Skip to main content

Nitric Oxide and Cancer: An Overview

  • Chapter
  • First Online:
Nitric Oxide (NO) and Cancer

Abstract

An involvement of nitric oxide, a diatomic radical, has been described for numerous areas from environmental pollution to cardiovascular disease, carcinogenesis, tumor progression, genotoxicity, and angiogenesis. Previously, it has been demonstrated that NO may perform different functions dependent on NO levels achieved in a particular microenvironment. Furthermore, researchers also have discovered and identified the various sources of NO, which can elicit different biological responses of NO. In order to better understand the biological consequences of NO responses, one must first understand the chemical biology of NO. Since the first discussions during the early 1990s, it became widely accepted that NO chemical biology can be classified into two classes: direct interaction and indirect interaction. These two classes provided us with the means to understand the basic chemical toxicological effects of NO and its resulting reactive nitrogen species (RNS). NO has been reported to be involved in several steps of carcinogenesis, including interactions with p53 at both the genetic and the protein level and through regulation of the apoptotic pathways and DNA repair mechanisms. Recently, NO has also been linked to various immune and inflammation responses, especially in cancer development and wound healing process. Tumors are known to alter the immune response and tissue vascularization which involves NO. Therefore, a better understanding of the roles of NO in immune response modulation and wound healing would allow us to design a better treatment plan and improve NO drug efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaltoma, S.H., Lipponen, P.K., Kosma, V.M. (2001). Inducible nitric oxide synthase (iNOS) expression and its prognostic value in prostate cancer. Anticancer Res. 21, 3101–3106.

    PubMed  CAS  Google Scholar 

  • Ambs, S., Bennett, W.P., Merriam, W.G., Ogunfusika, M.O., Oser, S.M., Harrington, A.M., Shields, P.G., Felley-Bosco, E., Hussain, S.P., Harris, C.C. (1999). Relationship between p53 mutations and inducible nitric oxide synthase expression in human colorectal cancer. J. Natl. Cancer Inst. 91, 86–88.

    Article  PubMed  CAS  Google Scholar 

  • Ambs, S., Merriam, W.G., Bennett, W.P., Felley-Bosco, E., Ogunfusika, M.O., Oser, S.M., Klein, S., Shields, P.G., Billiar, T.R., Harris, C.C. (1998a). Frequent nitric oxide synthase-2 expression in human colon adenomas:implication for tumor angiogenesis and colon cancer progression. Cancer Res. 58, 334–341.

    PubMed  CAS  Google Scholar 

  • Ambs, S., Ogunfusika, M.O., Merriam, W.G., Bennett, W.P., Billiar, T.R., Harris, C.C. (1998b). Up-regulation of inducible nitric oxide synthase expression in cancer-prone p53 knockout mice. Proc. Natl. Acad. Sci. USA 95, 8823–8828.

    Article  PubMed  CAS  Google Scholar 

  • Ames, B.N., Gold, L.S., Willett, W.C. (1995). The causes and prevention of cancer. Proc. Natl. Acad. Sci. USA 92, 5258–5265.

    Article  PubMed  CAS  Google Scholar 

  • Anttila, M.A., Voutilainen, K., Merivalo, S., Saarikoski, S., Kosma, V.M. (2007). Prognostic significance of iNOS in epithelial ovarian cancer. Gynecol. Oncol. 105, 97–103.

    Article  PubMed  CAS  Google Scholar 

  • Arnold, W.P., Mittal, C.K., Katsuki, S., Murad, F. (1977). Nitric oxide activates guanylate cyclase and increases guanosine 3':5'-cyclic monophosphate levels in various tissue preparations. Proc. Natl. Acad. Sci. USA 74, 3203–3207.

    Article  PubMed  CAS  Google Scholar 

  • Bove, P.F., Wesley, U.V., Greul, A.K., Hristova, M., Dostmann, W.R., van, d. V.A. (2007). Nitric oxide promotes airway epithelial wound repair through enhanced activation of MMP-9. Am. J. Respir. Cell Mol. Biol. 36, 138–146.

    Article  PubMed  CAS  Google Scholar 

  • Brizel, D.M., Sibley, G.S., Prosnitz, L.R., Scher, R.L., Dewhirst, M. (1997). Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int. J. Radiat. Oncol. Biol. Phy. 38, 285–289.

