Skip to main content

Bioinformatics of Microbial Sequences

  • Chapter
  • First Online:
Infectious Disease Informatics

Abstract

The pioneering work of Carl Woese demonstrated that comparison of biological sequences is the key to inferring evolutionary relationships and population structures in the microbial biosphere. These studies clearly showed that the great majority of the biodiversity on this planet is microbial. Since the determination of the first bacterial genome sequence in 1995, the genomics revolution has added great detail to the understanding of bacterial evolution and gene flow. One issue that is subject to on-going research and debate is whether lateral gene transfer has an effect on population structures, and whether evolutionary relationships between bacteria may be best regarded as a tree or a network. Recent efforts to sequence genomes from multiple strains within individual bacterial species have revealed that in general any given bacterial clone contains only a subset of the gene content of the species. A typical bacterial genome is composed of a core set of genes that are shared by all strains in the species, and accessory genes that are mobile, and often confer clinically significant properties. The immense and rapidly expanding quantity of genome sequence information has made it possible for DNA-based diagnostic and typing methods to be designed with precisely understood performances in relation to the population structure of the species or the likely gene content of an analytical sample.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6(6):431–440

    CAS  PubMed  Google Scholar 

  • Agius P, Kreiswirth B et al (2007) Typing Staphylococcus aureus using the spaspa gene and novel distance measures. IEEE/ACM Trans Comput Biol Bioinform 4(4):693–704

    Article  CAS  PubMed  Google Scholar 

  • Bisharat N, Crook DW et al (2004) Hyperinvasive neonatal group B streptococcus has arisen from a bovine ancestor. J Clin Microbiol 42(5):2161–2167

    Article  PubMed  Google Scholar 

  • Bishop EJ, Shilton C et al (2007) Necrotizing fasciitis in captive juvenile Crocodylus porosus caused by Streptococcus agalactiae: an outbreak and review of the animal and human literature. Epidemiol Infect 135(8):1248–1255.

    Article  CAS  PubMed  Google Scholar 

  • Bohnsack JF, Whiting A et al (2008) Population structure of invasive and colonizing strains of Streptococcus agalactiae from neonates of six U.S. Academic Centers from 1995 to 1999. J Clin Microbiol 46(4):1285–1291.

    Article  PubMed  Google Scholar 

  • Brocchieri L (2001) Phylogenetic inferences from molecular sequences: review and critique. Theor Popul Biol 59(1):27–40.

    Article  CAS  PubMed  Google Scholar 

  • Cairns J (1963) The bacterial chromosome and its manner of replication as seen by autoradiography. J Mol Biol 6:208–213.

    Article  CAS  PubMed  Google Scholar 

  • Crick FH (1962) The genetic code. Sci Am 207:6–74

    Article  Google Scholar 

  • Deurenberg RH, Stobberingh EE (2008) The evolution of Staphylococcus aureus. Infect Genet Evol 8(6):747–763

    Article  CAS  PubMed  Google Scholar 

  • Deurenberg RH, Vink C et al (2007) The molecular evolution of methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 13(3):222–235

    Article  CAS  PubMed  Google Scholar 

  • Didelot X, Darling A et al (2009) Inferring genomic flux in bacteria. Genome Res 19(2):306–317

    Article  CAS  PubMed  Google Scholar 

  • Didelot X, Falush D (2007) Inference of bacterial microevolution using multilocus sequence data. Genetics 175(3) 1251–1266

    Article  CAS  PubMed  Google Scholar 

  • Diep BA, Palazzolo-Ballance AM et al (2008) Contribution of Panton-Valentine leukocidin in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. PLoS One 3(9):e3198

    Article  PubMed  Google Scholar 

  • Dingle KE, Colles FM et al (2005a) Sequence typing and comparison of population biology of Campylobacter coli and Campylobacter jejuni. J Clin Microbiol 43(1):340–347

    Article  CAS  PubMed  Google Scholar 

  • Dingle KE, Colles FM et al (2001b) Multilocus sequence typing system for Campylobacter jejuni. J Clin Microbiol 39(1):14–23

    Article  CAS  PubMed  Google Scholar 

  • Dingle KE, Van Den Braak N et al (2001) Sequence typing confirms that Campylobacter jejuni strains associated with Guillain-Barre and Miller-Fisher syndromes are of diverse genetic lineage, serotype, and flagella type. J Clin Microbiol 39(9):3346–3349

    Article  CAS  PubMed  Google Scholar 

  • Enright MC, Day NP et al (2000) Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38(3):1008–1015

    CAS  PubMed  Google Scholar 

  • Enright MC, Spratt BG et al (2001) Multilocus sequence typing of Streptococcus pyogenes and the relationships between emm type and clone. Infect Immun 69(4):2416–2427

