Skip to main content

The Immunosuppresive Tick Salivary Protein, Salpl5

  • Chapter
Pathogen-Derived Immunomodulatory Molecules

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 666))

Abstract

The interaction between Ixodid ticks and their mammalian hosts is a complex relationship. While the mammalian host tries to avoid the completion of the feeding process, the tick has devised strategies to counteract these attempts. Tick saliva contains a vast array of pharmacological activities that presumably aid the tick to evade host responses, including anti-complement, oxidative and innate and adaptive immune responses. The characterization of these activities has gained momentum in the last several years. One of the best studied activities present in tick saliva corresponds to the antigen known as Salpl5, which binds specifically to the T-cell coreceptor CD4 resulting in the specific repression of CD4+ T-cell activation. We discuss here the current state of our knowledge of the mode of action of this salivary protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wikel SK, Bergman D. Tick-host immunology: Significant advances and challenging opportunities. Parasitol Today 1997; 13(10):383–389.

    Article  CAS  PubMed  Google Scholar 

  2. Burgdorfer W, Barbour AG, Hayes SF et al. Lyme disease-a tick-borne spirochetosis? Science 1982; 216(4552):1317–1319.

    Article  CAS  PubMed  Google Scholar 

  3. Chen SM, Dumler JS, Bakken JS et al. Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease. J Clin Microbiol 1994; 32(3):589–595.

    CAS  PubMed  Google Scholar 

  4. Kurtenbach K, Kampen H, Dizij A et al. Infestation of rodents with larval Ixodes ricinus (Acari: Ixodidae) is an important factor in the transmission cycle of borrelia burgdorferi s.l. in german woodlands. J Med Entomol 1995; 32(6):807–817.

    CAS  PubMed  Google Scholar 

  5. Willadsen P. Tick control: thoughts on a research agenda. Vet Parasitol 2006; 138(1–2):161–168.

    Article  PubMed  Google Scholar 

  6. Willadsen P. The molecular revolution in the development of vaccines against ectoparasites. Vet Parasitol 2001; 101(3–4):353–368.

    Article  CAS  PubMed  Google Scholar 

  7. Muleng A, Sugino M, Nakajim M et al. Tick-Encoded serine proteinase inhibitors (serpins); potential target antigens for tick vaccine development. J Vet Med Sei 2001; 63(10): 1063–1069.

    Article  CAS  Google Scholar 

  8. Imamura S, Namangala B, Tajima T et al. Two serine protease inhibitors (serpins) that induce a bovine protective immune response against Rhipicephalus appendiculatus ticks. Vaccine 2006; 24(13):2230–2237.

    Article  CAS  PubMed  Google Scholar 

  9. Andreotti R, Gomes A, Malavazi-Piza KC et al. BmTI antigens induce a bovine protective immune response against Boophilus microplus tick. Int Immunopharmacol 2002; 2(4):557–563.

    Article  CAS  PubMed  Google Scholar 

  10. Sugino M, Imamura S, Mulenga A et al. A serine proteinase inhibitor (serpin) from Ixodid tick Haemaphysalis longicornis; cloning and preliminary assessment of its suitability as a candidate for a tick vaccine. Vaccine 2003; 21(21–22):2844–2851.

    Article  CAS  PubMed  Google Scholar 

  11. Imamura S, da Silva Vaz Junior I, Sugino M et al. A serine protease inhibitor (serpin) from haemaphysalis longicornis as an antitick vaccine. Vaccine 2005; 23(10):1301–1311.

    Article  CAS  PubMed  Google Scholar 

  12. Binnington KC, Kemp DH. Role of tick salivary glands in feeding and disease transmission. Adv Parasitol 1980; 18:315–339.

    Article  CAS  PubMed  Google Scholar 

  13. Ramachandra RN, Wikel SK. Modulation of host-immune responses by ticks (Acari: ixodidae): effect of salivary gland extracts on host macrophages and lymphocyte cytokine production. J Med Entomol 1992; 29(5):818–826.

