Skip to main content

The Developmental Neuropathology of Autism

  • Chapter
The Neurochemical Basis of Autism

Abstract

The cellular neuropathology of autism is well described and illustrated in several reports. This chapter focuses on the timing and mechanism of these pathological changes, an aspect of the pathology of the autistic brain not covered in detail in the prior reports.Particular attention is paid to the changes in the brain stem, the cerebellum, and the cerebral cortex. Although the molecular (genetic) mechanism of these diverse neuropathologies is unknown, it can be seen that there is broad diversity of these changes, with perturbations of several different developmental processes, rather than reliance on a single mechanism. The vast majority of these pathologies can be dated to the prenatal period. The final section explores the relationship of these prenatally derived pathologies, and perturbation of other postnatal developmental processes, to the well-documented abnormal postnatal brain growth. I conclude that, based on the available data, that none of these mechanisms seem likely to account for the abnormal postnatal brain growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amaral DG, Schumann CM, Nordahl CW (2008) Neuroanatomy of autism. Trends Neurosci 31:137–145.

    Article  CAS  PubMed  Google Scholar 

  • Arai N, Amano N, Iwabuchi K, Yagishita S, Yokoi S, Saito A, Misugi K (1988) Three categories of the degenerative appearance of the human cerebellar dentate nucleus. J Neurol Sci 83:129–143.

    Article  CAS  PubMed  Google Scholar 

  • Aylward EH, Minshew NJ, Field K, Sparks BF, Singh N (2002) Effects of age on brain volume and head circumference in autism. Neurology 59:175–183.

    CAS  PubMed  Google Scholar 

  • Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Simonoff E, Rutter M (1995) Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 25: 63–77.

    Article  CAS  PubMed  Google Scholar 

  • Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, Rutter M, Lantos P (1998) A clinicopathological study of autism. Brain 121:889–905.

    Article  PubMed  Google Scholar 

  • Bauman ML, Kemper TL (1994) Neuroanatomical observations of the brain in autism. In: The neurobiology of autism (Bauman ML, Kemper TL, eds), pp. 119–145. Baltimore: The Johns Hopkins Univ Press.

    Google Scholar 

  • Bauman ML, Kemper TL (2005) Structural brain anatomy in autism: What is the evidence? In: The neurobiology of autism (Bauman ML, Kemper TL, eds), pp. 121–135. Baltimore: The Johns Hopkins Univ Press.

    Google Scholar 

  • Bayer SA, Altman J, Rosso RJ, Zhang X (1993) Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology 14:83–144.

    CAS  PubMed  Google Scholar 

  • Bloch-Gallego E, Causeret F, Ezan F, Backer S, Hidalgo-Sánchez M. (2005) Development of precerebellar nuclei: instructive factors and intracellular mediators in neuronal migration, survival and axon pathfinding. Brain Reviews 49:253–266.

    Article  CAS  Google Scholar 

  • Buxhoeveden DP, Semendeferi K, Buckwalter J, Schenker N, Switzer R, Courchesne E (2006) Reduced minicolumns in the frontal cortex of patients with autism. Neuropathol Appl Neurobiol 32:483–491.

    Article  CAS  PubMed  Google Scholar 

  • Casanova MF (2007) The neuropathology of autism. Brain Pathol 17:422–433.

    Article  PubMed  Google Scholar 

  • Casanova MF, van Kooten IAJ, Switala AE, van Engeland H, Heinsen H, Steinbusch HWM, Hof PR, Trippe J, Stone J, Schmitz, C (2006a) Minicolumnar abnormalities in autism. Acta Neuropathol 112:287–303.

    Article  PubMed  Google Scholar 

  • Casanova MF, van Kooten, IA, Switala AE, Van Engeland H, Steinbusch HWM, Hof P, Schmitz C (2006b) Abnormalities of cortical minicolumnar organization in the prefrontal lobes of autistic patients. Clin Neurosci Res 6:127–133.

    Article  Google Scholar 

  • Casanova MF, Buxhoeveden D, Switala A, Roy E (2002) Minicolumnar pathology in autism. Neurology 58:428–432.

    PubMed  Google Scholar 

  • Chen S, Hillman DE (1989) Regulation of granule cell number by a predetermined number of Purkinje cells in development. Brain Res Dev Brain Res 45:137–147.

    Article  CAS  PubMed  Google Scholar 

  • Courchesne E, Carper R, Askhoomoff N (2003) Evidence of brain overgrowth in the first year of life in autism. JAMA 290:337–344.

    Article  PubMed  Google Scholar 

  • Courschesne E, Pierce K (2005) Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity. Int J Neuroscience 23:153–170.