    Article  CAS  Google Scholar 

  • Bulut, A.S., Erden, E., Sak, S.D., Doruk, H., Kursun, N., Dincol, D. (2005). Significance of inducible nitric oxide synthase expression in benign and malignant breast epithelium: an immunohistochemical study of 151 cases. Virchows Arch. 447, 24–30.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C.N., Hsieh, F.J., Cheng, Y.M., Chang, K.J., Lee, P.H. (2006). Expression of inducible nitric oxide synthase and cyclooxygenase-2 in angiogenesis and clinical outcome of human gastric cancer. J. Surg. Oncol. 94, 226–233.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H.H., Su, W.C., Chou, C.Y., Guo, H.R., Ho, S.Y., Que, J., Lee, W.Y. (2005). Increased expression of nitric oxide synthase and cyclooxygenase-2 is associated with poor survival in cervical cancer treated with radiotherapy. Int. J. Radiat Oncol. Biol. Phys. 63, 1093–1100.

    Article  PubMed  CAS  Google Scholar 

  • Cline, S.D., Riggins, J.N., Tornaletti, S., Marnett, L.J., Hanawalt, P.C. (2004). Malondialdehyde adducts in DNA arrest transcription by T7 RNA polymerase and mammalian RNA polymerase II. Proc. Natl. Acad. Sci. USA 101, 7275–7280.

    Article  PubMed  CAS  Google Scholar 

  • Connelly, L., Jacobs, A.T., Palacios-Callender, M., Moncada, S., Hobbs, A.J. (2003). Macrophage endothelial nitric-oxide synthase autoregulates cellular activation and pro-inflammatory protein expression. J. Biol. Chem. 278, 26480–26487.

    Article  PubMed  CAS  Google Scholar 

  • Crowther, M., Brown, N.J., Bishop, E.T., Lewis, C.E. (2001). Microenvironmental influence on macrophage regulation of angiogenesis in wounds and malignant tumors. J. Leukoc. Biol. 70, 478–490.

    PubMed  CAS  Google Scholar 

  • Drapier, J.C., Hibbs, J.B.J. (1986). Murine cytotoxic activated macrophages inhibit aconitase in tumor cells. Inhibition involves the iron-sulfur prosthetic group and is reversible. J. Clin. Invest. 78, 790–797.

    Article  PubMed  CAS  Google Scholar 

  • Ekmekcioglu, S., Ellerhorst, J.A., Prieto, V.G., Johnson, M.M., Broemeling, L.D., Grimm, E.A. (2006). Tumor iNOS predicts poor survival for stage III melanoma patients. Int. J. Cancer 119, 861–866.

    Article  PubMed  CAS  Google Scholar 

  • Ekmekcioglu, S., Ellerhorst, J., Smid, C.M., Prieto, V.G., Munsell, M., Buzaid, A.C., Grimm, E.A. (2000). Inducible nitric oxide synthase and nitrotyrosine in human metastatic melanoma tumors correlate with poor survival. Clin. Cancer Res. 6, 4768–4775.

    PubMed  CAS  Google Scholar 

  • Ekmekcioglu, S., Tang, C.H., Grimm, E.A. (2005). NO news is not necessarily good news in cancer. Curr. Cancer Drug Targets 5, 103–115.

    Article  PubMed  CAS  Google Scholar 

  • Espey, M.G., Miranda, K.M., Pluta, R.M., Wink, D.A. (2000). Nitrosative capacity of macrophages is dependent on nitric-oxide synthase induction signals. J. Biol. Chem. 275, 11341–11347.

    Article  PubMed  CAS  Google Scholar 

  • Felley-Bosco, E., Mirkovitch, J., Ambs, S., Mace, K., Pfeifer, A., Keefer, L.K., Harris, C.C. (1995). Nitric oxide and ethylnitrosourea: relative mutagenicity in the p53 tumor suppressor and hypoxanthine-phosphoribosyltransferase genes. Carcinogenesis 16, 2069–2074.

    Article  PubMed  CAS  Google Scholar 

  • Forrester, K., Ambs, S., Lupold, S.E., Kapust, R.B., Spillare, E.A., Weinberg, W.C., Felley-Bosco, E., Wang, X.W., Geller, D.A., Tzeng, E., Billiar, T., Harris, C.C. (1996). Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc. Natl. Acad. Sci. USA 93, 2442–2447.

    Article  PubMed  CAS  Google Scholar 

  • Furchgott, R.F., Zawadzki, J.V. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373–376.

    Article  PubMed  CAS  Google Scholar 

  • Gallo, O., Masini, E., Morbidelli, L., Franchi, A., Fini-Storchi, I., Vergari, W.A., Ziche, M. (1998). Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer. J. Natl. Cancer Inst. 90, 587–596.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, J.E., Hofseth, L.J., Hussain, S.P., Harris, C.C. (2004). Nitric oxide and p53 in cancer-prone chronic inflammation and oxyradical overload disease. Environ. Mol. Mutagen. 44, 3–9.