    CAS  PubMed  Google Scholar 

  14. Kopecky J, Kuthejlova M, Pechova J. Salivary gland extract from Ixodes ricinus ticks inhibits production of interferon-gamma by the upregulation of interleukin-10. Parasite Immunol 1999; 21(7):351–356.

    Article  CAS  PubMed  Google Scholar 

  15. Wikel SK. Tick modulation of host immunity: an important factor in pathogen transmission. Int J Parasitol 1999; 29(6):851–859.

    Article  CAS  PubMed  Google Scholar 

  16. Urioste S, Hall LR, Telford SR 3rd et al. Saliva of the lyme disease vector, Ixodes dammini, blocks cell activation by a nonprostaglandin E2-dependent mechanism. J Exp Med 1994; 180(3):1077–1085.

    Article  CAS  PubMed  Google Scholar 

  17. Wang H, Nuttall PA. Immunosglublin binding proteins in ticks: new targets for vaccine development against a blood-feeding parasite. Cell Mol Life Sci 1999; 56:286–295.

    Article  CAS  PubMed  Google Scholar 

  18. Kaufman WR. Tick-host interaction: a synthesis of current concepts. Parasitol Today 1989; 5:47–56.

    Article  CAS  PubMed  Google Scholar 

  19. Ribeiro JM, Schneider M, Guimaraes JA. Purification and characterization of prolixin S (nitrophorin 2), the salivary anticoagulant of the blood-sucking bug rhodnius prolixus. Biochem J 1995; 308(Pt l):243–249.

    CAS  PubMed  Google Scholar 

  20. Francischetti IM, Valenzuela JG, Andersen JF et al. Ixolaris, a novel recombinant tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick, Ixodes scapularis: identification of factor X and factor Xa as scaffolds for the inhibition of factor Vila/tissue factor complex. Blood 2002; 99:3602–3612.

    Article  CAS  PubMed  Google Scholar 

  21. Narasimhan S, Koski RA, Beaulieu B et al. A novel family of anticoagulants from the saliva of Ixodes scapularis. Insect Mol Biol 2002; 11:641–650.

    Article  CAS  PubMed  Google Scholar 

  22. Willadsen P. Immunity to ticks. Adv Parasitol 1980; 18:293–311.

    Article  CAS  PubMed  Google Scholar 

  23. Wikel SK. Host immunity to ticks. Annu Rev Entomol 1996; 41:1–22.

    Article  CAS  PubMed  Google Scholar 

  24. Trager W. Acquired immunity to ticks. J Parasitol 1939; 25:57.

    Article  Google Scholar 

  25. Kay BH, Kemp DH. Vaccines against arthropods. Am J Trop Med Hyg 1994; 50(6 Suppl):87–96.

    CAS  PubMed  Google Scholar 

  26. Mulenga A, Sugimoto C, Sako Y et al. Molecular characterization of a haemaphysalis longicornis tick salivary gland-associated 29-kilodalton protein and its effect as a vaccine against tick infestation in rabbits. Infect Immun 1999; 67(4):1652–1658.

    CAS  PubMed  Google Scholar 

  27. Nazario S, Das S, de Silva AM et al. Prevention of borrelia burgdorferi transmission in guinea pigs by tick immunity. Am J Trop Med Hyg 1998; 58(6):780–785.

    CAS  PubMed  Google Scholar 

  28. Francis J, Little DG. Resistance of droughtmaster cattle to tick infestation and babesiosis. Aust Vet J 1964; 40:247–253.

    Article  Google Scholar 

  29. Bell JF, Stewart SJ, Wikel SK. Resistance to tick-borne Francisella tularensis by tick-sensitized rabbits: allergic klendusity. Am J Trop Med Hyg 1979; 28(5):876–880.

    CAS  PubMed  Google Scholar 

  30. Brossard M, Wikel SK. Tick immunobiology. Parasitology 2004; 129:S161–S176.

    Article  CAS  PubMed  Google Scholar 

  31. Brossard M, Wikel SK. Immunology of interactions between ticks and hosts. Med Vet Entomol 1997; 11(3):270–276.

    Article  CAS  PubMed  Google Scholar 

  32. Shapiro SZ, Voigt WP, Fujisaki K. Tick antigens recognized by serum from a guinea pig resistant to infestation with the tick Rhipicephalus appendiculatus. J Parasitol 1986; 72(3):454–463.

