Skip to main content

Pathway and Importance of Photorespiratory 2-Phosphoglycolate Metabolism in Cyanobacteria

  • Conference paper
  • First Online:
Recent Advances in Phototrophic Prokaryotes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 675))

Abstract

Cyanobacteria invented oxygenic photosynthesis about 3.5 billion years ago. The by-product molecular oxygen initiated the oxygenase reaction of RubisCO, the main carboxylating enzyme in photosynthetic organisms. During oxygenase reaction, the toxic side product 2-phosphoglycolate (2-PG) is produced and must be quickly metabolized. Photorespiratory 2-PG metabolism is used for this purpose by higher plants. The existence of an active 2-PG metabolism in cyanobacteria has been the subject of controversy since these organisms have evolved an efficient carbon-concentrating mechanism (CCM), which should considerably reduce the oxygenase activity of RubisCO. Based on emerging cyanobacterial genomic information, we have found clear indications for the existence of many genes possibly involved in the photorespiratory 2-PG metabolism. Using a genetic approach with the model Synechocystis sp. strain PCC 6803, we generated and characterized defined mutants in these genes to verify their function. Our results show that cyanobacteria perform an active photorespiratory 2-PG metabolism, which employs three routes in Synechocystis: a plant-like cycle, a bacterial-like glycerate pathway, and a complete decarboxylation branch. In addition to the detoxification of 2-PG, this essential metabolism helps cyanobacterial cells acclimate to high light conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: Scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Badger MR (1980) Kinetic properties of ribulose 1,5-bisphosphate carboxylase/oxygenase from Anabaena variabilis. Arch Biochem Biophys 201:247–255

    Article  PubMed  CAS  Google Scholar 

  • Badger MR, von Caemmerer S, Ruuska S et al (2000) Electron flow in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and RubisCO oxygenase. Phil Trans R Soc Lond 355:1433–1446

    Article  CAS  Google Scholar 

  • Badger MR, Price GD, Long BM et al (2006) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J Exp Bot 57:249–265

    Article  PubMed  CAS  Google Scholar 

  • Bartsch O, Hagemann M, Bauwe H (2008) Only plant-type (GLYK) glycerate kinases produce D-glycerate 3-phosphate. FEBS Lett 582:3025–3028

    Article  PubMed  CAS  Google Scholar 

  • Bauwe H, Kolukisaoglu U (2003) Genetic manipulation of glycine decarboxylation.J Exp Bot 54:1523–1535

    Article  PubMed  CAS  Google Scholar 

  • Boldt R, Edner C, Kolukisaoglu U et al (2005) D-GLYCERATE 3-KINASE, the last unknown enzyme in the photorespiratory cycle in Arabidopsis, belongs to a novel kinase family. Plant Cell 17:2413–2420

    Article  PubMed  CAS  Google Scholar 

  • Codd GA, Stewart WDP (1973) Pathways of glycollate metabolism in the blue-green alga Anabaena cylindrica. Arch Mikrobiol 94:11–28

    Article  PubMed  CAS  Google Scholar 

  • Colman B (1989) Photosynthetic carbon assimilation and the suppression of photorespiration in the cyanobacteria. Aquatic Bot 34:211–231

    Article  CAS  Google Scholar 

  • Cot SS, So AK, Espie GS (2008) A multiprotein bicarbonate dehydration complex essential to carboxysome function in cyanobacteria. J Bacteriol 190:936–945

    Article  PubMed  CAS  Google Scholar 

  • Deusch O, Landan G, Roettger M et al (2008) Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Mol Biol Evol 25:748–761

    Article  PubMed  CAS  Google Scholar 

  • Eisenhut M, Kahlon S, Hasse D et al (2006) The plant-like C2 glycolate cycle and the bacterial-like glycerate pathway cooperate in phosphoglycolate metabolism in cyanobacteria. Plant Physiol 142:333–342

    Article  PubMed  CAS  Google Scholar 

  • Eisenhut M, von Wobeser EA, Jonas L et al (2007) Long-term response towards inorganic carbon limitation in wild type and glycolate turnover mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol 144:1946–1959

    Article  PubMed  CAS  Google Scholar 

  • Eisenhut M, Bauwe H, Hagemann M (2007) Glycine accumulation is toxic for the cyanobacterium Synechocystis sp. strain PCC 6803, but can be compensated by supplementation with magnesium ions. FEMS Microbiol Lett 277:232–237