    Article  PubMed  CAS  Google Scholar 

  • Graziewicz, M., Wink, D.A., Laval, F. (1996). Nitric oxide inhibits DNA ligase activity. Potential mechanisms for NO mediated DNA damage. Carcinogenesis 17, 2501–2505.

    CAS  Google Scholar 

  • Green, L.C., Ruiz de Luzuriaga, K., Wagner, D.A., Rand, W., Istfan, N., Young, V.R., Tannenbaum, S.R. (1981). Nitrate biosynthesis in man. Proc. Natl. Acad. Sci. USA 78, 7764–7768.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, E.A., Pritchard, S.A., Welch, I.M., Price, P.M., West, C.M. (2005). Is the hypoxia-inducible factor pathway important in gastric cancer? Eur. J. Cancer 41, 2792–2805.

    CAS  Google Scholar 

  • Grimm, E.A., Ellerhorst, J., Tang, C.H., Ekmekcioglu, S. (2008). Constitutive intracellular production of iNOS and NO in human melanoma: possible role in regulation of growth and resistance to apoptosis. Nitric Oxide 19(2), 133–137.

    Google Scholar 

  • Hall, C.N., Garthwaite, J. (2006). Inactivation of nitric oxide by rat cerebellar slices. J. Physiol. 577, 549–567.

    Article  PubMed  CAS  Google Scholar 

  • Hibbs, J.B. J., Taintor, R.R., Vavrin, Z. (1984). Iron depletion: possible cause of tumor cell cytotoxicity induced by activated macrophages. Biochem. Biophys. Res. Commun. 123, 716–723.

    Article  PubMed  CAS  Google Scholar 

  • Hibbs, J.B., Taintor, R.R., Chapman HA, J., Weinberg, J.B. (1977). Macrophage tumor killing: influence of the local environment. Science 197, 279–282.

    Article  PubMed  Google Scholar 

  • Hibbs, J.B., Taintor, R.R., Vavrin, Z., Rachlin, E.M. (1988). Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun. 157, 87–94.

    Article  PubMed  CAS  Google Scholar 

  • Hibbs, J.B., Vavrin, Z., Taintor, R.R. (1987). l-arginine is required for the expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J. Immunol. 138, 550–565.

    PubMed  CAS  Google Scholar 

  • Hidaka, K., Ishizawa, M., Otsuji, N., Endo, H. (1978). Mode of mutagenic action of methylnitrosocyanamide, a potent carcinogen. Cancer Res. 38, 4630–4633.

    PubMed  CAS  Google Scholar 

  • Hofseth, L.J., Saito, S., Hussain, S.P., Espey, M.G., Miranda, K.M., Araki, Y., Jhappan, C., Higashimoto, Y., He, P., Linke, S.P., Quezado, M.M., Zurer, I., Rotter, V., Wink, D.A., Appella, E., Harris, C.C. (2003). Nitric oxide-induced cellular stress and p53 activation in chronic inflammation. Proc. Natl. Acad. Sci. USA 100, 143–148.

    Article  PubMed  CAS  Google Scholar 

  • Hussain, S.P., Amstad, P., Raja, K., Sawyer, M., Hofseth, L., Shields, P.G., Hewer, A., Phillips, D.H., Ryberg, D., Haugen, A., Harris, C.C. (2001a). Mutability of p53 hotspot codons to benzo(a)pyrene diol epoxide (BPDE) and the frequency of p53 mutations in nontumorous human lung. Cancer Res. 61, 6350–6355.

    PubMed  CAS  Google Scholar 

  • Hussain, S.P., Harris, C.C. (2007). Inflammation and cancer: an ancient link with novel potentials. Int. J. Cancer. 121, 2373–2380.

    Article  PubMed  CAS  Google Scholar 

  • Hussain, S.P., He, P., Subleski, J., Hofseth, L.J., Trivers, G.E., Mechanic, L., Hofseth, A.B., Bernard, M., Schwank, J., Nguyen, G., Mathe, E., Djurickovic, D., Haines, D., Weiss, J., Back, T., Gruys, E., Laubach, V.E., Wiltrout, R.H., Harris, C.C. (2008). Nitric oxide is a key component in inflammation-accelerated tumorigenesis. Cancer Res. 68, 7130–7136.

    Article  PubMed  CAS  Google Scholar 

  • Hussain, S.P., Hofseth, L.J., Harris, C.C. (2001b). Tumor suppressor genes: at the crossroads of molecular carcinogenesis, molecular epidemiology and human risk assessment. Lung Cancer 34 (2), S7–15.

    Article  PubMed  Google Scholar 

  • Hussain, S.P., Schwank, J., Staib, F., Wang, X.W., Harris, C.C. (2007). TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene. 26, 2166–2176.