    Article  CAS  PubMed  Google Scholar 

  33. Brossard M, Girardin P. Passive transfer of resistance in rabbits infested with adult Ixodes ricinus L: humoral factors influence feeding and egg laying. Experientia 1979; 35(10): 1395–1397.

    Article  CAS  PubMed  Google Scholar 

  34. Wikel SK, Allen JR. Acquired resistance to ticks. I. passive transfer of resistance. Immunology 1976; 30(3):311–316.

    CAS  PubMed  Google Scholar 

  35. Ganapamo F, Rutti B, Brossard M. Immunosuppression and cytokine production in mice infested with Ixodes ricinus ticks: a possible role of laminin and interleukin-10 on the in vitro responsiveness of lymphocytes to mitogens. Immunology 1996; 87(2):259–263.

    Article  CAS  PubMed  Google Scholar 

  36. Ganapamo F, Rutti B, Brossard M. In vitro production of interleukin-4 and interferon-gamma by lymph node cells from BALB/c mice infested with nymphal Ixodes ricinus ticks. Immunology 1995; 85(1):120–124.

    CAS  PubMed  Google Scholar 

  37. Nithiuthai S, Allen JR. Significant changes in epidermal Langerhans cells of guinea-pigs infested with ticks (Dermacentor andersoni). Immunology 1984; 51(1):133–141.

    CAS  PubMed  Google Scholar 

  38. Mbow ML, Rutti B, Brossard M. IFN-gamma IL-2 and IL-4 mRNA expression in the skin and draining lymph nodes of BALB/c mice repeatedly infested with nymphal Ixodes ricinus ticks. Cell Immunol 1994; 156(1):254–261.

    Article  CAS  PubMed  Google Scholar 

  39. Allen JR. Tick resistance: basophils in skin reactions of resistant guinea pigs. Int J Parasitol 1973; 3(2):195–200.

    Article  CAS  PubMed  Google Scholar 

  40. Brown SJ, Graziano FM, Askenase PW. Immune serum transfer of cutaneous basophil-associated resistance to ticks: mediation by 7SIgGl antibodies. J Immunol 1982; 129(6):2407–2412.

    CAS  PubMed  Google Scholar 

  41. Benveniste J, Egido J, Gutierrez Millet V et al. Detection of immediate hypersensitivity in rabbits by direct basophil degranulation. J Allergy Clin Immunol 1977; 59(4):271–279.

    Article  CAS  PubMed  Google Scholar 

  42. Brossard M, Fivaz V. Ixodes ricinus L: mast cells, basophils and eosinophils in the sequence of cellular events in the skin of infested or re-infested rabbits. Parasitology 1982; 85(Pt 3):583–592.

    Article  PubMed  Google Scholar 

  43. Inokuma H, Kemp DH, Willadsen P. Comparison of prostaglandin E2 (PGE2) in salivary gland of boophilus microplus, Haemaphysalis longicornis and Ixodes holocyclus and quantification of PGE2 in saliva, hemolymph, ovary and gut of B. microplus. J Vet Med Sci 1994; 56(6):1217–1218.

    CAS  PubMed  Google Scholar 

  44. Wikel SK. Histamine content of tick attachment sites and the effects of HI and H2 histamine antagonists on the expression of resistance. Ann Trop Med Parasitol 1982; 76(2):179–185.

    CAS  PubMed  Google Scholar 

  45. Brossard M, Monneron JP, Papatheodorou V. Progressive sensitization of circulating basophils against Ixodes ricinus L. antigens during repeated infestations of rabbits. Parasite Immunol 1982; 4(5):335–361.

    Article  CAS  PubMed  Google Scholar 

  46. Askenase PW, Bagnall BG, Worms MJ. Cutaneous basophil-associated resistance to ectoparasites (ticks). I. transfer with immune serum or immune cells. Immunology 1982; 45(3):501–511.

