Skip to main content

Targeted High-Throughput DNA Sequencing for Gene Discovery in Retinitis Pigmentosa

  • Chapter
  • First Online:
Retinal Degenerative Diseases

Abstract

The causes of retinitis pigmentosa (RP) are highly heterogeneous, with mutations in more than 60 genes known to cause syndromic and non-syndromic forms of disease. The prevalence of detectable mutations in known genes ranges from 25 to 85%, depending on mode of inheritance. For example, the likelihood of detecting a disease-causing mutation in known genes in patients with autosomal dominant RP (adRP) is 60% in Americans and less in other populations. Thus many RP genes are still unknown or mutations lie outside of commonly tested regions. Furthermore, current screening strategies can be costly and time-consuming.

We are developing targeted high-throughput DNA sequencing to address these problems. In this approach, a microarray with oligonucleotides targeted to hundreds of genes is used to capture sheared human DNA, and the sequence of the eluted DNA is determined by ultra-high-throughput sequencing using next-generation DNA sequencing technology. The first capture array we have designed contains 62 full-length retinal disease genes, including introns and promoter regions, and an additional 531 genes limited to exons and flanking sequences. The full-length genes include all genes known to cause at least 1% of RP or other inherited retinal diseases. All of the genes listed in the RetNet database are included on the capture array as well as many additional retinal-expressed genes. After validation studies, the first DNA’s tested will be from 89 unrelated adRP families in which the prevalent RP genes have been excluded. This approach should identify new RP genes and will substantially reduce the cost per patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert TJ, Molla MN, Muzny DM et al (2007) Direct selection of human genomic loci by microarray hybridization. Nat Methods 4:903–905

    Article  CAS  PubMed  Google Scholar 

  • Bajic VB, Seah SH, Chong A et al (2002) Dragon promoter finder: recognition of vertebrate RNA polymerase II promoters. Bioinformatics 18:198–199

    Article  CAS  PubMed  Google Scholar 

  • BioGRI D (2008) A general repository for interaction datastes, http://www.thebiogrid.org/. Accessed December 1

  • Bowes Rickman C, Ebright JN, Zavodni ZJ et al (2006) Defining the human macula transcriptome and candidate retinal disease genes using EyeSAGE. Invest Ophthalmol Vis Sci 47:2305–2316

    Article  PubMed  Google Scholar 

  • Bowne SJ, Sullivan LS, Gire AI et al (2008) Mutations in the TOPORS gene cause 1% of autosomal dominant retinitis pigmentosa (adRP. Mol Vis 14:922–927

    PubMed  Google Scholar 

  • Daiger SP, Bowne SJ, Sullivan LS (2007) Perspective on genes and mutations causing retinitis pigmentosa. Arch Ophthalmol 125:151–158

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Getz G, Wheeler DA et al (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455:1069–1075

    Article  CAS  PubMed  Google Scholar 

  • Entrez G (2008) NCBI Entrez Gene database, http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene. Accessed December 1

  • Gire AI, Sullivan LS, Bowne SJ et al (2007) The Gly56Arg mutation in NR2E3 accounts for 1–2% of autosomal dominant retinitis pigmentosa. Mol Vis 13:1970–1975

    CAS  PubMed  Google Scholar 

  • Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185:862–864

    Article  CAS  PubMed  Google Scholar 

  • Human Protein Reference Database (2008) HPRD, http://www.hprd.org/. Accessed December 1

  • Liu Q, Tan G, Levenkova N et al (2007) The proteome of the mouse photoreceptor sensory cilium complex. Mol Cell Proteomics 6:1299–1317

    Article  CAS  PubMed  Google Scholar 

  • NEIBank (2008) NEI database of eye tissue ESTs, http://neibank.nei.nih.gov/. Accessed December 1

  • Ng PC, Henikoff S (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814

    Google Scholar 

  • RetNet (2009) The Retinal Information Network, http://www.sph.uth.tmc.edu/RetNet/. Stephen P. Daiger, PhD, Administrator, The Univ. of Texas Health Science Center at Houston. Accessed December 1

  • Scherf M, Klingenhoff A, Frech K et al (2001) First pass annotation of promoters on human chromosome 22. Genome Res 11:333–340

    Article  CAS  PubMed  Google Scholar 

  • Stone EM (2007) Leber congenital amaurosis – a model for efficient genetic testing of heterogeneous disorders: LXIV Edward Jackson Memorial Lecture. Am J Ophthalmol 144:791–811

    Article  CAS  PubMed  Google Scholar 

  • Sullivan LS, Bowne SJ, Birch DG et al (2006) Prevalence of disease-causing mutations in families with autosomal dominant retinitis pigmentosa (adRP): a screen of known genes in 200 families. Invest Ophthalmol Vis Sci 47:3052–3064

    Article  PubMed  Google Scholar 

  • Sullivan LS, Bowne SJ, Seaman CR et al (2006a) Genomic rearrangements of the PRPF31 gene account for 2.5% of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 47:4579–4588

    Article  PubMed  Google Scholar 

  • 19. Sullivan LS, Bowne SJ, Shankar SP et al (2005) Linkage mapping in families with autosomal dominant retinitis pigmentosa (adRP). Invest Ophthalmol Vis Sci 46 E-Abstract 2293

    Google Scholar 

  • UniGene (2008) NCBI UniGene database, http://www.ncbi.nlm.nih.gov/sites/entrez?db=unigene. Accessed December 1

  • Wang M, Marin A (2006) Characterization and prediction of alternative splice sites. Gene 366:219–227

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. Daiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Daiger, S.P. et al. (2010). Targeted High-Throughput DNA Sequencing for Gene Discovery in Retinitis Pigmentosa. In: Anderson, R., Hollyfield, J., LaVail, M. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 664. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1399-9_37

Download citation

Publish with us

Policies and ethics