    Article  PubMed  CAS  Google Scholar 

  • Ignarro, L.J., Barry, B.K., Gruetter, D.Y., Edwards, J.C., Ohlstein, E.H., Gruetter, C.A., Baricos, W.H. (1980a). Guanylate cyclase activation by nitroprusside and nitroguanidine is related to formation of S-nitrosothiol intermediates. Biochem. Biophys. Res. Commun. 94, 93–100.

    Article  PubMed  CAS  Google Scholar 

  • Ignarro, L.J., Buga, G.M., Wood, K.S., Byrns, R.E., Chaudhuri, G. (1987). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA 84, 9265–9269.

    Article  PubMed  CAS  Google Scholar 

  • Ignarro, L.J., Edwards, J.C., Gruetter, D.Y., Barry, B.K., Gruetter, C.A. (1980b). Possible involvement of S-nitrosothiols activation of guanylate cyclase nitroso compounds. FEBS Lett. 110, 275–278.

    Article  PubMed  CAS  Google Scholar 

  • Ignarro, L.J., Lippton, H., Edwards, J., Baricos, W.H., Hyman, A., Kadowitz, P., Gruetter, C.A. (1981). Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. J. Pharm. Exp. Therap. 218, 739–749.

    CAS  Google Scholar 

  • Jadeski, L.C., Chakraborty, C., Lala, P.K. (2002). Role of nitric oxide in tumour progression with special reference to a murine breast cancer model. Can. J. Physiol. Pharmacol. 80, 125–135.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins, D.C., Charles, I.G., Baylis, S.A., Lelchuk, R., Radomski, M.W., Moncada, S. (1994). Human colon cancer cell lines show a diverse pattern of nitric oxide synthase gene expression and nitric oxide generation. Br. J. Cancer 70, 847–849.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins, D.C., Charles, I.G., Thomsen, L.L., Moss, D.W., Holmes, L.S., Baylis, S.A., Rhodes, P., Westmore, K., Emson, P.C., Moncada, S. (1995). Roles of nitric oxide in tumor growth. Proc. Natl. Acad. Sci. USA 92, 4392–4396.

    Article  PubMed  CAS  Google Scholar 

  • Kubes, P., Suzuki, M., Granger, D.N. (1991). Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc. Natl. Acad. Sci. USA 88, 4651–4655.

    Article  PubMed  CAS  Google Scholar 

  • Lancaster, J.R., Hibbs, J.B. (1990). EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. Proc. Natl. Acad. Sci. USA 87, 1223–1227.

    Article  PubMed  CAS  Google Scholar 

  • Laurent, M., Lepoivre, M., Tenu, J.P. (1996). Kinetic modelling of the nitric oxide gradient generated in vitro by adherent cells expressing inducible nitric oxide synthase. Biochem. J. 314, 109–113.

    PubMed  CAS  Google Scholar 

  • Laval, F., Wink, D.A. (1994). Inhibition by nitric oxide of the repair protein O6-methylguanin-DNA-methyltransferase. Carcinogenesis 15, 443–447.

    Article  PubMed  CAS  Google Scholar 

  • Laval, F., Wink, D.A., Laval, J. (1996). A discussion of mechanisms of NO genotoxicity. Implication of inhibition of DNA repair proteins. Rev. Physiol. Biochem. Pharmacol. 131, 175–191.

    Google Scholar 

  • Lee, K.M., Choi, J.Y., Lee, J.E., Noh, D.Y., Ahn, S.H., Han, W., Yoo, K.Y., Hayes, R.B., Kang, D. (2007). Genetic polymorphisms of NOS3 are associated with the risk of invasive breast cancer with lymph node involvement. Breast Cancer Res. Treat. 106, 433–438.

    Article  PubMed  CAS  Google Scholar 

  • Levesque, M.C., Chen, Y., Beasley, B.E., O'Loughlin, C.W., Gockerman, J.P., Moore, J.O., Weinberg, J.B. (2006). Chronic lymphocytic leukemia cell CD38 expression and inducible nitric oxide synthase expression are associated with serum IL-4 levels. Leuk. Res. 30, 24–28.

    Article  PubMed  CAS  Google Scholar 

  • Li, F., Sonveaux, P., Rabbani, Z.N., Liu, S., Yan, B., Huang, Q., Vujaskovic, Z., Dewhirst, M.W., Li, C.Y. (2007). Regulation of HIF-1alpha stability through S-nitrosylation. Mol. Cell 26, 63–74.

    Article  PubMed  CAS  Google Scholar 

  • Li, L.G., Xu, H.M. (2005). Inducible nitric oxide synthase, nitrotyrosine and apoptosis in gastric adenocarcinomas and their correlation with a poor survival. World J. Gastroenterol. 11, 2539–2544.