    CAS  PubMed  Google Scholar 

  47. Brown SJ, Bagnall BG, Askenase PW Ixodes holocyclus: kinetics of cutaneous basophil responses in naive and actively and passively sensitized guinea pigs. Exp Parasitol 1984; 57(1):40–47.

    Article  CAS  PubMed  Google Scholar 

  48. Kopecky J, Kuthejlova M. Suppressive effect of Ixodes ricinus salivary gland extract on mechanisms of natural immunity in vitro. Parasite Immunol 1998; 20(4): 169–174.

    CAS  PubMed  Google Scholar 

  49. Anguita J, Ramamoorthi N, Hovius JW et al. Salp15, an Ixodes scapularis salivary protein, inhibits CD4+ T-cell activation. Immunity 2002; 16(6):849–859.

    Article  CAS  PubMed  Google Scholar 

  50. Ferreira BR, Silva JS. Saliva of Rhipicephalus sanguineus tick impairs T-cell proliferation and IFN-gamma-induced macrophage microbicidal activity. Vet Immunol Immunopathol 1998; 64(3):279–293.

    Article  CAS  PubMed  Google Scholar 

  51. Schoeler GB, Manweiler SA, Wikel SK. Ixodes scapularis: effects of repeated infestations with pathogen-free nymphs on macrophage and T-lymphocyte cytokine responses of BALB/c and C3H/ HeN mice. Exp Parasitol 1999; 92(4):239–248.

    Article  CAS  PubMed  Google Scholar 

  52. Wikel SK. Tick modulation of host immunity: an important factor in pathogen transmission. Int J Parasitol 1999; 29(6):851–859.

    Article  CAS  PubMed  Google Scholar 

  53. Narasimhan S, Sukumaran B, Bozdogan U et al. A tick antioxidant facilitates the Lyme disease agent s suc-cesful migration from the mammalian host to the arthropod vector. Cell Host Microbe 2007; 2:7–18.

    Article  CAS  PubMed  Google Scholar 

  54. Sukumaran B, Narasimhan S, Anderson JF et al. An Ixodes scapularis protein required for survival of Anaplasma phagocytophilum in tick salivary glands. J Exp Med 2006; 203(6): 1507–1517.

    Article  CAS  PubMed  Google Scholar 

  55. Ramamoorthi N, Narasimhan S, Pal U et al. The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 2005; 436(7050):573–577.

    Article  CAS  PubMed  Google Scholar 

  56. Das S, Banerjee G, DePonte K et al. Salp25D, an Ixodes scapularis Antioxidant, Is 1 of 14 immunodominant antigens in engorged tick salivary glands. J Infect Dis 2001; 184(8):1056–1064.

    Article  CAS  PubMed  Google Scholar 

  57. Valenzuela JG. Exploring tick saliva: from biochemistry to’ sialomes’ and functional genomics. Parasitology 2004; 129:S83–S94.

    Article  CAS  PubMed  Google Scholar 

  58. Francischetti IM, My Pham V, Mans BJ et al. The transcriptome of the salivary glands of the female western black-legged tick Ixodes pacificus (Acari: Ixodidae). Insect Biochem Molec Biol 2005; 35:1142–1161.

    Article  CAS  Google Scholar 

  59. Oleaga A, Escudero-Poblacion A, Camafeita E et al. A proteomic approach to the identification of salivary proteins from the argasid ticks Ornithodoros moubata and Ornithodoros erraticus. Insect Biochem Mol Biol 2007; 37:1149–1159.

    Article  CAS  PubMed  Google Scholar 

  60. Valenzuela JG, Francischetti IM, My Pham V et al. Exploring the sialome of the tick Ixodes scapularis. J Exp Biol 2002; 205:2843–2864.

    CAS  PubMed  Google Scholar 

  61. Mans BJ, Andersen JF, Francischetti IM et al. Comparative sialomics between hard and soft ticks: implications for the evolution of blood-feeding behavior. Insect Biochem Mol Biol 2008; 38:42–58.

    Article  CAS  PubMed  Google Scholar 

  62. Narasimhan S, DePonte K, Marcantonio N et al. Immunity against Ixodes scapularis salivary proteins expressed within 24 hours of attachment thwarts tick feeding and impairs Borrelia transmission. PLoS ONE 2007; 2:e451.

