Skip to main content

Gene Therapy in the Retinal Degeneration Slow Model of Retinitis Pigmentosa

  • Chapter
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 664))

Abstract

Human blinding disorders are often initiated by hereditary mutations that insult rod and/or cone photoreceptors and cause subsequent cellular death. Generally, the disease phenotype can be predicted from the specific mutation as many photoreceptor genes are specific to rods or cones; however certain genes, such as Retinal Degeneration Slow (RDS), are expressed in both cell types and cause different forms of retinal disease affecting rods, cones, or both photoreceptors. RDS is a transmembrane glycoprotein critical for photoreceptor outer segment disc morphogenesis, structural maintenance, and renewal. Studies using animal models with Rds mutations provide valuable insight into Rds gene function and regulation; and a better understanding of the physiology, pathology, and underlying degenerative mechanisms of inherited retinal disease. Furthermore, these models are an excellent tool in the process of developing therapeutic interventions for the treatment of inherited retinal degenerations. In this paper, we review these topics with particular focus on the use of rds models in gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acland GM, Aguirre GD, Bennett J et al (2005) Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 12:1072–1082

    Article  CAS  PubMed  Google Scholar 

  • Acland GM, Aguirre GD, Ray J et al (2001) Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 28:92–95

    Article  CAS  PubMed  Google Scholar 

  • Ali RR, Sarra GM, Stephens C et al (2000) Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat Genet 25:306–310

    Article  CAS  PubMed  Google Scholar 

  • Allen D, Kenna PF, Palfi A et al (2007) Development of strategies for conditional RNA interference. J Gene Med 9:287–298

    Article  CAS  PubMed  Google Scholar 

  • Allocca M, Doria M, Petrillo M et al (2008) Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest 118:1955–1964

    Article  CAS  PubMed  Google Scholar 

  • Andrieu-Soler C, Bejjani RA, de Bizemont T et al (2006) Ocular gene therapy: a review of nonviral strategies. Mol Vis 12:1334–1347

    CAS  PubMed  Google Scholar 

  • Bainbridge JW, Smith AJ, Barker SS et al (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358:2231–2239

    Article  CAS  PubMed  Google Scholar 

  • Bok D, Yasumura D, Matthes MT et al (2002) Effects of adeno-associated virus-vectored ciliary neurotrophic factor on retinal structure and function in mice with a P216L rds/peripherin mutation. Exp Eye Res 74:719–735

    Article  CAS  PubMed  Google Scholar 

  • Boon CJ, den Hollander AI, Hoyng CB et al (2008) The spectrum of retinal dystrophies caused by mutations in the peripherin/RDS gene. Prog Retin Eye Res 27:213–235

    Article  CAS  PubMed  Google Scholar 

  • Buch PK, MacLaren RE, Duran Y et al (2006) In contrast to AAV-mediated Cntf expression, AAV-mediated Gdnf expression enhances gene replacement therapy in rodent models of retinal degeneration. Mol Ther 14:700–709

    Article  CAS  PubMed  Google Scholar 

  • Campochiaro PA, Nguyen QD, Shah SM et al (2006) Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: results of a phase I clinical trial. Hum Gene Ther 17:167–176

    Article  CAS  PubMed  Google Scholar 

  • Cayouette M, Behn D, Sendtner M et al (1998) Intraocular gene transfer of ciliary neurotrophic factor prevents death and increases responsiveness of rod photoreceptors in the retinal degeneration slow mouse. J Neurosci 18:9282–9293

    CAS  PubMed  Google Scholar 

  • Cepko CL, Austin CP, Yang X et al (1996) Cell fate determination in the vertebrate retina. Proc Natl Acad Sci U S A 93:589–595

    Article  CAS  PubMed  Google Scholar 

  • Cheng T, Peachey NS, Li S et al (1997) The effect of peripherin/rds haploinsufficiency on rod and cone photoreceptors. J Neurosci 17:8118–8128

    CAS  PubMed  Google Scholar 

  • Cideciyan AV, Aleman TS, Boye SL et al (2008) Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci U S A 105:15112–15117

    Article  CAS  PubMed  Google Scholar 

  • Conley S, Nour M, Fliesler SJ et al (2007) Late-onset cone photoreceptor degeneration induced by R172W mutation in Rds and partial rescue by gene supplementation. Invest Ophthalmol Vis Sci 48:5397–5407

    Article  PubMed  Google Scholar 

  • Connell G, Bascom R, Molday L et al (1991) Photoreceptor peripherin is the normal product of the gene responsible for retinal degeneration in the rds mouse. Proc Natl Acad Sci U S A 88:723–726

    Article  CAS  PubMed  Google Scholar 

  • Danos O (2008) AAV vectors for RNA-based modulation of gene expression. Gene Ther 15:864–869

    Article  CAS  PubMed  Google Scholar 

  • Ding XQ, Nour M, Ritter LM et al (2004) The R172W mutation in peripherin/rds causes a cone-rod dystrophy in transgenic mice. Hum Mol Genet 13:2075–2087

    Article  CAS  PubMed  Google Scholar 

  • Farjo R, Naash MI (2006) The role of Rds in outer segment morphogenesis and human retinal disease. Ophthalmic Genet 27:117–122

    Article  PubMed  Google Scholar 

  • Farjo R, Skaggs JS, Nagel BA et al (2006b) Retention of function without normal disc morphogenesis occurs in cone but not rod photoreceptors. J Cell Biol 173:59–68

    Article  CAS  PubMed  Google Scholar 

  • Farjo R, Skaggs J, Quiambao AB et al (2006a) Efficient non-viral ocular gene transfer with compacted DNA nanoparticles. PLoS ONE 1:e38

    Article  PubMed  Google Scholar 

  • Farrar GJ, Kenna PF, Humphries P (2002) On the genetics of retinitis pigmentosa and on mutation-independent approaches to therapeutic intervention. EMBO J 21:857–864

    Article  CAS  PubMed  Google Scholar 

  • Farrar GJ, Kenna P, Jordan SA et al (1991) A three-base-pair deletion in the peripherin-RDS gene in one form of retinitis pigmentosa. Nature 354:478–480

    Article  CAS  PubMed  Google Scholar 

  • Gorbatyuk M, Justilien V, Liu J et al (2007a) Preservation of photoreceptor morphology and function in P23H rats using an allele independent ribozyme. Exp Eye Res 84:44–52

    Article  CAS  PubMed  Google Scholar 

  • Gorbatyuk M, Justilien V, Liu J et al (2007b) Suppression of mouse rhodopsin expression in vivo by AAV mediated siRNA delivery. Vis Res 47:1202–1208

    Article  CAS  PubMed  Google Scholar 

  • Hauswirth WW, LaVail MM, Flannery JG et al (2000) Ribozyme gene therapy for autosomal dominant retinal disease. Clin Chem Lab Med 38:147–153

    Article  CAS  PubMed  Google Scholar 

  • Hauswirth WW, Lewin AS (2000) Ribozyme uses in retinal gene therapy. Prog Retin Eye Res 19:689–710

    Article  CAS  PubMed  Google Scholar 

  • Kajiwara K, Hahn LB, Mukai S et al (1991) Mutations in the human retinal degeneration slow gene in autosomal dominant retinitis pigmentosa. Nature 354:480–483

    Article  CAS  PubMed  Google Scholar 

  • Kedzierski W, Lloyd M, Birch DG et al (1997) Generation and analysis of transgenic mice expressing P216L-substituted rds/peripherin in rod photoreceptors. Invest Ophthalmol Vis Sci 38:498–509

    CAS  PubMed  Google Scholar 

  • Konstan MW, Davis PB, Wagener JS et al (2004) Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Hum Gene Ther 15:1255–1269

    Article  CAS  PubMed  Google Scholar 

  • LaVail MM, Yasumura D, Matthes MT et al (1998) Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest Ophthalmol Vis Sci 39:592–602

    CAS  PubMed  Google Scholar 

  • LaVail MM, Yasumura D, Matthes MT et al (2000) Ribozyme rescue of photoreceptor cells in P23H transgenic rats: long-term survival and late-stage therapy. Proc Natl Acad Sci U S A 97:11488–11493

    Article  CAS  PubMed  Google Scholar 

  • Liang FQ, Aleman TS, Dejneka NS et al (2001) Long-term protection of retinal structure but not function using RAAV.CNTF in animal models of retinitis pigmentosa. Mol Ther 4:461–472

    Article  CAS  PubMed  Google Scholar 

  • Maguire AM, Simonelli F, Pierce EA et al (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358:2240–2248

    Article  CAS  PubMed  Google Scholar 

  • Molday RS, Hicks D, Molday L (1987) Peripherin. A rim-specific membrane protein of rod outer segment discs. Invest Ophthalmol Vis Sci 28:50–61

    CAS  PubMed  Google Scholar 

  • Mueller C, Flotte TR (2008) Clinical gene therapy using recombinant adeno-associated virus vectors. Gene Ther 15:858–863

    Article  CAS  PubMed  Google Scholar 

  • Nour M, Ding XQ, Stricker H et al (2004) Modulating expression of peripherin/rds in transgenic mice: critical levels and the effect of overexpression. Invest Ophthalmol Vis Sci 45:2514–2521

    Article  PubMed  Google Scholar 

  • Nour M, Fliesler SJ, Naash MI (2008) Genetic supplementation of RDS alleviates a loss-of-function phenotype in C214S model of retinitis pigmentosa. Adv Exp Med Biol 613:129–138

    Article  CAS  PubMed  Google Scholar 

  • Nystuen AM, Sachs AJ, Yuan Y et al (2008) A novel mutation in Prph2, a gene regulated by Nr2e3, causes retinal degeneration and outer-segment defects similar to Nr2e3 (rd7/rd7) retinas. Mamm Genome 9:623–633

    Article  Google Scholar 

  • O’Reilly M, Palfi A, Chadderton N et al (2007) RNA interference-mediated suppression and replacement of human rhodopsin in vivo. Am J Hum Genet 81:127–135

    Article  PubMed  Google Scholar 

  • Rhee KD, Ruiz A, Duncan JL et al (2007) Molecular and cellular alterations induced by sustained expression of ciliary neurotrophic factor in a mouse model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 48:1389–1400

    Article  PubMed  Google Scholar 

  • Sarra GM, Stephens C, de Alwis M et al (2001) Gene replacement therapy in the retinal degeneration slow (rds) mouse: the effect on retinal degeneration following partial transduction of the retina. Hum Mol Genet 10:2353–2361

    Article  CAS  PubMed  Google Scholar 

  • Schlichtenbrede FC, MacNeil A, Bainbridge JW et al (2003) Intraocular gene delivery of ciliary neurotrophic factor results in significant loss of retinal function in normal mice and in the Prph2Rd2/Rd2 model of retinal degeneration. Gene Ther 10:523–527

    Article  CAS  PubMed  Google Scholar 

  • Schlichtenbrede FC, da Cruz L, Stephens C et al (2003) Long-term evaluation of retinal function in Prph2Rd2/Rd2 mice following AAV-mediated gene replacement therapy. J Gene Med 5:757–764

    Article  CAS  PubMed  Google Scholar 

  • Stricker HM, Ding XQ, Quiambao A et al (2005) The Cys214–>Ser mutation in peripherin/rds causes a loss-of-function phenotype in transgenic mice. Biochem J 388:605–613

    Article  CAS  PubMed  Google Scholar 

  • van Nie R, Ivanyi D, Demant P (1978) A new H-2-linked mutation, rds, causing retinal degeneration in the mouse. Tissue Antigens 12:106–108

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muna I. Naash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cai, X., Conley, S.M., Naash, M.I. (2010). Gene Therapy in the Retinal Degeneration Slow Model of Retinitis Pigmentosa. In: Anderson, R., Hollyfield, J., LaVail, M. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 664. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1399-9_70

Download citation

Publish with us

Policies and ethics