Skip to main content

Use of Bioelectrical Impedance: General Principles and Overview

  • Chapter
  • First Online:
Handbook of Anthropometry

Abstract

The present chapter clarifies some of the basic concepts of bioimpedance and discusses its significance with regard to biophysical models and their limitations. The focus is on bioimpedance body composition models, which have become popular under the term Bioelectrical Impedance Analysis (BIA) and Bioelectrical Impedance Spectroscopy (BIS). The intention is to provide the novice reader who is unfamiliar with biophysics, electromagnetics, and circuit theory with a comprehensive, easy-to-follow, and interdisciplinary introduction to the technical and biophysical concepts underlying current BIA and BIS techniques. Such knowledge is considered important to carefully perform and interpret bioimpedance results in clinical and research settings. The main sections of the chapter build on each other in a logical order, but can also be used independently as future reference by the experienced reader. In brief, the present chapter starts with an explanation of the raw data obtained from bioimpedance measurements. This serves as a basis for reviewing the passive electrical properties of human cells and tissue and for showing how these properties can be represented by electrical equivalent circuits. This goes on to explain the frequency-dependent nature of the electrical properties of biological tissue and clarify the differences between single-frequency, multi-frequency BIA, and BIS. Subsequently, safety considerations and general measurement principles such as electrode arrangements are also addressed in order to highlight how deep-tissue measurements can be obtained non-invasively without the use of needle electrodes. This is followed by a detailed outline of the fundamental biophysical model underlying most bioimpedance body composition applications. The weak points of present biophysical models are identified by comparing conventional whole-body BIA approaches to alternative techniques such as proximal electrode configurations or segmental measurements. Examples are used to show how to improve segmental measurements by performing multiple measurements along the limbs, thus “slicing” the limbs in various cross-sections such as during MRI scanning. Finally, the chapter assesses the reliability of bioimpedance measurements by discussing several endogenous and exogenous sources of error, and concludes with a guideline for standardizing bioimpedance measurement procedures. This serves as the basis for a discussion of selected applications in the following chapters on bioelectrical impedance and is therefore intended to complement each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 949.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     Equipotential lines indicate points with identical potentials. If an electrical charge is moved along an equipotential line, it experiences no electric force and hence no work is performed. Since there is no force driving the charges, there is no current flow between two points with the same potential.

Abbreviations

Latin :

letters

A :

Area [m2]

BIA:

Bioelectrical Impedance Analysis

BIS:

Bioelectrical Impedance Spectroscopy

C :

Capacitance [F]

C m :

Membrane capacitance [F]

f :

Frequency [Hz]

f c :

Characteristic frequency [Hz]

l :

Length [m]

L:

Liter

R :

Resistance [Ω]

R 0 :

Resistance at zero frequency [Ω]

R :

Resistance at infinite frequency [Ω]

R e :

Extracellular resistance [Ω]

R i :

Intracellular resistance [Ω]

V :

General volume [L]

X :

Reactance [Ω]

X c :

Capacitive reactance [Ω]

Z :

General impedance (magnitude) [Ω]

Greek :

letters

ρ :

Resistivity [Ω·m]

ε :

Permittivity [F·m-1]

σ :

Conductivity in general [S·m-1]

τ :

Time constant [s]

ϕ :

Phase angle [°]

ω :

Angular frequency (2πf) [Hz]

Ω:

Ohm

References

  • Ackmann JJ, Seitz MA. Methods of complex impedance measurements in biologic tissue. Crit Rev Biomed Eng. 1984;11(4):281–311.

    PubMed  CAS  Google Scholar 

  • Asselin MC, Kriemler S, Chettle DR, Webber CE, Bar-Or O, McNeill FE. Hydration status assessed by multi-frequency bioimpedance analysis. Appl Radiat Isot. 1998;49(5–6):495–7.

    PubMed  CAS  Google Scholar 

  • Baumgartner RN, Chumlea WC, Roche AF. Bioelectric impedance phase angle and body composition. Am J Clin Nutr. 1988;48(1):16–23.

    PubMed  CAS  Google Scholar 

  • Baumgartner RN, Chumlea WC, Roche AF. Bioelectric impedance for body composition. Exerc Sport Sci Rev. 1990;18:193–224.