    PubMed  CAS  Google Scholar 

  • Liu, R.H., Baldwin, B., Tennant, B.C., Hotchkiss, J.H. (1991). Elevated formation of nitrate and N-nitrosodimethylamine in woodchucks (Marmota monax) associated with chronic woodchuck hepatitis virus infection. Cancer Res. 51, 3925–3929.

    PubMed  CAS  Google Scholar 

  • Liu, R.H., Jacob, J.R., Tennant, B.D., Hotchkiss, J.H. (1992). Nitrite and nitrosamine synthesis by hepatocytes isolated from normal woodchucks (Marmota monax) and woodchucks chronically infected with woodhuck hepatitis virus. Cancer Res. 52, 4139–4143.

    PubMed  CAS  Google Scholar 

  • Loeb, L.A., James, E.A., Waltersdorph, A.M., Klebanoff, S.J. (1988). Mutagenesis by the autoxidation of iron with isolated DNA. Proc. Natl. Acad. Sci. USA 85, 3918–3922.

    Article  PubMed  CAS  Google Scholar 

  • Ma, X.-L., Weyrich, A.S., Lefer, D.J., Lefer, A.M. (1993). Diminished basal nitric oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to coronary endothelium. Circ. Res. 72, 403–412.

    Article  PubMed  CAS  Google Scholar 

  • Marletta, M.A. (1988). Mammalian synthesis of nitrite, nitrate, nitric oxide and N-nitrosating agents. Chem. Res. Toxicol. 1, 249–257.

    Article  PubMed  CAS  Google Scholar 

  • Marmenout, A., Remaut, E., van Boom, J., Fiers, W. (1984). Oligonucleotide directed mutagenesis: selection of mutants by hemimethylation of GATC-sequences. Mol. Gen. Genet. 195, 126–133.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, M., Furihata, M., Kurabayashi, A., Araki, K., Sasaguri, S., Ohtsuki, Y. (2003). Association between inducible nitric oxide synthase expression and p53 status in human esophageal squamous cell carcinoma. Oncology 64, 90–96.

    Article  PubMed  CAS  Google Scholar 

  • Moncada, S., Palmer, R.M. J., Higgs, E.A. (1991). Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109–142.

    PubMed  CAS  Google Scholar 

  • Nguyen, T., Brunson, D., Crespi, C.L., Penman, B.W., Wishnok, J.S., Tannenbaum, S.R. (1992). DNA damage and mutation in human cells exposed to nitric oxide. Proc. Natl. Acad. Sci. USA 89, 3030–3034.

    Article  PubMed  CAS  Google Scholar 

  • Niedbala, W., Cai, B., Liu, H., Pitman, N., Chang, L., Liew, F.Y. (2007). Nitric oxide induces CD4+CD25+ Foxp3 regulatory T cells from CD4+CD25 T cells via p53, IL-2, and OX40. Proc. Natl. Acad. Sci. USA 104, 15478–15483.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa, R., Pacelli, R., Espey, M.G., Miranda, K.M., Friedman, N., Kim, S.M., Cox, G., Mitchell, J.B., Wink, D.A., Russo, A. (2001). Comparison of control of Listeria by nitric oxide redox chemistry from murine macrophages and NO donors: insights into listeriocidal activity of oxidative and nitrosative stress. Free Radic. Biol. Med. 30, 268–276.

    Article  PubMed  CAS  Google Scholar 

  • Ohshima, H., Tsuda, M., Adachi, H., Ogura, T., Sugimura, T., Esumi, H. (1991). l-arginine-dependent formation of N-nitrosamines by the cytosol of macrophages activated with lipopolysaccharide and interferon-gamma. Carcinogenesis 12, 1217–1220.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, R.M. J., Ferrige, A.G., Moncada, S. (1987). Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327, 524–526.

    Article  PubMed  CAS  Google Scholar 

  • Pervin, S., Singh, R., Freije, W.A., Chaudhuri, G. (2003). MKP-1-induced dephosphorylation of extracellular signal-regulated kinase is essential for triggering nitric oxide-induced apoptosis in human breast cancer cell lines: implications in breast cancer. Cancer Res. 63, 8853–8860.

    PubMed  CAS  Google Scholar 

  • Prueitt, R.L., Boersma, B.J., Howe, T.M., Goodman, J.E., Thomas, D.D., Ying, L., Pfiester, C.M., Yfantis, H.G., Cottrell, J.R., Lee, D.H., Remaley, A.T., Hofseth, L.J., Wink, D.A., Ambs, S. (2007). Inflammation and IGF-I activate the Akt pathway in breast cancer. Int. J. Cancer 120, 796–805.

