to behavioral events. Nature 373:515–518

    Article  CAS  PubMed  Google Scholar 

  • Ventura V, Carta R, Kass R, Gettner S, Olson C (2002) Statistical analysis of temporal evolution in single-neuron firing rates. Biostatistics 3(1):1–20

    Article  PubMed  Google Scholar 

  • Ventura V, Cai C, Kass R (2005) Trial-to-trial variability and its effect on time-varying dependency between two neurons. J Neurophysiol 94(4):2928–2939

    Article  PubMed  Google Scholar 

  • Von der Malsburg C (1981) The correlation theory of brain function. Internal report 81-2, Max-Planck-Institute for Biophysical Chemistry, Göttingen, FRG

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Grün .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Grün, S., Diesmann, M., Aertsen, A. (2010). Unitary Event Analysis. In: Grün, S., Rotter, S. (eds) Analysis of Parallel Spike Trains. Springer Series in Computational Neuroscience, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5675-0_10

Download citation

Publish with us

Policies and ethics