    PubMed  CAS  Google Scholar 

  • Baumgartner RN. Electrical impedance and total body electrical conductivity. In: Roche AF, Heymsfield SB, Lohman TG, editors. Human Body Composition.Champaign, Il: Human Kinetics; 1996. p. 79–103.

    Google Scholar 

  • Biggs J, Cha K, Horch K. Electrical resistivity of the upper arm and leg yields good estimates of whole body fat. Physiol Meas. 2001;22(2):365–76.

    PubMed  CAS  Google Scholar 

  • Bolton MP, Ward LC, Khan A, Campbell I, Nightingale P, Dewit O et al. Sources of error in bioimpedance spectroscopy. Physiol Meas.1998;19(2):235–45.

    PubMed  CAS  Google Scholar 

  • Bracco D, Thiebaud D, Chiolero RL, Landry M, Burckhardt P, Schutz Y. Segmental body composition assessed by bioelectrical impedance analysis and DEXA in humans. J Appl Physiol. 1996;81(6):2580–7.

    PubMed  CAS  Google Scholar 

  • Bracco D, Revelly JP, Berger MM, Chiolero RL. Bedside determination of fluid accumulation after cardiac surgery using segmental bioelectrical impedance. Crit Care Med. 1998;26(6):1065–70.

    PubMed  CAS  Google Scholar 

  • Bracco D, Berger MM, Revelly JP, Schutz Y, Frascarolo P, Chiolero R. Segmental bioelectrical impedance analysis to assess perioperative fluid changes. Crit Care Med. 2000;28(7):2390–6.

    PubMed  CAS  Google Scholar 

  • Brown B, Karatzas T, Nakielny R. Determination of upper arm muscle and fat areas using electrical impedance methods: A comparative study. Clin Phys Physiol Meas.1988;9:47–55.

    PubMed  CAS  Google Scholar 

  • Bunt JC, Lohman TG, Boileau RA. Impact of total body water fluctuations on estimation of body fat from body density. Med Sci Sports Exerc. 1989;21(1):96–100.

    PubMed  CAS  Google Scholar 

  • Buono MJ, Burke S, Endemann S, Graham H, Gressard C, Griswold L et al. The effect of ambient air temperature on whole-body bioelectrical impedance. Physiol Meas. 2004;25(1):119–23.

    PubMed  Google Scholar 

  • Caton JR, Mole PA, Adams WC, Heustis DS. Body composition analysis by bioelectrical impedance: effect of skin temperature. Med Sci Sports Exerc. 1988;20(5):489–91.

    PubMed  CAS  Google Scholar 

  • Chumlea WC, Roche AF, Guo SM, Woynarowska B. The influence of physiologic variables and oral contraceptives on bioelectric impedance. Hum Biol. An International Record of Research 1987;59(2):257–69.

    PubMed  CAS  Google Scholar 

  • Chumlea WC, Baumgartner RN, Roche AF. Specific resistivity used to estimate fat-free mass from segmental body measures of bioelectric impedance. Am J Clin Nutr. 1988;48(1):7–15.

    PubMed  CAS  Google Scholar 

  • Chumlea WC, Baumgartner RN. Bioelectric impedance methods for the estimation of body composition. Can J Sport Sci. 1990;15(3):172–9.

    PubMed  CAS  Google Scholar 

  • Clarys JP, Marfell Jones MJ. Anatomical segmentation in humans and the prediction of segmental masses from intra-segmental anthropometry. Hum Biol. An International Record of Research 1986;58(5):771–82.

    PubMed  CAS  Google Scholar 

  • Cole KS, Cole RH. Dispersion and absorption in dielectrics: 1. Alternating current characteristics. J Chem Phys. 1941;9:341–51.

    CAS  Google Scholar 

  • Cole KS. Membranes, ions, and impulses; a chapter of classical biophysics. Berkeley, University of California Press; 1972.

    Google Scholar 

  • Cornish BH, Thomas BJ, Ward LC. Effect of temperature and sweating on bioimpedance measurements. Appl Radiat Isot. 1998;49(5–6):475–6.

    PubMed  CAS  Google Scholar 

  • Cornish BH, Jacobs A, Thomas BJ, Ward LC. Optimizing electrode sites for segmental bioimpedance measurements. Physiol Meas. 1999;20(3):241–50.

    PubMed  CAS  Google Scholar 

  • Cornish BH, Eles PT, Thomas BJ, Ward LC. The effect of electrode placement in measuring ipsilateral/contralateral segmental bioelectrical impedance. In Vivo Body Composition Studies 2000;904:221–4.