    Article  PubMed  Google Scholar 

  63. Hovius JW, Ramamoorthi N, Van’t Veer C et al. Identification of salpl5 homologues in Ixodes ricinus ticks. Vector Borne Zoonotic Dis 2007; 7:296–303.

    Article  CAS  PubMed  Google Scholar 

  64. Juncadella IJ, Garg R, Ananthanarayanan SK et al. T-cell signaling pathways inhibited by the tick saliva immunosuppressor, salp15. FEMS Immunol Med Microbiol 2007; 49(3):433–438.

    Article  CAS  PubMed  Google Scholar 

  65. Rubtsov YP, Rudensky AY. TGFbeta signalling in control of T-cell-mediated self-reactivity. Nat Rev Immunol 2007; 7:443–453.

    Article  CAS  PubMed  Google Scholar 

  66. McCartney-Francis NL, Wahl SM. Transforming growth factor beta: a matter of life and death. J Leukoc Biol 1994; 55:401–409.

    CAS  PubMed  Google Scholar 

  67. Garg R, Juncadella IJ, Ramamoorthi N et al. Cutting edge: CD4 is the receptor for the tick saliva immunosuppressor, salp15. J Immunol 2006; 177(10):6579–6583.

    CAS  PubMed  Google Scholar 

  68. Sutor GC, Dreikhausen U, Vahning U et al. Neutralization of HIV-1 by anti-idiotypes to monoclonal anti-CD4. potential for idiotype immunization against HIV. J Immunol 1992; 149(4): 1452–1461.

    CAS  PubMed  Google Scholar 

  69. Moore JP, Sattentau QJ, Klasse PJ et al. A monoclonal antibody to CD4 domain 2 blocks soluble CD4-induced conformational changes in the envelope glycoproteins of human immunodeficiency virus Type 1 (HIV-1) and HIV-1 infection of CD4+ cells. J Virol 1992; 66(8):4784–4793.

    CAS  PubMed  Google Scholar 

  70. Ashish, Juncadella IJ, Garg R et al. Conformational rearrangement within the soluble domains of the CD4 receptor is ligand specific. J Biol Chem 2007; PMID: 18045872.

    Google Scholar 

  71. Glaichenhaus N, Shastri N, Littman DR et al. Requirement for association of p561ck with CD4 in antigen-specific signal transduction in T-cells. Cell 1991; 64:511–520.

    Article  CAS  PubMed  Google Scholar 

  72. Yang H, Shen F, Herenyiova M et al. Phospholipase C (EC 3.1.4.11): a malignancy linked signal transduction enzyme. Anticancer Res 1998; 18:1399–1404.

    CAS  PubMed  Google Scholar 

  73. Bae YS, Cantley LG, Chen CS et al. Activation of phospholipase C-gamma by phosphatidylinotisol 3,4,5-trisphosphate. J Biol Chem 1998; 273:4465–4469.

    Article  CAS  PubMed  Google Scholar 

  74. Horejsi V, Zhang W, Schraven B. Transmembrane adaptor proteins: organizers of immunoreceptor signalling. Nat Rev Immunol 2004; 4(8):603–616.

    Article  CAS  PubMed  Google Scholar 

  75. Williams BL, Irvin BJ, Sutor SL et al. Phosphorylation of Tyr319 in ZAP-70 is required for T-cell antigen receptor-dependent phospholipase C-gammal and raas activation. EMBO J 1999; 18:1832–1844.

    Article  CAS  PubMed  Google Scholar 

  76. Paveglio SA, Allard J, Mayette J et al. The tick salivary protein, salpl5, inhibits the development of experimental asthma. J Immunol 2007; 178:7064–7071.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Anguita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Juncadella, I.J., Anguita, J. (2009). The Immunosuppresive Tick Salivary Protein, Salpl5. In: Fallon, P.G. (eds) Pathogen-Derived Immunomodulatory Molecules. Advances in Experimental Medicine and Biology, vol 666. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1601-3_10

Download citation

Publish with us

Policies and ethics