    Article  PubMed  CAS  Google Scholar 

  • Puhakka, A., Kinnula, V., Napankangas, U., Saily, M., Koistinen, P., Paakko, P., Soini, Y. (2003). High expression of nitric oxide synthases is a favorable prognostic sign in non-small cell lung carcinoma. APMIS 111, 1137–1146.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, K.K., Richardson, F.C., Crosby, R.M., Swenberg, J.A., Skopek, T.R. (1987). DNA base changes and alkylation following in vivo exposure of Escherichia coli to N-methyl-N-nitrosourea or N-ethyl-N-nitrosourea. Proc. Natl. Acad. Sci. USA 84, 344–348.

    Article  PubMed  CAS  Google Scholar 

  • Ridnour, L.A., Isenberg, J.S., Espey, M.G., Thomas, D.D., Roberts, D.D., Wink, D.A. (2005). Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proc. Natl. Acad. Sci. USA 102, 13147–13152.

    Article  PubMed  CAS  Google Scholar 

  • Ridnour, L.A., Thomas, D.D., Donzelli, S., Espey, M.G., Roberts, D.D., Wink, D.A., Isenberg, J.S. (2006). The biphasic nature of nitric oxide responses in tumor biology. Antioxid. Redox. Signal. 8, 1329–1337.

    Article  PubMed  CAS  Google Scholar 

  • Ridnour, L.A., Thomas, D.D., Switzer, C., Flores-Santana, W., Isenberg, J.S., Ambs, S., Roberts, D.D., Wink, D.A. (2008). Molecular mechanisms for discrete nitric oxide levels in cancer. Nitric Oxide 19, 73–76.

    Article  PubMed  CAS  Google Scholar 

  • Ridnour, L.A., Windhausen, A.N., Isenberg, J.S., Yeung, N., Thomas, D.D., Vitek, M.P., Roberts, D.D., Wink, D.A. (2007). Nitric oxide regulates matrix metalloproteinase-9 activity by guanylyl-cyclase-dependent and -independent pathways. Proc. Natl. Acad. Sci. USA 104(43):16898–16903.

    Article  PubMed  CAS  Google Scholar 

  • Riss, J., Khanna, C., Koo, S., Chandramouli, G.V., Yang, H.H., Hu, Y., Kleiner, D.E., Rosenwald, A., Schaefer, C.F., Ben-Sasson, S.A., Yang, L., Powell, J., Kane, D.W., Star, R.A., Aprelikova, O., Bauer, K., Vasselli, J.R., Maranchie, J.K., Kohn, K.W., Buetow, K.H., Linehan, W.M., Weinstein, J.N., Lee, M.P., Klausner, R.D., Barrett, J.C. (2006). Cancers as wounds that do not heal: differences and similarities between renal regeneration/repair and renal cell carcinoma. Cancer Res. 66, 7216–7224.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, D.D., Isenberg, J.S., Ridnour, L.A., Wink, D.A. (2007). Nitric oxide and its gatekeeper thrombospondin-1 in tumor angiogenesis. Clin. Cancer Res. 13, 795–798.

    Article  PubMed  CAS  Google Scholar 

  • Routledge, M.N., Mirsky, F.J., Wink, D.A., Keefer, L.K., Dipple, A. (1994a). Nitrite-induced mutations in a forward mutation assay: influence of nitrite concentration and pH. Mutat. Res. 322, 341–346.

    Article  PubMed  CAS  Google Scholar 

  • Routledge, M.N., Wink, D.A., Keefer, L.K., Dipple, A. (1993). Mutations induced by saturated aqueous nitric oxide in the pSP189 supF gene in human Ad293 and E. coli MBM7070 cells. Carcinogenesis 14, 1251–1254.

    CAS  Google Scholar 

  • Routledge, M.N., Wink, D.A., Keefer, L.K., Dipple, A. (1994b). DNA sequence changes induced by two nitric oxide donor drugs in the supF assay. Chem. Res. Toxicol. 7, 628–632.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, S.E., White, W.H. (1983). in Trace Atmospheric Constituents. Properties, Transformation and Fates (1–117). John Wiley and Sons, New York

    Google Scholar 

  • Schwentker, A., Vodovotz, Y., Weller, R., Billiar, T.R. (2002). Nitric oxide and wound repair: role of cytokines? Nitric Oxide 7, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Shen, J., Wang, R.T., Wang, L.W., Xu, Y.C., Wang, X.R. (2004). A novel genetic polymorphism of inducible nitric oxide synthase is associated with an increased risk of gastric cancer. World J. Gastroenterol. 10, 3278–3283.