    PubMed  CAS  Google Scholar 

  • Danford LC, Schoeller DA, Kushner RF. Comparison of two bioelectrical impedance models for total body water measurements in children. Ann Hum Biol. 1992;19:603–7.

    PubMed  CAS  Google Scholar 

  • De Lorenzo A, Andreoli A, Matthie J, Withers P. Predicting body cell mass with bioimpedance by using theoretical methods: a technological review. J Appl Physiol. 1997;82(5):1542–58.

    PubMed  CAS  Google Scholar 

  • Deurenberg P, Weststrate JA, Paymans I, van der Kooy K. Factors affecting bioelectrical impedance measurements in humans. Eur J Clin Nutr. 1988;42(12):1017–22.

    PubMed  CAS  Google Scholar 

  • Deurenberg P, van der KK, Leenen R. Differences in body impedance when measured with different instruments. Eur J Clin Nutr. 1989;43(12):885–6.

    PubMed  CAS  Google Scholar 

  • Deurenberg P, Van Malkenhorst E, Schoen T. Distal versus proximal electrode placement in the prediction of total body water and extracellular water from multifrequency bioelectrical impedance. Am J Hum Biol. 1995;7:77–83.

    Google Scholar 

  • Diaz EO, Villar J, Immink M, Gonzales T. Bioimpedance or anthropometry? Eur J Clin Nutr. 1989;43(2):129–37.

    PubMed  CAS  Google Scholar 

  • Dixon CB, Lovallo SJ, Andreacci JL, Goss FL. The effect of acute fluid consumption on measures of impedance and percent body fat using leg-to-leg bioelectrical impedance analysis. Eur J Clin Nutr. 2006;60(1):142–6.

    PubMed  CAS  Google Scholar 

  • Eckerson JM, Housh TJ, Johnson GO. Validity of bioelectrical impedance equations for estimating fat-free weight in lean males. Med Sci Sports Exerc. 1992;24(11):1298–302.

    PubMed  CAS  Google Scholar 

  • Elia M, Ward LC. New techniques in nutritional assessment: body composition methods. Proc Nutr Soc. 1999 58(1):33–8.

    PubMed  CAS  Google Scholar 

  • Elleby B, Knudsen LF, Brown BH, Crofts CE, Woods MJ, Trowbridge EA. Electrical impedance assessment of muscle changes following exercise. Clinical Physics and Physiol Meas. 1990;11(2):159–66.

    PubMed  CAS  Google Scholar 

  • Elsen R, Siu ML, Pineda O, Solomons NW. Sources of variability in bioelectrical impedance determinations in adults. In: Ellis KJ, Yasumura S, Morgan WD, editors. In vivo body composition studies. London: The Institute of Physical Sciences in Medicine; 1987. p. 184–8.

    Google Scholar 

  • Evans WD, McClagish H, Trudgett C. Factors affecting the in vivo precision of bioelectrical impedance analysis. Appl Radiat Isot. 1998;49(5–6):485–7.

    PubMed  CAS  Google Scholar 

  • Fercher AF. Medizinische Physik. Physik für Mediziner, Pharmazeuten und Biologen. Wien; New York: Springer-Verlag; 1992.

    Google Scholar 

  • Fogelholm M, Sievanen H, Kukkonen-Harjula K, Oja P, Vuori I. Effects of meal and its electrolytes on bioelectrical impedance. Basic Life Sci. 1993;60:331–2.

    PubMed  CAS  Google Scholar 

  • Fornetti WC, Pivarnik JM, Foley JM, Fiechtner JJ. Reliability and validity of body composition measures in female athletes. J Appl Physiol. 1999;87(3):1114–22.

    PubMed  CAS  Google Scholar 

  • Foster KR, Schwan HP. Dielectric properties of tissues and biological materials: a critical review. Crit Rev Biomed Eng. 1989;17(1):25–104.

    PubMed  CAS  Google Scholar 

  • Fricke H, Morse S. The electrical resistance and capacity of blood for frequencies between 800 nad 4.5 million cycles. J Gen Physiol. 1925;9:153–67.

    PubMed  CAS  Google Scholar 

  • Fuller NJ, Hardingham CR, Graves M, Screaton N, Dixon AK, Ward LC et al. Predicting composition of leg sections with anthropometry and bioelectrical impedance analysis, using magnetic resonance imaging as reference. Clin Sci. 1999;96(6):647–57.

