Skip to main content

Photoreceptor Cell Degeneration in Abcr –/– Mice

  • Chapter
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 664))

Abstract

Mice harboring a null mutation in Abca4/Abcr serve as a model of autosomal recessive Stargardt disease. Consistent with the human retinal disorder, deficiency in Abcr is associated with substantial accumulations of lipofuscin pigments in retinal pigment epithelial (RPE) cells. To observe for photoreceptor cell degeneration in these mutant mice, outer nuclear layer (ONL) thickness was measured at 200 μm intervals superior and inferior to the optic nerve head. ONL width in Abcr –/– mouse was reduced at 8–9 month and 11 and 13 months relative to Abcr +/+ mice; thinning was more pronounced centrally and in superior retina. The numbers of photoreceptor nuclei spanning the width of the outer nuclear layer were also reduced. No evidence of age-related ONL thinning was observed in Abcr +/+ mice at these ages. We conclude that albino Abcr –/– mice exhibit progressive photoreceptor cell loss that is detectable at 8 months of age and that has worsened by 11 and 13 months of age. The measurement of ONL thickness is an established approach to assessing photoreceptor cell integrity and can be used in preclinical studies using Abcr –/– mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bravo-Nuevo A, Walsh N, Stone J (2004) Photoreceptor degeneration and loss of retinal function in the C57BL/6-C2J mouse. Invest Ophthalmol Vis Sci 45:2005–2012

    Article  PubMed  Google Scholar 

  • Chang B (2008) Age-related eye disease. In: Chalupa LM, Williams RW (eds), Eye, retina and visual system of the mouse, The MIT Press, Cambridge, MA, pp 581–590

    Google Scholar 

  • Danciger M, Lyon J, Worrill D et al (2003) A strong and highly significant QTL on chromosome 6 that protects the mouse from age-related retinal degeneration. Invest Ophthalmol Vis Sci 44(6):2442–2449

    Article  PubMed  Google Scholar 

  • Gresh J, Goletz PW, Crouch RK et al (2003) Structure-function analysis of rods and cones in juvenile, adult, and aged C57BL/6 and Balb/c mice. Vis Neurosci 20:211–220

    Article  PubMed  Google Scholar 

  • Kim SR, Fishkin N, Kong J et al (2004) The Rpe65 Leu450Met variant is associated with reduced levels of the RPE lipofuscin fluorophores A2E and iso-A2E. Proc Natl Acad Sci U S A 101(32):11668–11672

    Article  CAS  PubMed  Google Scholar 

  • Kim SR, Jang YP, Jockusch S et al (2007) The all-trans-retinal dimer series of lipofuscin pigments in retinal pigment epithelial cells in a recessive Stargardt disease model. Proc Natl Acad Sci U S A 104:19273–19278

    Article  CAS  PubMed  Google Scholar 

  • Klevering BJ, Maugeri A, Wagner A et al (2004) Three families displayinng the combination of Stargardt’s disease with cone-rod dystrophy or retinitis pigmentosa. Ophthalmology 111:546–553

    Article  PubMed  Google Scholar 

  • Kong J, Kim SR, Binley K et al (2008) Correction of the disease phenotype in the mouse model of Stargardt disease by lentiviral gene therapy. Gene Ther 15:1311–1320

    Article  CAS  PubMed  Google Scholar 

  • Kurth I, Thompson DA, Rüther K et al (2007) Targeted disruption of the murine retinal dehydrogenase gene Rdh12 does not limit visual cycle function. Mol Cell Biol 27:1370–1379

    Article  CAS  PubMed  Google Scholar 

  • LaVail MM, Gorrin GM, Repaci MA et al (1987) Genetic regulation of light damage to photoreceptors. Invest Ophthalmol Vis Sci 28:1043–1048

    CAS  PubMed  Google Scholar 

  • Li C, Cheng M, Yang H et al (2001) Age-related changes in the mouse outer retina. Optom Vis Sci 78:425–430

    Article  CAS  PubMed  Google Scholar 

  • Maeda A, Maeda T, Golczak M et al (2008) Retinopathy in mice induced by disrupted all-trans-retinal clearance. J Biol Chem 283:26684–26693

    Article  CAS  PubMed  Google Scholar 

  • Maiti P, Kong J, Kim SR et al (2006) Small molecule RPE65 antagonists limit the visual cycle and prevent lipofuscin formation. Biochem 45:852–860

    Article  CAS  Google Scholar 

  • Mata NL, Tzekov RT, Liu X et al (2001) Delayed dark adaptation and lipofuscin accumulation in Abcr +/– mice: implications for involvement of ABCR in age-related macular degeneration. Invest Ophthalmol Vis Sci 42:1685–1690

    CAS  PubMed  Google Scholar 

  • Maugeri A, Klevering BJ, Rohrschneider K et al (2000) Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy. Am J Hum Genet 67(4):960–966

    Article  CAS  PubMed  Google Scholar 

  • Michon JJ, Li ZL, Shioura N et al (1991) A comparative study of methods of photoreceptor morphometry. Invest Ophthalmol Vis Sci 32:280–284

    CAS  PubMed  Google Scholar 

  • Mittag TW, Bayer AU, LaVail MM (1999) Light-induced retinal damage in mice carrying a mutated SOD I gene. Exp Eye Res 69:677–683

    Article  CAS  PubMed  Google Scholar 

  • Naash MI, Hollyfield JG, Al-Ubaidi MR et al (1993) Simulation of human autosomal dominant retinitis pigmentosa in transgenic mice expressing a mutated murine opsin gene. Proc Natl Acad Sci U S A 90:5499–5503

    Article  CAS  PubMed  Google Scholar 

  • Pang JJ, Chang B, Hawes NL et al (2005) Retinal degeneration 12 (rd12): a new, spontaneously arising mouse model for human Leber congenital amaurosis (LCA). Mol Vis 11:152–162

    CAS  PubMed  Google Scholar 

  • Radu RA, Han Y, Bui TV et al (2005) Reductions in serum vitamin A arrest accumulation of toxic retinal fluorophores: a potential therapy for treatment of lipofuscin-based retinal diseases. Invest Ophthalmol Vis Sci 46:4393–4401

    Article  PubMed  Google Scholar 

  • Radu RA, Mata NL, Nusinowitz S et al (2003) Treatment with isotretinoin inhibits lipofuscin and A2E accumulation in a mouse model of recessive Stargardt’s macular degeneration. Proc Natl Acad Sci U S A 100(8):4742–4747

    Article  CAS  PubMed  Google Scholar 

  • Radu RA, Yuan Q, Hu J et al (2008) Accelerated accumulation of lipofuscin pigments in the RPE of a mouse model for ABCA4-mediated retinal dystrophies following vitamin A supplementation. Invest Ophthalmol Vis Sci 49:3821–3829

    Article  PubMed  Google Scholar 

  • Redmond TM, Yu S, Lee E et al (1998) Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat Genet 20:344–351

    Article  CAS  PubMed  Google Scholar 

  • Shroyer NF, Lewis RA, Yatsenko AN et al (2001) Null missense ABCR (ABCA4) mutations in a family with Stargardt disease and retinitis pigmentosa. Invest Ophthalmol Vis Sci 42:2757–2761

    CAS  PubMed  Google Scholar 

  • Sun H, Molday RS, Nathans J (1999) Retinal stimulates ATP hydrolysis by purified and reconstituted ABCR, the photoreceptor-specific ATP-binding cassette transporter responsible for Stargardt disease. J Biol Chem 274(12):8269–8281

    Article  CAS  PubMed  Google Scholar 

  • Tanito M, Elliot MH, Kotake Y et al (2005) Protein modifications by 4-hydroxynonenal and 4-hydroxyhexenal in light-exposed rat retina. Invest Ophthalmol Vis Sci 46:3859–3868

    Article  PubMed  Google Scholar 

  • Weng J, Mata NL, Azarian SM et al (1999) Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in Abcr knockout mice. Cell 98(1):13–23

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health Grant EY12951 (to JRS), a gift from Dr. Gertrude Neumark Rothschild and a grant from Research to Prevent Blindness to the Department of Ophthalmology. JRS is the recipient of a Research to Prevent Blindness Senior Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet R. Sparrow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wu, L., Nagasaki, T., Sparrow, J.R. (2010). Photoreceptor Cell Degeneration in Abcr –/– Mice. In: Anderson, R., Hollyfield, J., LaVail, M. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 664. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1399-9_61

Download citation

Publish with us

Policies and ethics