    Article  CAS  PubMed  Google Scholar 

  • Fearnhead P, Smith NG et al (2005) Analysis of recombination in Campylobacter jejuni from MLST population data. J Mol Evol 61(3):333–340

    Article  CAS  PubMed  Google Scholar 

  • Feil EJ, Cooper JE et al (2003) How clonalclonal is Staphylococcus aureus? J Bacteriol 185(11):3307–3316

    Article  CAS  PubMed  Google Scholar 

  • Feil EJ, Enright MC et al (2000a) Estimating the relative contributions of mutation and recombination to clonalclonal diversification: a comparison between Neisseria meningitidis and Streptococcus pneumoniae. Res Microbiol 151(6):465–469

    Article  CAS  PubMed  Google Scholar 

  • Feil EJ, Holmes EC et al (2001) Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. Proc Natl Acad Sci USA 98(1):182–187

    Article  CAS  PubMed  Google Scholar 

  • Feil EJ, Li BC et al (2004) eBURSTeBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186(5):1518–1530

    Article  CAS  PubMed  Google Scholar 

  • Feil EJ, Smith JM et al (2000b) Estimating recombinational parameters in Streptococcus pneumoniae from multilocus sequence typing data. Genetics 154(4):1439–1450

    CAS  PubMed  Google Scholar 

  • Fleischmann RD, Adams MD et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269(5223):496–512

    Article  CAS  PubMed  Google Scholar 

  • Fraser C, Alm EJ et al (2009) The bacterial species challenge: making sense of genetic and ecological diversity. Science 323(5915):741–746

    Article  CAS  PubMed  Google Scholar 

  • Fraser C, Hanage WP et al (2007) Recombination and the nature of bacterial speciation. Science 315(5811):476–480

    Article  CAS  PubMed  Google Scholar 

  • French NP, Midwinter A et al (2009) Molecular epidemiology of Campylobacter jejuni isolates from wild-bird fecal material in children’s playgrounds. Appl Environ Microbiol 75(3):779–783

    Article  CAS  PubMed  Google Scholar 

  • Ghosh R, Nair GB et al (2008) Epidemiological study of Vibrio cholerae using variable number of tandem repeats. FEMS Microbiol Lett 288(2):196–201

    Article  CAS  PubMed  Google Scholar 

  • Gillet Y, Issartel B et al (2002) Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet 359(9308):753–759

    Article  CAS  PubMed  Google Scholar 

  • Grissa I, Bouchon P et al (2008) On-line resources for bacterial micro-evolution studies using MLVAMLVA or CRISPR typing. Biochimie 90(4):660–668

    Article  CAS  PubMed  Google Scholar 

  • Hanage WP, Fraser C et al (2006) Sequences, sequence clusters and bacterial species. Philos Trans R Soc Lond B Biol Sci 361(1475):1917–1927

    Article  PubMed  Google Scholar 

  • Haubold B, Hudson RR (2000) LIAN 3.0: detecting linkage disequilibrium in multilocus data. Linkage Anal Bioinform 16(9):84784–84788

    Google Scholar 

  • Hery-Arnaud G, Bruant G et al (2007) Mobile genetic elements provide evidence for a bovine origin of clonalclonal complex 17 of Streptococcus agalactiae. Appl Environ Microbiol 73(14):4668–4672

    Article  CAS  PubMed  Google Scholar 

  • Holder M, Lewis PO (2003) Phylogeny estimation: traditional and BayesianBayesian approaches. Nat Rev Genet 4(4):275–284

    Article  CAS  PubMed  Google Scholar 

  • Honsa E, Fricke T et al (2008) Assignment of Streptococcus agalactiae isolates to clonalclonal complexes using a small set of single nucleotide polymorphisms. BMC Microbiol 8:140

    Article  PubMed  Google Scholar 

  • Hugenholtz P, Goedel BM et al (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180(18):4765–4774

    CAS  PubMed  Google Scholar 

  • Huson DH (1998) SplitsTree: analyzing and visualizing evolutionary data. Bioinform 14(1):68–73

    Article  CAS  Google Scholar 

  • Huygens F, Inman-Bamber J et al (2006) Staphylococcus aureus genotyping using novel real-time PCR formats. J Clin Microbiol 44(10):3712–3719

    Article  CAS  PubMed  Google Scholar 

  • Jiang LW, Lin KL et al (2008) OGtreeOGtree: a tool for creating genome trees of prokaryotes based on overlapping genes. Nucleic Acids Res 36(Web Server issue):W475–W480

    Article  CAS  PubMed  Google Scholar 

  • Jones N, Bohnsack JF et al (2003) Multilocus sequence typing system for group B streptococcus. J Clin Microbiol 41(6):2530–2536

    Article  CAS  PubMed  Google Scholar 

  • Katayama Y, Ito T et al (2000) A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 44(6):1549–1555