    Article  Google Scholar 

  • Dawson G, Munson J, Webb SJ, Nalty T, Abbott R, Toth K. (2007) Rate of head growth decelerates and symptoms worsen in the second year of life in autism. Biol Psychiatry 61:458–464.

    Article  PubMed  Google Scholar 

  • Dementieva YA, Vance DD, Donnelly SL, Elston LA, Wolpert CM, Rvan SA, DeLong R, Abramson RK, Wright HH, Cuccaro ML (2005) Accelerated head growth in early development with autism. Pediatric Neurology 32:102–108.

    Article  PubMed  Google Scholar 

  • Dvorak K, Feit J (1977) Migration of neuroblasts through partial necrosis of the cerebral cortex in newborn rats – contribution to the problem of morphological development and developmental period of cerebral microgyria. Acta Neuropathol 38:203–212.

    Article  CAS  PubMed  Google Scholar 

  • Dvorak K, Feit J, Jurankova Z (1978) Experimentally induced focal microgyria and status verrucosus deformis in rats––pathogenesis and interaction. Histological and autoradiographic study. Acta Neuropathol 44:121–129.

    Article  CAS  PubMed  Google Scholar 

  • Fink AJ, Englund C, Daza RA, Pham D, Lau C, Nivison M, Kowalczyk T, Hevner RF (2006) Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J Neurosci 26:3066–3076.

    Article  CAS  PubMed  Google Scholar 

  • Flechsig P (1920) Anatomie des menschlichen Gehirns und Rückenmarks. Leipzig: Georg Thieme Verlag.

    Google Scholar 

  • Fombonne E, Roge B, Claverie J, Courty S (1999) Microcephaly and macrocephaly in autism. J Autism Dev Dis 29:113–119.

    Article  CAS  Google Scholar 

  • Fukutani Y, Nakamura I, Matsubara R, Kobayashi K, Isaki K (1996) Pathology of the cerebellar dentate nucleus in sporadic olivopontocerebellar atrophy: a morphometric investigation. J Neurol Sci 137:103–108.

    Article  CAS  PubMed  Google Scholar 

  • Gautier JC, Blackwood W (1961) Enlargement of the inferior olivary nucleus in association with lesions of the central tegmental tract or dentate nucleus. Brain 84:341–361.

    Article  CAS  PubMed  Google Scholar 

  • Goto N, Kaneko M (1981) Olivary enlargement: chronological and morphometric analyses. Acta Neuropathol 54:275–282.

    Article  CAS  PubMed  Google Scholar 

  • Harding B, Copp AJ (1997) Malformations In: Greenfield’s Neuropathology, 6th edition (Graham DI, Lantos P, eds), pp. 397–536. London: Arnold.

    Google Scholar 

  • Hazlett HC, Poe M, Gerig G, Smith RG, Provensale J, Ross A, Gilmore J, Piven J. (2007) Magnetic resonance Imaging and head circumference study of brain size in autism. Birth through age 2 years. Arch Gen Psychiatry 62:1366–1376.

    Article  Google Scholar 

  • Herbert MR, Zeigler DA, Makris N, Filipek PA, Kemper TL, Normandin JJ, Sanders BA, Kennedy DN, Caviness VS (2004) Localization of white matter volume increase in autism and developmental language disorder. Ann Neurol 55:530–540.

    Article  PubMed  Google Scholar 

  • Hobbs K, Kennedy A, DuBray M, Bigler ED, Peterson PB, McMahon W (2007) A retrospective fetal ultrasound study of brain size in autism. Biol Psychiatry 62:1048–1055.

    Article  PubMed  Google Scholar 

  • Holmes G, Stewart TG (1908) On the connection of the inferior olives with the cerebellum in man. Brain 31:125–137.

    Article  Google Scholar 

  • Hutsler JJ, Love T, Xhang H (2006) Histological and magnetic resonance imaging assessment of cortical layering and thickness in autism spectrum disorders. Biol Psychiatry 61:449–457.

    Article  PubMed  Google Scholar 

  • Huttenlocher PR (1979) Synaptic density in human frontal cortex - developmental changes and effects of aging. Brain Res 163:195–205.

    Article  CAS  PubMed  Google Scholar 

  • Huttenlocher PR, Dabholkar AS. (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387:167–178.

    Article  CAS  PubMed  Google Scholar 

  • Huttenlocher PR, de Courten C, Garey LJ, Van der Loos H (1982) Synaptogenesis in human visual cortex––evidence for synapse elimination during normal development. Neurosci Lett 33:247–252.

    Article  CAS  PubMed  Google Scholar 

  • Jenner AR, Galaburda AM, Sherman GF (2000) Connectivity of ectopic neurons in the molecular layer of the somatosensory cortex in autoimmune mice. Cerebral Cortex 10:1005–1013.

    Article  CAS  PubMed  Google Scholar 

  • Kanner L (1943) Autistic disturbances of affective contact. Nervous Child 2:217–250.

    Google Scholar 

  • Kemper T. Bauman ML.(1993) The contribution of neuropathologic studies to the understanding of autism. In: Behavioral Neurology, volume 11 (Brumback RA, ed), pp. 175–187. Philadelphia: W B Saunders.

    Google Scholar 

  • Kemper TL, Bauman ML (1998) Neuropathology of infantile autism. J Neuropathol Exp Neurol 57:645–652.

    Article  CAS  PubMed  Google Scholar 

  • Kleinhans NM, Richards T, Sterling L, Stegbauer KC, Mahurin R, Johnson LC, Greenson J, Dawson G, Aylward E (2008) Abnormal functional connectivity in autism spectrum disorders during face processing. Brain 131:1000–1012.

    Article  PubMed  Google Scholar 

  • Kostovic I, Rakic P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol 297:441–470.

    Article  CAS  PubMed  Google Scholar 

  • LaMantia A-S, Rakic P (1990) Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. J Neurosci 10: 2156–2175.

    CAS  PubMed  Google Scholar 

  • LaMantia A-S, Rakic P (1994) Axon overproduction and elimination in the anterior commissure of the developing rhesus monkey. J Comp Neurol 340:328–336.

    Article  CAS  PubMed  Google Scholar 

  • Lainhart JE, et al. (2006) Head circumference and height in autism: a study by the Collaborative Program of Excellence in Autism. Am J Med Genet Part A 140A:2257–2274.

    Article  Google Scholar 

  • Lainhart JE, Piven J, Wzorek M, Landa R, Santangelo SL, Coon H, Folstein SE (1997) Macrocephaly in children and adults with autism. J Am Acad Child Adolesc Psychiatry 36:282–290.

    Article  CAS  PubMed  Google Scholar 

  • Le Couteur A, Bailey A, Goode S, Pickles A, Robertson S, Gottesman I, Rutter M (1996) A broader phenotype of autism: the clinical spectrum in twins. J Child Psychol Psychiatry 37: 785–801.

    Article  PubMed  Google Scholar 

  • Marin-Padilla M (1985) Neurogenesis of the climbing fibers in the human cerebellum; a Golgi study. J Comp Neurol 235:82–96.

    Article  CAS  PubMed  Google Scholar 

  • Marin-Padilla M (1988) Early ontogenesis of the human cerebral cortex, In: Cerebral Cortex, Vol. 7 (Peters A, Jones EG, eds) pp. 1–34. New York: Plenum Press.

    Google Scholar 

  • Miles JH, Hadden LL, Takahashi TN, Hillman RE (2000) Head circumference is an independent clinical finding associated with autism. Amer J Med Genetics 95:339–350.

    Article  CAS  Google Scholar 

  • Miller MT, Strömland K, Ventura L, Johansson M, Bandim JM, Gillberg C. (2005) Autism associated with conditions characterized by developmental errors in early embryogenesis: a mini review. Int J Dev Neurosci 23:201–219.

    Article  PubMed  Google Scholar 

  • Nelson KB, Bauman ML (2003) Thimerosal and autism? Pediatrics111:674–679.

    Article  PubMed  Google Scholar 

  • Norman RM. (1940) Cerebellar atrophy associated with etat marbre of the basal ganglia. J Neurol Psychiatry 3:311–318.

    Article  Google Scholar 

  • O’Rahilly R, Müller F (1994) The embryonic human brain. News York: Wiley-Liss.

    Google Scholar 

  • Okhotin VE, Kalinichenko SG (2003) Subcortical white matter interstitial cells: their connections, neurochemical specialization, and role in the histogenesis of the cortex. Neurosci Behav Physiol 33:177–193.

    Article  CAS  PubMed  Google Scholar 

  • Palmen SJMC, van Engeland H, Hof PR, Schmitz C (2004) Neuropathological findings in autism. Brain 127:1–12.

    Article  Google Scholar 

  • Pickles A, Bolton P, Macdonald H, Bailey A, Le Couteur A, Sim CH, Rutter M (1995) Latent-class analysis of recurrence risks for complex phenotypes with selection and measurement error: a twin and family history study of autism. Am J Hum Genet 57: 717–726.

    CAS  PubMed  Google Scholar 

  • Rakic P (1988) Defects of neuronal migration and the pathogenesis of cortical malformations. Prog Brain Res 73:15–37.