    PubMed  CAS  Google Scholar 

  • Shigyo, H., Nonaka, S., Katada, A., Bandoh, N., Ogino, T., Katayama, A., Takahara, M., Hayashi, T., Harabuchi, Y. (2007). Inducible nitric oxide synthase expression in various laryngeal lesions in relation to carcinogenesis, angiogenesis, and patients' prognosis. Acta. Otolaryngol. 127, 970–979.

    Article  PubMed  CAS  Google Scholar 

  • Sidorkina, O., Espey, M.G., Miranda, K.M., Wink, D.A., Laval, J. (2003). Inhibition of poly(ADP-RIBOSE) polymerase (PARP) by nitric oxide and reactive nitrogen oxide species. Free Radic. Biol. Med. 35, 1431–1438.

    Article  PubMed  CAS  Google Scholar 

  • Sonoshita, M., Takaku, K., Sasaki, N., Sugimoto, Y., Ushikubi, F., Narumiya, S., Oshima, M., Taketo, M.M. (2001). Acceleration of intestinal polyposis through prostaglandin receptor EP2 in Apc(Delta 716) knockout mice. Nat. Med. 7, 1048–1051.

    Article  PubMed  CAS  Google Scholar 

  • Stadler, J., Harbrecht, B.G., Di Silvio, M., Curran, R.D., Jordan, M.L., Simmons, R.L., Billiar, T.R. (1993). Endogenous nitric oxide inhibits the synthesis of cyclooxygenase products and interleukin-6 by rat Kupffer cells. J. Leukoc. Biol. 53, 165–172.

    PubMed  CAS  Google Scholar 

  • Stuehr, D.J., Marletta, M.A. (1985). Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc. Natl. Acad. Sci. USA 82, 7738–7742.

    Article  PubMed  CAS  Google Scholar 

  • Stuehr, D.J., Nathan, C.F. (1989). A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J. Exp. Med. 169, 1543–1555.

    Article  PubMed  CAS  Google Scholar 

  • Sun, M.H., Han, X.C., Jia, M.K., Jiang, W.D., Wang, M., Zhang, H., Han, G., Jiang, Y. (2005). Expressions of inducible nitric oxide synthase and matrix metalloproteinase-9 and their effects on angiogenesis and progression of hepatocellular carcinoma. World J. Gastroenterol. 11, 5931–5937.

    PubMed  Google Scholar 

  • Tanriover, N., Ulu, M.O., Isler, C., Durak, H., Oz, B., Uzan, M., Akar, Z. (2008). Neuronal nitric oxide synthase expression in glial tumors: correlation with malignancy and tumor proliferation. Neurol. Res. 30, 940–944.

    Article  PubMed  Google Scholar 

  • Tarpey, M.M., Wink, D.A., Grisham, M.B. (2004). Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R431–44.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, D.D., Espey, M.G., Ridnour, L.A., Hofseth, L.J., Mancardi, D., Harris, C.C., Wink, D.A. (2004). Hypoxic inducible factor 1alpha, extracellular signal-regulated kinase, and p53 are regulated by distinct threshold concentrations of nitric oxide. Proc Natl. Acad. Sci. USA 101, 8894–8899.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, D.D., Ridnour, L.A., Espey, M.G., Donzelli, S., Ambs, S., Hussain, S.P., Harris, C.C., DeGraff, W., Roberts, D.D., Mitchell, J.B., Wink, D.A. (2006). Superoxide fluxes limit nitric oxide-induced signaling. J. Biol. Chem. 281, 25984–25993.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, D.D., Ridnour, L.A., Isenberg, J.S., Flores-Santana, W., Switzer, C.H., Donzelli, S., Hussain, P., Vecoli, C., Paolocci, N., Ambs, S., Colton, C.A., Harris, C.C., Roberts, D.D., Wink, D.A. (2008). The chemical biology of nitric oxide: implications in cellular signaling. Free Radic. Biol. Med. 45, 18–31.

    Article  PubMed  CAS  Google Scholar 

  • Thomsen, L.L., Lawton, F.G., Knowles, R.G., Beesley, J.E., Riveros-Moreno, V., Moncada, S. (1994). Nitric oxide synthase activity in human gynecological cancer. Cancer Res. 54, 1352–1354.

    PubMed  CAS  Google Scholar 

  • Thomsen, L.L., Miles, D.W., Happerfield, L., Bobrow, L.G., Knowles, R.G., Moncada, S. (1995). Nitric oxide synthase activity in human breast cancer. Br. J. Cancer 72, 41–44.

    Article  PubMed  CAS  Google Scholar 

  • Turini, M.E., DuBois, R.N. (2002). Cyclooxygenase-2: a therapeutic target. Annu. Rev. Med. 53, 35–57.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C., Trudel, L.J., Wogan, G.N., Deen, W.M. (2003). Thresholds of nitric oxide-mediated toxicity in human lymphoblastoid cells. Chem. Res. Toxicol. 16, 1004–1013.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., Shi, G.G., Yao, J.C., Gong, W., Wei, D., Wu, T.T., Ajani, J.A., Huang, S., Xie, K. (2005). Expression of endothelial nitric oxide synthase correlates with the angiogenic phenotype of and predicts poor prognosis in human gastric cancer. Gastric Cancer 8,18–28.

    Article  PubMed  CAS  Google Scholar 

  • West, J.D., Ji, C., Duncan, S.T., Amarnath, V., Schneider, C., Rizzo, C.J., Brash, A.R., Marnett, L.J. (2004). Induction of apoptosis in colorectal carcinoma cells treated with 4-hydroxy-2-nonenal and structurally related aldehydic products of lipid peroxidation. Chem. Res. Toxicol. 17, 453–462.

    Article  PubMed  CAS  Google Scholar 

  • Whalen, G.F. (1990). Solid tumours and wounds: transformed cells misunderstood as injured tissue? Lancet 336, 1489–1492.

    Article  PubMed  CAS  Google Scholar 

  • Wink, D.A., Hanbauer, I., Grisham, M.B., Laval, F., Nims, R.W., Laval, J., Cook, J.C., Pacelli, R., Liebmann, J., Krishna, M.C., Ford, M.C., JB, M. (1996). The Chemical Biology of NO. Insights into Regulation, Protective and Toxic Mechanisms of Nitric Oxide. Curr.Top. Cell. Regul. 34, 159–187.

    Article  PubMed  CAS  Google Scholar 

  • Wink, D.A., Hanbauer, I., Krishna, M.C., DeGraff, W., Gamson, J., Mitchell, J.B. (1993). Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc. Natl. Acad. Sci. USA 90, 9813–9817.

    Article  PubMed  CAS  Google Scholar 

  • Wink, D.A., Kasprzak, K.S., Maragos, C.M., Elespuru, R.K., Misra, M., Dunams, T.M., Cebula, T.A., Koch, W.H., Andrews, A.W., Allen, J.S., Keefer, L.K. (1991). DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254, 1001–1003.

    Article  PubMed  CAS  Google Scholar 

  • Wink, D.A., Laval, J. (1994). The Fpg protein, a DNA repair enzyme, is inhibited by the biomediator nitric oxide in vitro and in vivo. Carcinogenesis 15, 2125–2129.

    Article  PubMed  CAS  Google Scholar 

  • Wink, D.A., Mitchell, J.B. (1998). The Chemical Biology of Nitric Oxide: Insights into Regulatory, Cytotoxic and Cytoprotective Mechanisms of Nitric Oxide. Free Rad. Biol. Med. 25, 434–456.

    Article  PubMed  CAS  Google Scholar 

  • Vodovotz, Y., Chesler, L., Chong, H., Kim, S.J., Simpson, J.T., DeGraff, W., Cox, G.W., Roberts, A.B., Wink, D.A., Barcellos-Hoff, M.H. (1999). Regulation of transforming growth factor beta1 by nitric oxide. Cancer Res. 59, 2142–2149.

    PubMed  CAS  Google Scholar 

  • Wood, M.L., Esteve, A., Morningstar, M.L., Kuziemko, G.M., Essigmann, J.M. (1992). Genetic effects of oxidative DNA damage: comparative mutagenesis of 7,8-dihydro-8-oxoguanine and 7,8-dihydro-8-oxoadenine in Escherichia coli. Nucleic Acids Res. 20, 6023–6032.

    Article  PubMed  CAS  Google Scholar 

  • Xie, K., Dong, Z., Fidler, I.J. (1996). Activation of nitric oxide synthase gene for inhibition of cancer metastasis. J. Leukoc. Biol. 59, 797–803.

    PubMed  CAS  Google Scholar 

  • Xie, K., Huang, S., Dong, Z., Juang, S.H., Gutman, M., Xi, e. Q.W., Nathan, C., Fidler, I.J. (1995). Transfection with the inducible nitric oxide synthase gene suppresses tumorigenicity and abrogates metastasis by K-1735 murine melanoma cells. J. Exp. Med. 181, 1333–1343.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X. (2004). Real time and in vivo monitoring of nitric oxide by electrochemical sensors–from dream to reality. Front Biosci. 9, 3434–3446.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Wink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Cheng, R. et al. (2010). Nitric Oxide and Cancer: An Overview. In: Bonavida, B. (eds) Nitric Oxide (NO) and Cancer. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1432-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1432-3_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1431-6

  • Online ISBN: 978-1-4419-1432-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics