Skip to main content

The Axon of Excitatory Neurons in the Neocortex: Projection Patterns and Target Specificity

  • Chapter
  • First Online:
New Aspects of Axonal Structure and Function

Abstract

The neocortex of higher mammals consists of six layers and three major populations of neurons, the majority of which are excitatory pyramidal cells in layers 2/3, 5 and 6, so-called spiny stellate and star pyramidal neurons in layer 4 and a very heterogeneous population of GABAergic interneurons found throughout all cortical layers. These neurons form individual, highly specific microcircuits with each other thereby forming networks like the cortical column. This chapter will summarize and discuss the axonal arborization of principal excitatory neurons and it’s implication for neocortical connectivity. It was long thought that pyramidal cells represent a rather stereotyped class of neurons both with respect to their dendritic configuration and their axonal arborization. There is, however, growing evidence that pyramidal cells show profound structural and functional differences, not only between cortical layers but also within a given layer. Principal neurons except spiny stellate neurons and star pyramidal cells in layer 4 generally have two axonal domains: a vertically oriented domain that projects throughout the cortical column into the white matter and from there either to the contralateral hemisphere or to various subcortical brain regions. The second domain forms a discontinuous system of long-range horizontal projections either within a given cortical or between cortical areas within a given sensory or even between different sensory systems. In summary, principal excitatory neurons in the neocortex vary substantially in their axonal projection patterns and the cellular as well as subcellular input and target specificity of their axons thereby contributing to the enormous computational capacity of the neocortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JC, Douglas RJ, Martin KA, Nelson JC (1994) Synaptic output of physiologically identified spiny stellate neurons in cat visual cortex. J Comp Neurol 341:16–24

    PubMed  CAS  Google Scholar 

  • Arimatsu Y, Ishida M (2002) Distinct neuronal populations specified to form corticocortical and corticothalamic projections from layer VI of developing cerebral cortex. Neuroscience 114:1033–1045

    PubMed  CAS  Google Scholar 

  • Ascoli GA, Alonso-Nanclares L, Anderson SA, Barrionuevo G, Benavides- Piccione R, Burkhalter A, Buzsaki G, Cauli B, DeFelipe J, Fairen A, Feldmeyer D, Fishell G, Fregnac Y, Freund TF, Gardner D, Gardner EP, Goldberg JH, Helmstaedter M, Hestrin S, Karube F, Kisvarday ZF, Lambolez B, Lewis DA, Marin O, Markram H, Munoz A, Packer A, Petersen CC, Rockland KS, Rossier J, Rudy B, Somogyi P, Staiger JF, Tamas G, Thomson AM, Toledo-Rodriguez M, Wang Y, West DC, Yuste R (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9:557–568

    PubMed  CAS  Google Scholar 

  • Beierlein M, Gibson JR, Connors BW (2003) Two dynamically distinct inhibitory networks in layer 4 of the neocortex. J Neurophysiol 90:2987–3000

    PubMed  Google Scholar 

  • Bender KJ, Rangel J, Feldman DE (2003) Development of columnar topography in the excitatory layer 4 to layer 2/3 projection in rat barrel cortex. J Neurosci 23:8759–8770

    PubMed  CAS  Google Scholar 

  • Betz W (1874) Anatomischer Nachweis zweier Gehirncentra. Centralblatt für die medizinischen Wissenschaften 12:578–580, 595–599

    Google Scholar 

  • Braitenberg V, Schüz A (1991) Anatomy of the cortex. Statistics and geometry (Studies of Brain Function), Vol. 18. Springer, Heidelberg, Berlin, New York

    Google Scholar 

  • Bruno RM, Hahn TT, Wallace DJ, de Kock CP, Sakmann B (2009) Sensory experience alters specific branches of individual corticocortical axons during development. J Neurosci 29:3172–3181

    PubMed  CAS  Google Scholar 

  • Bueno-Lopez JL, Reblet C, Lopez-Medina A, Gomez-Urquijo SM, Grandes P, Gondra J, Hennequet L (1991) Targets and laminar distribution of projection neurons with ‘inverted’ morphology in rabbit cortex. Eur J Neurosci 3:415–430

    PubMed  Google Scholar 

  • Bureau I, von Saint Paul F, Svoboda K (2006) Interdigitated paralemniscal and lemniscal pathways in the mouse barrel cortex. PLoS Biol 4:e382

    Google Scholar 

  • Cauli B, Porter JT, Tsuzuki K, Lambolez B, Rossier J, Quenet B, Audinat E (2000) Classification of fusiform neocortical interneurons based on unsupervised clustering. Proc Natl Acad Sci USA 97:6144–6149

    PubMed  CAS  Google Scholar 

  • Chen CC, Abrams S, Pinhas A, Brumberg JC (2009) Morphological heterogeneity of layer VI neurons in mouse barrel cortex. J Comp Neurol 512:726–746

    PubMed  Google Scholar 

  • Clancy B, Cauller LJ (1999) Widespread projections from subgriseal neurons (layer VII) to layer I in adult rat cortex. J Comp Neurol 407:275–286

    PubMed  CAS  Google Scholar 

  • DeFelipe J (2005) Reflections on the structure of the cortical minicolumn. In: Casanova F (ed) Neocortical modularity and the cell minicolumn. Nova Science Publishers, New York, pp 57–92

    Google Scholar 

  • DeFelipe J, Farinas I (1992) The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol 39:563–607

    PubMed  CAS  Google Scholar 

  • Egger V, Nevian T, Bruno RM (2008) Subcolumnar dendritic and axonal organization of spiny stellate and star pyramid neurons within a barrel in rat somatosensory Cortex. Cereb Cortex 18:876–889

    PubMed  Google Scholar 

  • Escobar MI, Pimienta H, Caviness VS Jr, Jacobson M, Crandall JE, Kosik KS (1986) Architecture of apical dendrites in the murine neocortex: dual apical dendritic systems. Neuroscience 17:975–989

    PubMed  CAS  Google Scholar 

  • Feldman ML (1984) Morphology of the neocortical pyramidal neurons. In: Peters A, Jones EG (eds) Cerebral cortex volume 1 cellular components of the cerebral cortex. Plenum Press, New York, pp 123–200

    Google Scholar 

  • Feldmeyer D, Egger V, Lübke J, Sakmann B (1999) Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex. J Physiol-London 521(Pt 1):169–190

    PubMed  CAS  Google Scholar 

  • Feldmeyer D, Lübke J, Sakmann B (2006) Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats. J Physiol-London 575:583–602

    PubMed  CAS  Google Scholar 

  • Feldmeyer D, Lübke J, Silver RA, Sakmann B (2002) Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. J Physiol-London 538:803–822

    PubMed  CAS  Google Scholar 

  • Feldmeyer D, Roth A, Sakmann B (2005) Monosynaptic connections between pairs of spiny stellate cells in layer 4 and pyramidal cells in layer 5A indicate that lemniscal and paralemniscal afferent pathways converge in the infragranular somatosensory cortex. J Neurosci 25:3423–3431

    PubMed  CAS  Google Scholar 

  • Fitzpatrick D (1996) The functional organization of local circuits in visual cortex: insights from the study of tree shrew striate cortex. Cereb Cortex 6:329–341

    PubMed  CAS  Google Scholar 

  • Fleischhauer K, Petsche H, Wittkowski W (1972) Vertical bundles of dendrites in the neocortex. Z Anat Entwicklungsgesch 136:213–223

    PubMed  CAS  Google Scholar 

  • Frick A, Feldmeyer D, Helmstaedter M, Sakmann B (2008) Monosynaptic connections between pairs of L5A pyramidal neurons in columns of juvenile rat somatosensory cortex. Cereb Cortex 18:397–406

    PubMed  Google Scholar 

  • Frotscher M (1998) Cajal-Retzius cells, reelin, and the formation of layers. Curr Opin Neurobiol 8:570–575

    PubMed  CAS  Google Scholar 

  • Gabbott PL, Martin KA, Whitteridge D (1987) Connections between pyramidal neurons in layer 5 of cat visual cortex (area 17) J Comp Neurol 259:364–381

    PubMed  CAS  Google Scholar 

  • Gilbert CD, Wiesel TN (1979) Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex. Nature 280:120–125

    PubMed  CAS  Google Scholar 

  • Gilbert CD, Wiesel TN (1983) Clustered intrinsic connections in cat visual cortex. J Neurosci 3:1116–1133

    PubMed  CAS  Google Scholar 

  • Gottlieb JP, Keller A (1997) Intrinsic circuitry and physiological properties of pyramidal neurons in rat barrel cortex. Exp Brain Res 115:47–60

    PubMed  CAS  Google Scholar 

  • Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287:273–278

    PubMed  CAS  Google Scholar 

  • Harris RM, Woolsey TA (1981) Dendritic plasticity in mouse barrel cortex following postnatal vibrissa follicle damage. J Comp Neurol 196:357–376

    PubMed  CAS  Google Scholar 

  • Harris RM, Woolsey TA (1983) Computer-assisted analyses of barrel neuron axons and their putative synaptic contacts. J Comp Neurol 220:63–79

    PubMed  CAS  Google Scholar 

  • Hellwig B (2000) A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol Cybern 82:111–121

    PubMed  CAS  Google Scholar 

  • Hellwig B, Schuz A, Aertsen A (1994) Synapses on axon collaterals of pyramidal cells are spaced at random intervals: a Golgi study in the mouse cerebral cortex. Biol Cybern 71:1–12

    PubMed  CAS  Google Scholar 

  • Helmstaedter M, Sakmann B, Feldmeyer D (2009a) L2/3 interneuron groups defined by multiparameter analysis of axonal projection, dendritic geometry, and electrical excitability. Cereb Cortex 19:951–962

    PubMed  Google Scholar 

  • Helmstaedter M, Sakmann B, Feldmeyer D (2009b) Neuronal correlates of local, lateral, and translaminar inhibition with reference to cortical columns. Cereb Cortex 19:926–937

    PubMed  Google Scholar 

  • Helmstaedter M, Sakmann B, Feldmeyer D (2009c) The relation between dendritic geometry, electrical excitability, and axonal projections of L2/3 Interneurons in rat barrel cortex. Cereb Cortex 19:938–950

    PubMed  Google Scholar 

  • Helmstaedter M, Staiger JF, Sakmann B, Feldmeyer D (2008) Efficient recruitment of layer 2/3 interneurons by layer 4 input in single columns of rat somatosensory cortex. J Neurosci 28:8273–8284

    PubMed  CAS  Google Scholar 

  • Hirsch JA (1995) Synaptic integration in layer IV of the ferret striate cortex. J Physiol-London 483, 183–199

    PubMed  CAS  Google Scholar 

  • Hirsch JA, Martinez LM, Alonso JM, Desai K, Pillai C, Pierre C (2002) Synaptic physiology of the flow of information in the cat’s visual cortex in vivo. J Physiol-London 540:335–350

    Google Scholar 

  • Hoeflinger BF, Bennett-Clarke CA, Chiaia NL, Killackey HP, Rhoades RW (1995) Patterning of local intracortical projections within the vibrissae representation of rat primary somatosensory cortex. J Comp Neurol 354:551–563

    PubMed  CAS  Google Scholar 

  • Hoffer ZS, Hoover JE, Alloway KD (2003) Sensorimotor corticocortical projections from rat barrel cortex have an anisotropic organization that facilitates integration of inputs from whiskers in the same row. J Comp Neurol 466:525–544

    PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1959) Receptive fields of single neurones in the cat’s striate cortex. J Physiol-London 148:574–591

    PubMed  CAS  Google Scholar 

  • Ito M (1992) Simultaneous visualization of cortical barrels and horseradish peroxidase-injected layer 5b vibrissa neurones in the rat. J Physiol-London 454:247–265

    PubMed  CAS  Google Scholar 

  • Karube F, Kubota Y, Kawaguchi Y (2004) Axon branching and synaptic bouton phenotypes in GABAergic nonpyramidal cell subtypes. J Neurosci 24:2853–2865

    PubMed  CAS  Google Scholar 

  • Katz LC, Gilbert CD, Wiesel TN (1989) Local circuits and ocular dominance columns in monkey striate cortex. J Neurosci 9:1389–1399

    PubMed  CAS  Google Scholar 

  • Kawaguchi Y, Kubota Y (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7:476–486

    PubMed  CAS  Google Scholar 

  • Koester HJ, Johnston D (2005) Target cell-dependent normalization of transmitter release at neocortical synapses. Science 308:863–866

    PubMed  CAS  Google Scholar 

  • Kozloski J, Hamzei-Sichani F, Yuste R (2001) Stereotyped position of local synaptic targets in neocortex. Science 293:868–872

    PubMed  CAS  Google Scholar 

  • Kumar P, Ohana O (2008) Inter- and intralaminar subcircuits of excitatory and inhibitory neurons in layer 6a of the rat barrel cortex. J Neurophysiol 100:1909–1922

    PubMed  Google Scholar 

  • Larkman A, Mason A (1990) Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. I. Establishment of cell classes. J Neurosci 10:1407–1414

    PubMed  CAS  Google Scholar 

  • Larkum ME, Zhu JJ (2002) Signaling of layer 1 and whisker-evoked Ca2+ and Na+ action potentials in distal and terminal dendrites of rat neocortical pyramidal neurons in vitro and in vivo. J Neurosci 22:6991–7005

    PubMed  CAS  Google Scholar 

  • Larkum ME, Zhu JJ, Sakmann B (1999) A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398:338–341

    PubMed  CAS  Google Scholar 

  • Larsen DD, Callaway EM (2006) Development of layer-specific axonal arborizations in mouse primary somatosensory cortex. J Comp Neurol 494:398–414

    PubMed  Google Scholar 

  • Larsen DD, Wickersham IR, Callaway EM (2007) Retrograde tracing with recombinant rabies virus reveals correlations between projection targets and dendritic architecture in layer 5 of mouse barrel cortex. Front Neural Circuits 1:5

    PubMed  Google Scholar 

  • Le Bé JV, Silberberg G, Wang Y, Markram H (2007) Morphological, electrophysiological, and synaptic properties of corticocallosal pyramidal cells in the neonatal rat neocortex. Cereb Cortex 17:2204–2213

    Google Scholar 

  • Lee CC, Sherman SM (2008) Synaptic Properties of Thalamic and Intracortical Inputs to Layer 4 of the First- and Higher-Order Cortical Areas in the Auditory and Somatosensory Systems. J Neurophysiol 100:317–326

    PubMed  Google Scholar 

  • Lefort S, Tomm C, Floyd Sarria JC, Petersen CC (2009) The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61:301–316

    PubMed  CAS  Google Scholar 

  • Lorente de Nó R (1949) Cerebral cortex: architecture, intracortical connections, motor projections. In: Fulton JF (ed) Physiology of the nervous system, 3rd edn. Oxford University Press, London, pp 288–313

    Google Scholar 

  • Lübke J, Egger V, Sakmann B, Feldmeyer D (2000a) Columnar organization of dendrites and axons of single and synaptically coupled excitatory spiny neurons in layer 4 of the rat barrel cortex. J Neurosci 20:5300–5311

    PubMed  Google Scholar 

  • Lübke J, Feldmeyer D (2007) Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex. Brain Struct Funct 212:3–17

    PubMed  Google Scholar 

  • Lübke J, Feldmeyer D, Silver RA, Sakmann B (2000b) Morphology of synaptic connections between spiny layer 4 neurones and layer 2/3 pyramidal cells in rat barrel cortex. Eur J Neurosci 12:14–14

    Google Scholar 

  • Lübke J, Roth A, Feldmeyer D, Sakmann B (2003) Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex. Cereb Cortex 13:1051–1063

    PubMed  Google Scholar 

  • Lund JS, Wu Q, Hadingham PT, Levitt JB (1995) Cells and circuits contributing to functional properties in area V1 of macaque monkey cerebral cortex: bases for neuroanatomically realistic models. J Anat 187:563–581

    PubMed  Google Scholar 

  • Luskin MB, Shatz CJ (1985) Neurogenesis of the cat’s primary visual cortex. J Comp Neurol 242:611–631

    PubMed  CAS  Google Scholar 

  • Manns ID, Sakmann B, Brecht M (2004) Sub- and suprathreshold receptive field properties of pyramidal neurones in layers 5A and 5B of rat somatosensory barrel cortex. J Physiol-London 556:601–622

    PubMed  CAS  Google Scholar 

  • Marín-Padilla M (1971) Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica) A Golgi study. I. The primordial neocortical organization. Z Anat Entwicklungsgesch 134:117–145

    PubMed  Google Scholar 

  • Marín-Padilla M (1978) Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol (Berl) 152:109–126

    Google Scholar 

  • Markram H (1997) A network of tufted layer 5 pyramidal neurons. Cereb Cortex 7:523–533

    PubMed  CAS  Google Scholar 

  • Markram H, Lübke J, Frotscher M, Roth A, Sakmann B (1997) Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J Physiol-London 500:409–440

    PubMed  CAS  Google Scholar 

  • Markram H, Wang Y, Tsodyks M (1998) Differential signaling via the same axon of neocortical pyramidal neurons. Proc Natl Acad Sci USA 95:5323–5328

    PubMed  CAS  Google Scholar 

  • Martin KA, Whitteridge D (1984) Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. J Physiol 353:463–504