    Article  CAS  PubMed  Google Scholar 

  • Rakic P (1995) A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during gestation. TNS 18:383–388.

    CAS  Google Scholar 

  • Rakic P, Sidman RL. (1970) Histogenesis of cortical layers in human cerebellum particularly the lamina dissecans. J Comp Neurol 139:473–500.

    Article  CAS  PubMed  Google Scholar 

  • Raymond J, Bauman ML, Kemper TL (1996) The hippocampus in autism: Golgi analysis. Ann Neurol 26:483–484.

    Google Scholar 

  • Redcay E, Courchesne E (2005) When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biol Psychiatry 58:1–9.

    Article  PubMed  Google Scholar 

  • Rodier PM, Ingram JL, Tisdale B, Nelson S, Roman J (1996) Embryological origins for autism: developmental anomalies of the cranial nerve nuclei. J Comp Neurol 370:247–261.

    Article  CAS  PubMed  Google Scholar 

  • Rodier PM, Hyman SL (1998) Early environmental factors in autism. Ment Retard Dev Dis Res Reviews 4:121–128.

    Article  Google Scholar 

  • Rosen GD, Burstein D, Galaburda AM (2000) Changes in efferent and afferent connectivity in rats with induced cerebrocortical microgyria. J Comp Neurol 418:423–440.

    Article  CAS  PubMed  Google Scholar 

  • Sakai T, Matsuda H, Watanabe N, Kamei A, Takashima S (1994) Olivocerebellar retrograde trans-synaptic degeneration from the lateral cerebellar hemisphere to the medial inferior olivary nucleus in an infant. Brain Develop 16:229–232.

    Article  CAS  Google Scholar 

  • Schumann CM, Amaral DG (2006) Stereological analysis of amygdala neuron number in autism. J Neurosci 26:7674–7679.

    Article  CAS  PubMed  Google Scholar 

  • Shatz CJ, Chun JJM, Luskin MB (1998) The role of the subplate in the development of the mammalian telencephalon: In: Cerebral Cortex, Vol. 7 (Peters A, Jones EG, eds), pp. 35–58. New York: Plenum Press.

    Google Scholar 

  • Sidman RL, Rakic, P (1982) Development of the human central nervous system. In: Histology and histopathology of the nervous system (Haymaker W, Adams RD, eds), pp. 3–145. Springfield, IL: Charles C Thomas,

    Google Scholar 

  • Stevenson RE, Schroer RJ, Skinner C, Fender D, Simensen RJ (1997) Autism and macrocephaly. Lancet 349:1744–1745.

    Article  CAS  PubMed  Google Scholar 

  • Sugihara L, Wu H-S, Shinoda Y (1999) Morphology of single olivocerebellar axons labeled with biotinylated dextran amine in the rat. J Comp Neurol 414:131–148.

    Article  CAS  PubMed  Google Scholar 

  • Supèr H, Soriano E, Uylings HBM (1998) The functions of the subplate in development and evolution of the neocortex and hippocampus. Brain Res Reviews 27:40–64.

    Article  Google Scholar 

  • Thevarkunnel S, Martchek MA, Kemper TL, Bauman ML, Blatt GJ (2004) A neuroanatomical study of the brainstem nuclei in autism. Abstract presented at Soc Neurosci 2004, Abstract No. 1028.10.

    Google Scholar 

  • Vorstman JAS, Staal WG, van Daale E, van Engeland H, Hochstenbach PFR, Franke L (2006) Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism. Mol Psychiatry 11:18–28.

    Article  CAS  Google Scholar 

  • Webb SJ, Nalty T, Munson J, Brock C, Abbott R, Dawson G (2007) Rate of head circumference growth as a function of autism diagnosis and history of autistic regression. J Child Neurol 22:1182–1190.

    Article  PubMed  Google Scholar 

  • Whitney E, Kemper TL, Bauman ML, Rosene DL, Blatt G J (2008) Cerebellar Purkinje cells are reduced in a subpopulation of autistic brains: A stereological experiment using calbindin-D28k. Cerebellum 7:406–416.

    Article  CAS  PubMed  Google Scholar 

  • Yakovlev PI, Lecours A-R (1967) The myelogenetic cycles of regional maturation of the brain. In: Regional development of the brain in early life (Minkowshi A, ed), pp. 3–70. Oxford : Blackwell Scientific Publications.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas L. Kemper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kemper, T.L. (2010). The Developmental Neuropathology of Autism. In: Blatt, G.J. (eds) The Neurochemical Basis of Autism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1272-5_5

Download citation

Publish with us

Policies and ethics