Skip to main content

Bacterial Polysaccharide Vaccines

  • Chapter
  • First Online:
History of Vaccine Development

Abstract

Capsulated bacteria, Gram-positive or Gram-negative, cause a variety of infections in man. Prominent among them are streptococci of Lancefield’s groups A, B, and C, staphylococci, meningococci, Haemophilus influenzae type b, klebsiellas, Escherichia coli, and Salmonella typhi, to name but some. Since the description of the capsule as an attribute of bacteria more than a century ago, increasing knowledge of its structure and role in interactions of these organisms with their environment has enabled development of vaccines to enhance defenses of their hosts against infection and their likelihood of recovery when it occurs. Since much what has been learned has been derived from studies of the pneumococcus, emphasis in what follows will focus upon Streptococcus pneumoniae, additional references ­pertinent to other specific vaccines are cited where relevant.

Deceased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pasteur L, Chamberland, Roux MM. Sur une maladie nouvelle, provoquée par la salive d’un enfant mort de la rage. C R Acad Sci 1881;92:159–65

    Google Scholar 

  2. Sternberg GM. A fatal form of septicaemia in the rabbit, produced by the subcutaneous injection of human saliva. Studies Biol Lab Johns Hopkins Univ 1882;2:183–200

    Google Scholar 

  3. Friedlander C. Die Mikrokokken der Pneumonie. Fortsch Medicin 1883;1:715–33

    Google Scholar 

  4. Bernheimer AW. Synthesis of Type III pneumococcal polysaccharide by suspensions of resting cells. J Exp Med 1953;97:591–600

    Article  PubMed  CAS  Google Scholar 

  5. Bornstein DL, Schiffman G, Bernheimer HP, Austrian R. Capsulation of pneumococcus with soluble C-like (Cs) polysaccharide. I. Biological and genetic properties of Cs pneumococcal strains. J Exp Med 1968;128:1385–1400

    Google Scholar 

  6. Van Dam JEG, Fleer A, Snippe H. Immunogenicity and immunochemistry of Streptococcus pneumoniae capsular polysaccharides. Antonie van Leeuwenhoek 1990;58:1–47

    Article  PubMed  Google Scholar 

  7. Jennings HJ. Capsular polysaccharides as vaccine candidates. Curr Top Microbiol Immunol 1990;150:97–127

    PubMed  CAS  Google Scholar 

  8. White B. The Biology of Pneumococcus. New York, NY. The Commonwealth Fund, 1938: 2nd Printing, Harvard University Press, 1979

    Google Scholar 

  9. Neufeld F, Haendel L. Weitere Untersuchungen über Pneumokokken-Heilsera. III. Mitteilung. Über Vorkommen und Bedeutung atypischer Varietäten des Pneumokokkus. Arb Kais Gesund 1910;34:293–304

    Google Scholar 

  10. Dochez AR, Avery OT. The elaboration of specific soluble substance by pneumococcus during growth. J Exp Med 1917;26:477–93

    Article  PubMed  CAS  Google Scholar 

  11. Heidelberger M, Avery OT. The soluble specific substance of pneumococcus. J Exp Med 1923;38:73–9

    Article  PubMed  CAS  Google Scholar 

  12. Avery OT, Heidelberger M. Immunological relationships of cell constituents of pneumococcus. Second paper. J Exp Med 1925;42:367–76

    Google Scholar 

  13. Knecht JC, Schiffman G, Austrian R. Some biological properties of pneumococcus type 37 and the chemistry of its capsular polysaccharide. J Exp Med 1970;132:475–87

    Article  PubMed  CAS  Google Scholar 

  14. MacLeod CM, Krauss MR. Relation of virulence of pneumococcal strains for mice to the quantity of capsular polysaccharide formed in vitro. J Exp Med 1950;92:1–9

    Article  PubMed  CAS  Google Scholar 

  15. Austrian R. Some aspects of the pneumococcal carrier state. J Antimicrob Chemother 1986; 18 (suppl A):35–45

    Google Scholar 

  16. Gwaltney JM, Sande MA, Austrian R, Hendley JO. Spread of Streptococcus pneumoniae in families. II. Relation of transfer of S pneumoniae to incidence of colds and serum antibody. J Infect Dis 1975;132:62–8

    Google Scholar 

  17. Sternberg GM. Induced septicemia in the rabbit. Am J Med Sci 1882;84:69–76

    Article  Google Scholar 

  18. Wright AE, Parry Morgan W, Colebrook L, Dodgson RW. Observations on prophylactic inoculation against pneumococcus infections and on the results which have been achieved by it. Lancet 1914;1:1–10, 87–95

    Google Scholar 

  19. Maynard GD. Memorandum on Rand Mines pneumococcic vaccine experiment. Med J S Afr 1913;9:91–5

    Google Scholar 

  20. Lister FS. An experimental study of prophylactic inoculation against pneumococcal infection in the rabbit and in man. Pub S Afr Inst Med Res 1916;8:231–87

    Google Scholar 

  21. Heidelberger M, MacLeod CM, Kaiser SJ, Robinson B. Antibody formation in volunteers ­following injection of pneumococci or their type-specific polysaccharides. J Exp Med 1946;83:303–20

    Article  CAS  Google Scholar 

  22. MacLeod CM, Hodges RG, Heidelberger M, Bernhard WG. Prevention of pneumococcal pneumonia by immunization with specific capsular polysaccharides. J Exp Med 1945;82:445–65

    Article  Google Scholar 

  23. Artenstein MS, Gold R, Zimmerly JG, Wyle FA, Schneider H, Harkins C. Prevention of meningococcal disease by Group C polysaccharide. N Engl J Med 1970;282:417–20

    Article  PubMed  CAS  Google Scholar 

  24. Schiemann 0, Casper W. Sind die spezifisch präcipitablen Substanzen der 3 Pneumokokkentypen Haptene? Zeitschr Hyg Infektionskr 1927;108:220–57

    Google Scholar 

  25. Francis T Jr, Tillett WS. Cutaneous reactions in pneumonia. The development of antibodies following the intradermal injection of type-specific polysaccharide. J Exp Med 1930;52:573–85

    Google Scholar 

  26. Ekwurzel GM, Simmons JS, Dublin LI, Felton LD. Studies on immunizing substances in pneumococci. Public Health Rep 1938;53:1877–93

    CAS  Google Scholar 

  27. Austrian R, Gold J. Pneumococcal bacteremia with especial reference to bacteremic pneumococcal pneumonia. Ann Intern Med 1964;60:759–76

    PubMed  CAS  Google Scholar 

  28. Finland M, Barnes MW. Changes in occurrence of capsular serotypes of Streptococcus ­pneumoniae at Boston City Hospital during selected years between 1935 and 1974. J Clin Microbiol 1977;5:154–66

    PubMed  CAS  Google Scholar 

  29. Austrian R. Some observations on the pneumococcus and on the current status of pneumococcal disease and its prevention. Rev Infect Dis 1981;3 (suppl): S1–S17

    Article  PubMed  Google Scholar 

  30. Frisch AW, Tripp JT, Barrett CD, Pidgeon BE. The specific polysaccharide content of pneumonic lungs. J Exp Med 1942;76:505–10

    Article  PubMed  CAS  Google Scholar 

  31. Austrian R, Douglas RM, Schiffman G et al. Prevention of pneumococcal pneumonia by vaccination. Trans Assoc Am Phys 1976;89:184–92

    PubMed  CAS  Google Scholar 

  32. Smit P, Oberholtzer D, Hayden-Smith S, Koornhof HJ, Hilleman HR. Protective efficacy of pneumococcal polysaccharide vaccines. JAMA 1977;238:2613–6

    Article  PubMed  CAS  Google Scholar 

  33. Simberkoff MS, Cross AP, Al-Ibrahim M et al. Efficacy of pneumococcal vaccine in high-risk patients. Results of a Veterans Administration cooperative study. N Engl J Med 1986;315:1318–27

    Google Scholar 

  34. Shapiro ED. Correspondence. Pneumococcal vaccine failure. N Engl J Med 1987;316:272–3

    Google Scholar 

  35. Clemens JD, Shapiro ED. Resolving the pneumococcal vaccine controversy: are there alternatives to randomized clinical trials? Rev Infect Dis 1984;6:589–600

    Article  PubMed  CAS  Google Scholar 

  36. Broome CV, Facklam RR, Fraser DW. Pneumococcal disease after pneumococcal vaccination. An alternative method to estimate the efficacy of pneumococcal vaccine. N Engl J Med 1980;303:549–52

    Google Scholar 

  37. Shapiro ED, Clemens JD. A controlled evaluation of the protective efficacy of pneumococcal vaccine for patients at high risk of serious pneumococcal infections. Ann Intern Med 1984;101:325–30

    PubMed  CAS  Google Scholar 

  38. Sims RV, Steinman WC, McConville JH, King LR, Zwick WC, Schwartz JS. The clinical effectiveness of pneumococcal vaccine in the elderly. Ann Intern Med 1988;108:653–7

    PubMed  CAS  Google Scholar 

  39. Shapiro ED, Berg AT, Austrian R et al. The protective efficacy of polyvalent pneumococcal polysaccharide vaccine. N Engl J Med 1991;325:1453–60

    Article  PubMed  CAS  Google Scholar 

  40. Bolan G, Broome CV, Facklam RR, Plikaytis BD, Fraser DW, Schlech WF III. Pneumococcal vaccine efficacy in selected populations in the United States. Ann Intern Med 1986;104:1–6

    PubMed  CAS  Google Scholar 

  41. Erwa HH, Haseeb MA, Idris AA, Lapeyssonie L, Sanborn WR, Sippel JE. A serogroup A meningococcal vaccine. Studies in the Sudan to combat meningococcal meningitis caused by Neisseria meningitidis group A. Bull WHO 1973;49:301–5

    Google Scholar 

  42. Kaplan MH, Coons AH, Deane HW. Localization of antigen in tissue cells. III. Cellular distribution of pneumococcal polysaccharides Type II and III in the mouse. J Exp Med 1950;91:15–30

    Google Scholar 

  43. Felton LD. The significance of antigen in animal tissues J Immunol 1949;61:107–17

    Google Scholar 

  44. Heidelberger M, DiLapi MM, Siegel M, Walter AW. Persistence of antibodies in human subjects injected with pneumococcal polysaccharides. J Immunol 1950;65:535–41

    PubMed  CAS  Google Scholar 

  45. AustrianR. Confronting drug-resistant pneumococci. Ann Intern Med 1994;121:807–9

    Google Scholar 

  46. Davies JAV. The response of infants to inoculation with Type 1 pneumococcus carbohydrate. J Immunol 1937;33:1–7

    Google Scholar 

  47. Hodes HL, Ziegler JF, Zepp HD. Development of antibody following vaccination of infants and children against pneumococci. J Pediatr 1944;24:641–9

    Article  Google Scholar 

  48. Douglas RM, Hansman D, Miles HB, Paton JC. Pneumococcal carriage and type-specific antibody. Failure of a 14-valent vaccine to reduce carriage in healthy children. Am J Dis Child 1986;140:1183–5

    Google Scholar 

  49. Mäkelä PH, Leinonen M, Pukander J, Karma P. A study of pneumococcal vaccine in prevention of clinically acute attacks of recurrent otitis media. Rev Infect Dis 1981;(Suppl):3:S124–30

    Google Scholar 

  50. Devi SJN, Robbins JB, Schneerson R. Antibodies to poly [(2→8)-α-N-acetylneuraminic acid] and poly [(2→9)α-N-acetylmuraminic acid] are elicited by immunization of mice with Escherichia coli K92 conjugates: potential vaccines for groups B and C meningococci and E coli K1. Proc Natl Acad Sci USA 1991;88:7175–9

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Austrian, R. (2011). Bacterial Polysaccharide Vaccines. In: Plotkin, S. (eds) History of Vaccine Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1339-5_11

Download citation

Publish with us

Policies and ethics