    PubMed  CAS  Google Scholar 

  • Micheva KD, Beaulieu C (1995) Postnatal development of GABA neurons in the rat somatosensory barrel cortex: a quantitative study. Eur J Neurosci 7:419–430

    PubMed  CAS  Google Scholar 

  • Miller MW (1988) Maturation of rat visual cortex: IV. The generation, migration, morphogenesis, and connectivity of atypically oriented pyramidal neurons. J Comp Neurol 274:387–405

    PubMed  CAS  Google Scholar 

  • Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:408–434

    PubMed  CAS  Google Scholar 

  • Muly EC, Fitzpatrick D (1992) The morphological basis for binocular and ON/OFF convergence in tree shrew striate cortex. J Neurosci 12:1319–1334

    PubMed  CAS  Google Scholar 

  • Peters A, Walsh TM (1972) A study of the organization of apical dendrites in the somatic sensory cortex of the rat. J Comp Neurol 144:253–268

    PubMed  CAS  Google Scholar 

  • Petreanu L, Mao T, Sternson SM, Svoboda K (2009) The subcellular organization of neocortical excitatory connections. Nature 457:1142–1145

    PubMed  CAS  Google Scholar 

  • Porter JT, Johnson CK, Agmon A (2001) Diverse types of interneurons generate thalamus-evoked feedforward inhibition in the mouse barrel cortex. J Neurosci 21:2699–2710

    PubMed  CAS  Google Scholar 

  • Porter LL, Sakamoto K (1988) Organization and synaptic relationships of the projection from the primary sensory to the primary motor cortex in the cat. J Comp Neurol 271:387–396

    PubMed  CAS  Google Scholar 

  • Porter LL, Sakamoto T, Asanuma H (1990) Morphological and physiological identification of neurons in the cat motor cortex which receive direct input from the somatic sensory cortex. Exp Brain Res 80:209–212

    PubMed  CAS  Google Scholar 

  • Ramón y Cajal S (1904) Textura del Sistema Nervioso del Hombre y de los Vertebrados. Imprenta de Nicolás Moya, Madrid

    Google Scholar 

  • Reblet C, Blanco I, Mendizabal-Zubiaga J, Gutierrez-Ibarluzea I, Bueno-Lopez JL (1996) Development of inverted cells in infragranular layers of the rabbit visual cortex. Int J Dev Biol Suppl 1:145S–146S

    Google Scholar 

  • Reep RL (2000) Cortical layer VII and persistent subplate cells in mammalian brains. Brain Behav Evol 56:212–234

    PubMed  CAS  Google Scholar 

  • Reep RL, Goodwin GS (1988) Layer VII of rodent cerebral cortex. Neurosci Lett 90:15–20

    PubMed  CAS  Google Scholar 

  • Reyes A, Lujan R, Rozov A, Burnashev N, Somogyi P, Sakmann B (1998) Target-cell-specific facilitation and depression in neocortical circuits. Nat Neurosci 1:279–285

    PubMed  CAS  Google Scholar 

  • Schubert D, Kotter R, Luhmann HJ, Staiger JF (2006) Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer Va in the primary somatosensory cortex. Cereb Cortex 16:223–236

    PubMed  CAS  Google Scholar 

  • Schubert D, Kotter R, Zilles K, Luhmann HJ, Staiger JF (2003) Cell type-specific circuits of cortical layer IV spiny neurons. J Neurosci 23:2961–2970

    PubMed  CAS  Google Scholar 

  • Shepherd GM, Stepanyants A, Bureau I, Chklovskii D, Svoboda K (2005) Geometric and functional organization of cortical circuits. Nat Neurosci 8:782–790

    PubMed  CAS  Google Scholar 

  • Shepherd GM, Svoboda K (2005) Laminar and columnar organization of ascending excitatory projections to layer 2/3 pyramidal neurons in rat barrel cortex. J Neurosci 25:5670–5679

    PubMed  CAS  Google Scholar 

  • Silver RA, Lübke J, Sakmann B, Feldmeyer D (2003) High-probability uniquantal transmission at excitatory synapses in barrel cortex. Science 302:1981–1984

    PubMed  CAS  Google Scholar 

  • Soltesz I (2006) Diversity in the neuronal machine: order and variability in interneuronal microcircuits. Oxford University Press, Oxford, New York

    Google Scholar 

  • Somogyi P, Freund TF, Cowey A (1982) The axo-axonic interneuron in the cerebral cortex of the rat, cat and monkey. Neuroscience 7:2577–2607

    PubMed  CAS  Google Scholar 

  • Somogyi P, Tamás G, Lujan R, Buhl EH (1998) Salient features of synaptic organisation in the cerebral cortex. Brain Res Brain Res Rev 26:113–135

    PubMed  CAS  Google Scholar 

  • Staiger JF, Flagmeyer I, Schubert D, Zilles K, Kotter R, Luhmann HJ (2004) Functional diversity of layer IV spiny neurons in rat somatosensory cortex: quantitative morphology of electrophysiologically characterized and biocytin labeled cells. Cereb Cortex 14:690–701

    PubMed  Google Scholar 

  • Tamás G, Buhl EH, Lőrincz A, Somogyi P (2000) Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nat Neurosci 3:366–371

    PubMed  Google Scholar 

  • Tamás G, Lőrincz A, Simon A, Szabadics J (2003) Identified sources and targets of slow inhibition in the neocortex. Science 299:1902–1905

    PubMed  Google Scholar 

  • Tamás G, Somogyi P, Buhl EH (1998) Differentially interconnected networks of GABAergic interneurons in the visual cortex of the cat. J Neurosci 18:4255–4270

    PubMed  Google Scholar 

  • Thomson AM, Bannister AP (2003) Interlaminar connections in the neocortex. Cereb Cortex 13:5–14

    PubMed  Google Scholar 

  • Tömböl T (1984) Layer VI cells. In: Peters A, Jones EG (eds) Cerebral cortex. Plenum Press, New York, London, pp. 479–519

    Google Scholar 

  • Tömböl T, Hajdu F, Somogyi G (1975) Identification of the Golgi picture of the layer VI cortic-geniculate projection neurons. Exp Brain Res 24:107–110

    PubMed  Google Scholar 

  • Ts’o DY, Gilbert CD, Wiesel TN (1986) Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J Neurosci 6:1160–1170

    PubMed  Google Scholar 

  • Valverde F (1986) Intrinsic neocortical organization: some comparative aspects. Neuroscience 18:1–23

    PubMed  CAS  Google Scholar 

  • Vandevelde IL, Duckworth E, Reep RL (1996) Layer VII and the gray matter trajectories of corticocortical axons in rats. Anat Embryol (Berl) 194:581–593

    CAS  Google Scholar 

  • Watakabe A, Ichinohe N, Ohsawa S, Hashikawa T, Komatsu Y, Rockland KS, Yamamori T (2007) Comparative analysis of layer-specific genes in mammalian neocortex. Cereb Cortex 17:1918–1933

    PubMed  Google Scholar 

  • Winkelmann E, Brauer K, Berger U (1975) Zur columnaren Organisation von Pyramidenzellen im visuellen Cortex der Albinoratte. Z Mikrosk Anat Forsch 89:239–256

    PubMed  CAS  Google Scholar 

  • Wise SP, Jones EG (1976) The organization and postnatal development of the commissural projection of the rat somatic sensory cortex. J Comp Neurol 168:313–343

    PubMed  CAS  Google Scholar 

  • Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17:205–242

    PubMed  CAS  Google Scholar 

  • Yabuta NH, Callaway EM (1998) Functional streams and local connections of layer 4C neurons in primary visual cortex of the macaque monkey. J Neurosci 18:9489–9499

    PubMed  CAS  Google Scholar 

  • Yabuta NH, Sawatari A, Callaway EM (2001) Two functional channels from primary visual cortex to dorsal visual cortical areas. Science 292:297–300

    PubMed  CAS  Google Scholar 

  • Zhang ZW, Deschênes M (1997) Intracortical axonal projections of lamina VI cells of the primary somatosensory cortex in the rat: a single-cell labeling study. J Neurosci 17:6365–6379

    PubMed  CAS  Google Scholar 

  • Zhang ZW, Deschênes M (1998) Projections to layer VI of the posteromedial barrel field in the rat: a reappraisal of the role of corticothalamic pathways. Cereb Cortex 8:428–436

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim H.R. Lübke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Lübke, J.H., Feldmeyer, D. (2010). The Axon of Excitatory Neurons in the Neocortex: Projection Patterns and Target Specificity. In: Feldmeyer, D., Lübke, J. (eds) New Aspects of Axonal Structure and Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1676-1_9

Download citation

Publish with us

Policies and ethics