    PubMed  CAS  Google Scholar 

  • Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol. 1996;41(11):2251–69.

    PubMed  CAS  Google Scholar 

  • Gallagher M, Walker KZ, O’Dea K. The influence of a breakfast meal on the assessment of body composition using bioelectrical impedance. Eur J Clin Nutr. 1998;52(2):94–7.

    PubMed  CAS  Google Scholar 

  • Geddes LA, Baker LE. Principles of Applied Biomedical Instrumentation. 3rd ed. New York: John Wiley and Sons; 1989.

    Google Scholar 

  • Gleichauf CN, Roe DA. The menstrual cycle’s effect on the reliability of bioimpedance measurements for assessing body composition. Am J Clin Nutr. 1989;50(5):903–7.

    PubMed  CAS  Google Scholar 

  • Gluskin E. On the human body’s inductive features: A comment on “Bioelectrical parameters em leader “ by A.L. Lafargue et al. Bioelectromagnetics. 2003;24(4):292–3.

    PubMed  Google Scholar 

  • Gomez T, Mole PA, Collins A. Dilution of body fluid electrolytes affects bioelectrical impedance measurements. Sports Med Train Rehabil. 1993;4:291–8.

    Google Scholar 

  • Graves JE, Pollock ML, Colvin AB, Van Loan M, Lohman TG. Comparison of Different Bioelectrical Impedance Analyzers in the Prediction of Body Composition. Am J Hum Biol. 1989;1:603–11.

    Google Scholar 

  • Gualdi-Russo E, Toselli S. Influence of various factors on the measurement of multifrequency bioimpedance. Homo: internationale Zeitschrift für die vergleichende Forschung am Menschen. 2002;53(1):1–16.

    PubMed  CAS  Google Scholar 

  • Gudivaka R, Schoeller D, Tammy HO, Kushner RF. Effect of body position, electrode placement and time on prediction of total body water by multifrequency bioelectrical impedance analysis. Age Nutr. 1994;5:111–7.

    Google Scholar 

  • Gudivaka R, Schoeller D, Kushner RF. Effect of skin temperature on multifrequency bioelectrical impedance analysis. J Appl Physiol. 1996;81(2):838–45.

    PubMed  CAS  Google Scholar 

  • Gudivaka R, Schoeller DA, Kushner RF, Bolt MJ. Single- and multifrequency models for bioelectrical impedance analysis of body water compartments. J Appl Physiol. 1999;87(3):1087–96.

    PubMed  CAS  Google Scholar 

  • Jackson AS, Pollock ML, Graves JE, Mahar MT. Reliability and validity of bioelectrical impedance in determining body composition. J Appl Physiol. 1988;64(2):529–34.

    PubMed  CAS  Google Scholar 

  • Jaffrin MY, Morel H. Measurements of body composition in limbs and trunk using a eight contact electrodes impedancemeter. Med Eng Phys. 2009 3;31(9):1079–86.

    PubMed  Google Scholar 

  • Kirsch K, Rocker L, Wicke HJ. Methodological aspects of future cardiovascular research in space. Physiologist. 1979;22(6):11–4.

    Google Scholar 

  • Kushner RF, Schoeller DA. Estimation of total body water by bioelectrical impedance analysis. Am J Clin Nutr. 1986;44(3):417–24.

    PubMed  CAS  Google Scholar 

  • Kyle UG, Genton L, Hans D, Pichard C. Validation of a bioelectrical impedance analysis equation to predict appendicular skeletal muscle mass (ASMM). Clin Nutr. 2003;22(6):537–43.

    PubMed  CAS  Google Scholar 

  • Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel GJ et al. Bioelectrical impedance analysis-part II: utilization in clinical practice. Clin Nutr. 2004;23(6):1430–53.

    PubMed  Google Scholar 

  • Liang MT, Su HF, Lee NY. Skin temperature and skin blood flow affect bioelectric impedance study of female fat-free mass. Med Sci Sports Exerc. 2000;32(1):221–7.

    PubMed  CAS  Google Scholar 

  • Linnarsson D, Tedner B, Eiken O. Effects of gravity on the fluid balance and distribution in man. Physiologist. 1985;28(6 Suppl):28–9.

    Google Scholar 

  • Lozano A, Rosell J, Pallas-Areny R. Errors in prolonged electrical impedance measurements due to electrode repositioning and postural changes. Physiol Meas. 1995;16(2):121–30.

    PubMed  CAS  Google Scholar 

  • Lozano-Nieto A. Clinical applications of bioelectrical impedance measurements. J Clin Eng. 2000;211–8.

    Google Scholar 

  • Lukaski HC, Johnson PE, Bolonchuk WW, Lykken GI. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr. 1985;41(4):810–7.

    PubMed  CAS  Google Scholar 

  • Lukaski HC. Comparison of proximal and distal placements of electrodes to assess human body composition by bioelectrical impedance. In: Ellis KJ, Eastman JD, editors. Human Body Composition.New York: Plenum Press; 1993. p. 39–43.

    Google Scholar 

  • McAdams ET, Jossinet J. Tissue impedance: a historical overview. Physiol Meas. 1995;16(3 Suppl A):A1–13.

    PubMed  CAS  Google Scholar 

  • McKee JE, Cameron N. Bioelectrical impedance changes during the menstrual cycle. Am J Hum Biol. 1996;9(2):155–61.

    Google Scholar 

  • Moissl UM, Wabel P, Chamney PW, Bosaeus I, Levin NW, Bosy-Westphal A et al. Body fluid volume determination via body composition spectroscopy in health and disease. Physiol Meas. 2006;27(9):921–33.

    PubMed  Google Scholar 

  • Monnier JF, Raynaud E, Brun JF, Orsetti A. Influence de la prise alimentaire et de l’exercice physique sur une technique d’impédancemétrie appliqué à la determination de la composition corporelle. Sci Sports. 1997;12:256–8.

    Google Scholar 

  • Neves CE, Souza MN. A method for bio-electrical impedance analysis based on a step-voltage response. Physiol Meas. 2000;21(3):395–408.

    PubMed  CAS  Google Scholar 

  • Oldham NM. Overview of bioelectrical impedance analyzers. Am J Clin Nutr. 1996;64(3 Suppl):405S–12S.

    PubMed  CAS  Google Scholar 

  • Organ LW, Bradham GB, Gore DT, Lozier SL. Segmental bioelectrical impedance analysis: theory and application of a new technique. J Appl Physiol. 1994;77(1):98–112.

    PubMed  CAS  Google Scholar 

  • Patterson R, Ranganathan C, Engel R, Berkseth R. Measurement of body fluid volume change using multisite impedance measurements. Med Biol Eng Comput. 1988;26(1):33–7.

    PubMed  CAS  Google Scholar 

  • Patterson R. Body fluid determinations using multiple impedance measurements. IEEE Eng Med Biol Mag. 1989;8(1):16–8.

    PubMed  CAS  Google Scholar 

  • Pethig R. Dielectric and Electronic Properties of biological materials. Chichester: John Wiley; 1979.

    Google Scholar 

  • Pocock G, Richards CD, de Burgh Daly M. Human Physiology: The Basis of Medicine. Oxford: Oxford University Press; 1999.

    Google Scholar 

  • Rising R, Swinburn B, Larson K, Ravussin E. Body composition in Pima Indians: validation of bioelectrical resistance. Am J Clin Nutr. 1991;53(3):594–8.

    PubMed  CAS  Google Scholar 

  • Riu PJ. Comments on “Bioelectrical parameters of the whole human body obtained through bioelectrical impedance analysis”. Bioelectromagnetics. 2004;25(1):69–71.

    PubMed  Google Scholar 

  • Roche AF, Chumlea WC, Guo S. Identification and Validation of New Anthropometric Techniques for Quantifying Body Composition. Natick, MA: US Army Natick Research, Development and Engineering Center, Technical Report, TR-85-058 1986.

    Google Scholar 

  • Roos AN, Westendorp RG, Frolich M, Meinders AE. Tetrapolar body impedance is influenced by body posture and plasma sodium concentration. Eur J Clin Nutr. 1992;46(1):53–60.

    PubMed  CAS  Google Scholar 

  • Scharfetter H, Wirnsberger G, Laszzlo H, Holzer H, Hinghofer-Szalkay H, Hutten H. Influence of ionic shifts and postural changes during dialysis on volume estimation with multifrequency impedance analysis. Proc of the 9th Int Conf on Electrical Bio-Impedance, Heidelberg, Germany. 1995;241–4.