    Article  PubMed  CAS  Google Scholar 

  • Eisenhut M, Ruth W, Haimovich M et al (2008a) The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc Natl Acad Sci USA 105:17199–17204

    Article  PubMed  CAS  Google Scholar 

  • Eisenhut M, Huege J, Schwarz D et al (2008b) Metabolome phenotyping of inorganic carbon limitation in cells of the wild type and photorespiratory mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol 148:2109–2120

    Article  PubMed  CAS  Google Scholar 

  • Engels A, Pistorius EK (1997) Characterization of a gene encoding dihydrolipoamide dehydrogenase of the cyanobacterium Synechocystis sp. PCC 6803. Microbiol 143:3543–3553

    Article  CAS  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hackenberg C, Engelhardt A, Matthijs HCP et al (2009) Photorespiratory 2-phosphoglycolate metabolism and photoreduction of O2 cooperate in high-light acclimation of Synechocystis sp. strain PCC 6803. Planta, epub ahead of press, doi 10.1007/s00425-009-0972-9

    Google Scholar 

  • Hagemann M, Vinnemeier J, Oberpichler I et al (2005) The glycine decarboxylase complex is not essential for the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Biol 7:15–22

    Article  PubMed  CAS  Google Scholar 

  • Hasse D, Mikkat S, Thrun HA et al (2007) Properties of recombinant glycine decarboxylase P- and H-protein subunits from the cyanobacterium Synechocystis sp. strain PCC 6803. FEBS Lett 581:1297–1301

    Article  PubMed  CAS  Google Scholar 

  • Havaux M, Guedeney G, Hagemann M et al (2005) The chlorophyll-binding protein IsiA is inducible by high light and protects the cyanobacterium Synechocystis PCC 6803 from photooxidative stress. FEBS Lett 579:2289–2293

    Article  PubMed  CAS  Google Scholar 

  • Helman Y, Tchernov D, Reinhold L et al (2003) Genes encoding A-type flavoproteins are essential for photoreduction of O2 in cyanobacteria. Curr Biol 13:230–235

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Sato S, Kotani H et al (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136

    Article  PubMed  CAS  Google Scholar 

  • Kaplan A, Berry JA (1981) Glycolate excretion and the oxygen to carbon dioxide net exchange ratio during photosynthesis in Chlamydomonas reinhardtii. Plant Physiol 67:229–232

    Article  PubMed  CAS  Google Scholar 

  • Kaplan A, Reinhold L (1999) CO2 concentrating mechanisms in photosynthetic microorganisms. Annu Rev Plant Physiol Plant Mol Biol 50:539–570

    Article  PubMed  CAS  Google Scholar 

  • Kerfeld CA, Sawaya MR, Tanaka S et al (2005) Protein structures forming the shell of primitive bacterial organelles. Science 309:936–938

    Article  PubMed  CAS  Google Scholar 

  • Kirilovsky D (2007) Photoprotection in cyanobacteria: The orange carotenoid protein (OCP)-related non-photochemical-quenching mechanism. Photosynth Res 93:7–16

    Article  PubMed  CAS  Google Scholar 

  • Kouhen OM, Joset F (2002) Biosynthesis of the branched-chain amino acids in the cyanobacterium Synechocystis PCC6803: existence of compensatory pathways. Curr Microbiol 45:94–98

    Article  PubMed  Google Scholar 

  • Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384:557–560

    Article  CAS  Google Scholar 

  • Kroth PG, Chiovitti A, Gruber A et al (2008) A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS One 3:e1426

    Google Scholar 

  • Lieman-Hurwitz J, Haimovich M, Shalev-Malul G et al (2009) A cyanobacterial AbrB-like protein affects the apparent photosynthetic affinity for CO2 by modulating low-CO2-induced gene expression. Environ Microbiol 11:927–936

    Article  PubMed  CAS  Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven.

    Google Scholar 

  • Mehler AH (1951) Studies on reactions of illuminated chloroplasts. I. Mechanisms of the reduction of oxygen and other Hill reagents. Arch Biochem Biophys 33:65–77

    Article  PubMed  CAS  Google Scholar 

  • Mereschkowsky C (1905) Ãœber Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 25:593–604

    Google Scholar 

  • Moroney JV, Wilson BJ, Tolbert NE (1986) Glycolate metabolism and excretion by Chlamydomonas reinhardtii. Plant Physiol 82:821–826

    Article  PubMed  CAS  Google Scholar 

  • Nishimura T, Takahashi Y, Yamaguchi O et al (2008) Mechanism of low CO2-induced activation of the cmp bicarbonate transporter operon by a LysR family protein in the cyanobacterium Synechococcus elongatus strain PCC 7942. Mol Microbiol 68:98–109

    Article  PubMed  CAS  Google Scholar 

  • Norman EG, Colman B (1988) Evidence for an incomplete glycolate pathway in cyanobacteria. J Plant Physiol 132:766–768

    Article  CAS  Google Scholar 

  • Ogren WL (1984) Photorespiration – Pathways, regulation, and modification. Annu Rev Plant Physiol 35:415–442

    Article  CAS  Google Scholar 

  • Renström E, Bergman B (1989) Glycolate metabolism in cyanobacteria. I. Glycolate excretion and phosphoglycolate phosphatase activity. Physiol Plant 75:137–143

    Article  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB et al (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Article  Google Scholar 

  • Scanlan DJ, Ostrowski M, Mazard S et al (2009) Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev 73:249–299

    Article  PubMed  CAS  Google Scholar 

  • Schwarte S, Bauwe H (2007) Identification of the photorespiratory 2-phosphoglycolate phosphatase, PGLP1, in Arabidopsis. Plant Physiol 144:1580–1586

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Bauwe H, Badger M (2007) Impairment of the photorespiratory pathway accelerates photoinhibition of photosystem II by suppression of repair but not acceleration of damage processes in Arabidopsis. Plant Physiol 144:487–494

    Article  PubMed  CAS  Google Scholar 

  • Tolbert NE (1997) The C-2 oxidative photosynthetic carbon cycle. Annu Rev Plant Physiol Plant Mol Biol 48:1–25

    Article  PubMed  CAS  Google Scholar 

  • Tottey S, Waldron KJ, Firbank SJ et al (2008) Protein-folding location can regulate manganese-binding versus copper- or zinc-binding. Nature 455:1138–1142

    Article  PubMed  CAS  Google Scholar 

  • Vicente JB, Gomes CM, Wasserfallen A et al (2002) Module fusion in an A-type flavoprotein from the cyanobacterium Synechocystis condenses a multiple-component pathway in a single polypeptide chain. Biochem Biophys Res Comm 294:82–87

    Article  PubMed  CAS  Google Scholar 

  • Wang HL, Postier BL, Burnap RL (2004) Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J Biol Chem 279:5739–5751

    Article  PubMed  CAS  Google Scholar 

  • Wingler A, Lea PJ, Quick WP et al (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond B Biol Sci 355:1517–1529

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Bernát G, Singh A et al (2008) Properties of mutants of Synechocystis sp. strain PCC 6803 lacking inorganic carbon sequestration systems. Plant Cell Physiol 49:1672–1677

    Article  PubMed  CAS  Google Scholar 

  • Yeates TO, Kerfeld CA, Heinhorst S et al (2008) Protein-based organelles in bacteria: carboxysomes and related microcompartments.Nat Rev Microbiol 6:681–691

    Article  PubMed  CAS  Google Scholar 

  • Zelitch I, Schultes NP, Peterson RB et al (2009) High glycolate oxidase activity is required for survival of maize in normal air. Plant Physiol 149:195–204

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Battchikova N, Jansen T et al (2004) Expression and functional roles of the two distinct NDH-1 complexes and the carbon acquisition complex NdhD3/NdhF3/CupA/Sll1735 in Synechocystis sp PCC 6803. Plant Cell 16:3326–3340

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Aaron Kaplan, Hebrew University, Jerusalem, Israel, and Dr. Hans C. P. Matthijs, University of Amsterdam, Amsterdam, The Netherlands, for fruitful cooperation during the work on cyanobacterial photorespiration. This work was supported by grants from the DFG (Deutsche Forschungsgemeinschaft).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hagemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this paper

Cite this paper

Hagemann, M., Eisenhut, M., Hackenberg, C., Bauwe, H. (2010). Pathway and Importance of Photorespiratory 2-Phosphoglycolate Metabolism in Cyanobacteria. In: Hallenbeck, P. (eds) Recent Advances in Phototrophic Prokaryotes. Advances in Experimental Medicine and Biology, vol 675. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1528-3_6

Download citation

Publish with us

Policies and ethics