    Article  CAS  PubMed  Google Scholar 

  • Keim P, Pearson T et al (2008) Microbial forensics: DNA fingerprinting of Bacillus anthracis (anthrax). Anal Chem 80(13):4791–4799

    Article  CAS  PubMed  Google Scholar 

  • Keim P, Van Ert MN et al (2004) Anthrax molecular epidemiology and forensics: using the appropriate marker for different evolutionary scales. Infect Genet Evol 4(3):205–213

    Article  CAS  PubMed  Google Scholar 

  • Kennedy AD, Otto M et al (2008) Epidemic community-associated methicillin-resistant Staphylo­coccus aureus: recent clonalclonal expansion and diversification. Proc Natl Acad Sci USA 105(4):1327–1332

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Cheon E et al (2005) Determination of the most closely related bacillus isolates to Bacillus anthracis by multilocus sequence typing. Yale J Biol Med 78(1):1–14

    CAS  PubMed  Google Scholar 

  • Kondo Y, Ito T et al (2007) Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob Agents Chemother 51(1):264–724

    Article  CAS  PubMed  Google Scholar 

  • Kong F, Gilbert GL (2006) Multiplex PCR-based reverse line blot hybridization assay (mPCR/RLB) - a practical epidemiological and diagnostic tool. Nat Protoc 1(6):2668–2680

    Article  CAS  PubMed  Google Scholar 

  • Kong F, Ma L et al (2005) Simultaneous detection and serotype identification of Streptococcus agalactiae using multiplex PCR and reverse line blot hybridization. J Med Microbiol 54(Pt 12):1133–1138

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV, Wolf YI (2008) Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 36(21):6688–6719

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Nei M et al (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9(4):299–306

    Article  CAS  PubMed  Google Scholar 

  • Labandeira-Rey M, Couzon F, et al (2007) Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia. Science 315(5815):1130–1133

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G et al (2007) Clustal W and Clustal X version 2.0. Bioinform 23(21):2947–2948

    Article  CAS  Google Scholar 

  • Lin FY, Whiting W et al (2006) Phylogenetic lineages of invasive and colonizing strains of serotype III group B Streptococci from neonates: a multicenter prospective study. J Clin Microbiol 44(4):1257–1261

    Article  CAS  PubMed  Google Scholar 

  • Lina, G., Durand G et al (2006) Staphylococcal chromosome cassette evolution in Staphylococcus aureus inferred from ccr gene complex sequence typing analysis. Clin Microbiol Infect 12(12):1175–1184

    Article  CAS  PubMed  Google Scholar 

  • Maiden MC, Bygraves JA et al (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95(6):3140–3145

    Article  CAS  PubMed  Google Scholar 

  • Mardis ER (2008) Next-generation DNA sequencing methods. Ann Rev Genomics Hum Genet 9:387–402

    Article  CAS  Google Scholar 

  • Margulies M, Egholm M et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380

    CAS  PubMed  Google Scholar 

  • Melles DC, Schouls L et al (2009) High-throughput typing of Staphylococcus aureus by amplified fragment length polymorphism (AFLPAFLP) or multi-locus variable number of tandem repeat analysis (MLVA) reveals consistent strain relatedness. Eur J Clin Microbiol Infect Dis 28(1):39–45

    Article  CAS  PubMed  Google Scholar 

  • Mellmann A, Weniger T et al (2008) Characterization of clonalclonal relatedness among the natural population of Staphylococcus aureus strains by using spaspa sequence typing and the BURPBURP (based upon repeat patterns) algorithm. J Clin Microbiol 46(8):2805–2808

    Article  PubMed  Google Scholar 

  • Mellmann A, Weniger T et al (2007) Based Upon Repeat Pattern (BURP): an algorithm to characterize the long-term evolution of Staphylococcus aureus populations based on spaspa polymorphisms. BMC Microbiol 7:98

    Article  PubMed  Google Scholar 

  • Monecke S, Berger-Bachi B et al (2007) Comparative genomics and DNA array-based genotyping of pandemic Staphylococcus aureus strains encoding Panton-Valentine leukocidin. Clin Microbiol Infect 13(3):236–249

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1996) Phylogenetic analysis in molecular evolutionary genetics. Ann Rev Genet 30:371–403

    Article  CAS  PubMed  Google Scholar 

  • Nubel U, Roumagnac P et al (2008) Frequent emergence and limited geographic dispersal of methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci USA 105(37):14130–14135

    Article  CAS  PubMed  Google Scholar 

  • Ochman H, Wilson AC (1987) Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26(1–2):74–86

    Article  CAS  PubMed  Google Scholar 

  • Oliveira IC, de Mattos MC et al (2006) Genetic relatedness between group B streptococci originating from bovine mastitis and a human group B Streptococcus type V cluster displaying an identical pulsed-field gel electrophoresis pattern. Clin Microbiol Infect 12(9):887–893

    Article  CAS  PubMed  Google Scholar 

  • Pearson T, Busch JD et al (2004) Phylogenetic discovery bias in Bacillus anthracis using single-nucleotide polymorphisms from whole-genome sequencing. Proc Natl Acad Sci USA 101(37):13536–13541

    Article  CAS  PubMed  Google Scholar 

  • Read TD, Salzberg SL et al (2002) Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis. Science 296(5575):2028–2033

    Article  CAS  PubMed  Google Scholar 

  • Relman DA (1993) The identification of uncultured microbial pathogens. J Infect Dis 168(1):1–8

    CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinform 19(12):1572–1574

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S et al (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74(12):5463–5467

    Article  CAS  PubMed  Google Scholar 

  • Sheppard SK, McCarthy ND et al (2008) Convergence of Campylobacter species: implications for bacterial evolution. Science 320(5873):237–239

    Article  CAS  PubMed  Google Scholar 

  • Smith JM, Smith NH et al (1993) How clonalclonal are bacteria? Proc Natl Acad Sci USA 90(10):4384–4388

    Article  CAS  PubMed  Google Scholar 

  • Spratt BG, Hanage WP et al (2001) The relative contributions of recombination and point mutation to the diversification of bacterial clones. Curr Opin Microbiol 4(5):602–606.

    Article  CAS  PubMed  Google Scholar 

  • Staley JT (2006) The bacterial species dilemma and the genomic-phylogenetic species concept. Philos Trans R Soc Lond B Biol Sci 361(1475):1899–1909

    Article  PubMed  Google Scholar 

  • Stephens AJ, Huygens F et al (2006) Methicillin-resistant Staphylococcus aureus genotyping using a small set of polymorphisms. J Med Microbiol 55(Pt 1):43–51

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Kong F et al (2005) Comparison of a 3-set genotyping system with multilocus sequence typing for Streptococcus agalactiae (Group B Streptococcus). J Clin Microbiol 43(9):4704–4707

    Article  CAS  PubMed  Google Scholar 

  • Tettelin H, Riley D et al (2008) Comparative genomics: the bacterial pan-genomepan-genome. Curr Opin Microbiol 11(5):472–477

    Article  CAS  PubMed  Google Scholar 

  • Tourasse NJ, Helgason E, et al (2006) The Bacillus cereus group: novel aspects of population structure and genome dynamics. J Appl Microbiol 101(3):579–93

    Article  CAS  PubMed  Google Scholar 

  • Tristan A, Bes M et al (2007) Global distribution of Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus, 2006. Emerg Infect Dis 13(4):594–600

    Article  CAS  PubMed  Google Scholar 

  • Turner KM, Feil EJ (2007) The secret life of the multilocus sequence type. Int J Antimicrob Agents 29(2):129–135

    Article  CAS  PubMed  Google Scholar 

  • Van Ert MN, Easterday WR et al (2007a) Global genetic population structure of Bacillus anthracis. PLoS One 2(5):e461

    Article  PubMed  Google Scholar 

  • Van Ert MN, Easterday WR et al (2007b) Strain-specific single-nucleotide polymorphism assays for the Bacillus anthracis Ames strain. J Clin Microbiol 45(1): 47–53

    Article  PubMed  Google Scholar 

  • Vilas-Boas GT, Peruca AP et al (2007) Biology and taxonomy of Bacillus cereus , Bacillus anthracis, and Bacillus thuringiensis. Can J Microbiol 53(6):673–687

    Article  CAS  PubMed  Google Scholar 

  • Watson JD, Crick FH (1953). The structure of DNA. Cold Spring Harb Symp Quant Biol 18:123–131

    CAS  PubMed  Google Scholar 

  • Wilson DJ, Gabriel E et al (2009) Rapid evolution and the importance of recombination to the gastroenteric pathogen Campylobacter jejuni. Mol Biol Evol 26(2):385–397

    Article  CAS  PubMed  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51(2):221–371

    CAS  PubMed  Google Scholar 

  • Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci USA 97(15):8392–8396

    Article  CAS  PubMed  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74(11):5088–5090

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki O, Kaneko J et al (2005) The association between Staphylococcus aureus strains carrying panton-valentine leukocidin genes and the development of deep-seated follicular infection. Clin Infect Dis 40(3):381–385

    Article  PubMed  Google Scholar 

  • Yang Z, Rannala B (1997) BayesianBayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo method. Mol Biol Evol 14(7):717–724

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Giffard, P. (2010). Bioinformatics of Microbial Sequences. In: Sintchenko, V. (eds) Infectious Disease Informatics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1327-2_2

Download citation

Publish with us

Policies and ethics