    Google Scholar 

  • Scharfetter H, Wirnsberger GH, Holzer H, Hutten H. Influence of ionic shifts during dialysis on volume estimations with multifrequency impedance analysis. Med Biol Eng Comput. 1997a;35:96–102.

    PubMed  CAS  Google Scholar 

  • Scharfetter H, Monif M, Laszlo Z, Lambauer T, Hutten H, Hinghofer-Szalkay H. Effect of postural changes on the reliability of volume estimations from bioimpedance spectroscopy data. Kidney Int. 1997b;51(4):1078–87.

    PubMed  CAS  Google Scholar 

  • Scharfetter H, Hartinger P, Hinghofer-Szalkay H, Hutten H. A model of artefacts produced by stray capacitance during whole body or segmental bioimpedance spectroscopy. Physiol Meas. 1998;19(2):247–61.

    PubMed  CAS  Google Scholar 

  • Scharfetter H. Structural modeling for impedance-based. non-invasive diagnostic methods. Habilitation Thesis. Graz: TU Graz, Austria; 1999.

    Google Scholar 

  • Scharfetter H, Schlager T, Stollberger R, Felsberger R, Hutten H, Hinghofer-Szalkay H. Assessing abdominal fatness with local bioimpedance analysis: basics and experimental findings. Int J Obes Relat Metab Disord. 2001;25(4):502–11.

    PubMed  CAS  Google Scholar 

  • Schell B, Gross R. The reliability of bioelectrical impedance measurements in the assessment of body composition in health adults. Nutr Rep Int. 1987;36(2):449–59.

    Google Scholar 

  • Scheltinga MR, Jacobs DO, Kimbrough TD, Wilmore DW. Alterations in body fluid content can be detected by bioelectrical impedance analysis. J Surg Res. 1991;50(5):461–8.

    PubMed  CAS  Google Scholar 

  • Segal KR, Gutin B, Presta E, Wang J, Van Itallie TB. Estimation of human body composition by electrical impedance methods: a comparative study. J Appl Physiol. 1985;58(5):1565–71.

    PubMed  CAS  Google Scholar 

  • Settle RG, Foster KR, Epstein BR, Mullen JL. Nutritional assessment: whole body impedance and body fluid compartments. Nutr Cancer. 1980;2:72–80.

    Google Scholar 

  • Shirreffs SM, Maughan RJ. The effect of posture change on blood volume, serum potassium and whole body electrical impedance. Eur J Appl Physiol Occup Physiol. 1994;69(5):461–3.

    PubMed  CAS  Google Scholar 

  • Slinde F, Rossander-Hulthen L. Bioelectrical impedance: effect of 3 identical meals on diurnal impedance variation and calculation of body composition. Am J Clin Nutr. 2001;74(4):474–8.

    PubMed  CAS  Google Scholar 

  • Smye SW, Sutcliffe J, Pitt E. A comparison of four commercial systems used to measure whole-body electrical impedance. Physiol Meas. 1993;14(4):473–8.

    PubMed  CAS  Google Scholar 

  • Stahn A, Terblanche E, Strobel G. Monitoring exercised-induced fluid losses by segmental bioelectrical impedance analysis. In: Marfell Jones M, Stewart A, Olds T, editors. Kinanthropometry IX, Proceedings of the 9th International Conference of the International Society for the Advancement of Kinanthropometry. London & New York: Routledge; 2006. p. 65–95.

    Google Scholar 

  • Stahn A, Terblanche E, Strobel G. Modeling upper and lower limb muscle volume by bioelectrical impedance analysis. J Appl Physiol. 2007;103(4):1428–35.

    PubMed  Google Scholar 

  • Stahn A, Strobel G, Terblanche E. VO2max prediction from multi-frequency bioelectrical impedance analysis. Physiol Meas. 2008;29(2):193–203.

    PubMed  Google Scholar 

  • Steijart M, Vansant G, Van Gaal L, De Leeuw I. Repeated measurements of bioelectrical impedance. Clin Nutr. 1994;13:383.

    Google Scholar 

  • Stroud DB, Cornish BH, Thomas BJ, Ward LC. The Use of Cole-Cole Plots to Compare 2 Multifrequency Bioimpedance Instruments. Clin Nutr. 1995;14(5):307–11.

    PubMed  CAS  Google Scholar 

  • Sun SS, Chumlea WC, Heymsfield SB, Lukaski HC, Schoeller D, Friedl K et al. Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. Am J Clin Nutr. 2003;77(2):331–40.

    PubMed  CAS  Google Scholar 

  • Swan PD, McConnell KE. Anthropometry and bioelectrical impedance inconsistently predicts fatness in women with regional adiposity. Med Sci Sports Exerc. 1999;31(7):1068–75.

    PubMed  CAS  Google Scholar 

  • Tarulli A, Esper GJ, Lee KS, Aaron R, Shiffman CA, Rutkove SB. Electrical impedance myography in the bedside assessment of inflammatory myopathy. Neurology. 2005;65(3):451–2.

    PubMed  CAS  Google Scholar 

  • Tatara T, Tsuzaki K. Segmental bioelectrical impedance analysis improves the prediction for extracellular water volume changes during abdominal surgery. Crit Care Med. 1998;26(3):470–6.

    PubMed  CAS  Google Scholar 

  • Thomas BJ, Cornish BH, Pattemore MJ, Jacobs M, Ward LC. A comparison of the whole-body and segmental methodologies of bioimpedance analysis. Acta Diabetol. 2003;40:S236–S237.

    PubMed  Google Scholar 

  • Turner AA, Bouffard M. Comparison of Modified to Standard Bioelectrical Impedacne Errors Using Generalizability Theory. Meas Phys Educ Exerc Sci. 1998;2(3):177–96.

    Google Scholar 

  • US Department of Health and Human Services.National Center for Health Statistics. National Health and Nutrition Examiniation Survey. Body Composition Procedures Manual. Washington, D.C.: U.S: Government Printing Office; 2000.

    Google Scholar 

  • Valentinuzzi ME, Morucci JP, Felice CJ. Bioelectrical impedance techniques in medicine. Part II: Monitoring of physiological events by impedance. Crit Rev Biomed Eng. 1996;24(4–6):353–466.

    PubMed  CAS  Google Scholar 

  • Van Kreel BK, Cox-Reyven N, Soeters P. Determination of total body water by multifrequency bio-electric impedance: development of several models. Med Biol Eng Comput. 1998;36(3):337–45.

    PubMed  CAS  Google Scholar 

  • Van Loan M, Mayclin P. Bioelectrical impedance analysis: is it a reliable estimator of lean body mass and total body water. Hum Biol. An International Record of Research. 1987;59:299–309.

    PubMed  CAS  Google Scholar 

  • Van Marken Lichtenbelt WD, Westerterp KR, Wouters L, Luijendijk SC. Validation of bioelectrical-impedance measurements as a method to estimate body-water compartments. Am J Clin Nutr. 1994;60(2):159–66.

    PubMed  CAS  Google Scholar 

  • Ward LC, Byrne NM, Rutter K, Hennoste L, Hills AP, Cornish BH et al. Reliability of multiple frequency bioelectrical impedance analysis: An intermachine comparison. Am J Hum Biol. 1997;9(1):63–72.

    Google Scholar 

  • Ward L, Cornish BH, Paton NI, Thomas BJ. Multiple frequency bioelectrical impedance analysis: a cross-validation study of the inductor circuit and Cole models. Physiol Meas. 1999;20(4):333–47.

    PubMed  CAS  Google Scholar 

  • Zhu F, Schneditz D, Wang E, Levin NW. Dynamics of segmental extracellular volumes during changes in body position by bioimpedance analysis. J Appl Physiol. 1998a;85(2):497–504.

    PubMed  CAS  Google Scholar 

  • Zhu F, Schneditz D, Wang E, Martin K, Morris AT, Levin NW. Validation of changes in extracellular volume measured during hemodialysis using a segmental bioimpedance technique. ASAIO. 1998b;44(5):541–5.

    Google Scholar 

  • Zhu F, Schneditz D, Kaufman AM, Levin NW. Estimation of body fluid changes during peritoneal dialysis by segmental bioimpedance analysis. Kidney Int. 2000;57(1):299–306.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Stahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stahn, A., Terblanche, E., Gunga, HC. (2012). Use of Bioelectrical Impedance: General Principles and Overview. In: Preedy, V. (eds) Handbook of Anthropometry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1788-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1788-1_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1787-4

  • Online ISBN: 978-1-4419-1788-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics