Skip to main content

Use of PSA-NCAM in Repair of the Central Nervous System

  • Chapter
  • First Online:
Structure and Function of the Neural Cell Adhesion Molecule NCAM

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 663))

Abstract

Polysialic acid (PSA) is a highly hydrated polymer whose presence at the cell surface can reduce cell interactions, and thereby increase tissue and cellular plasticity. Given its ability to create a permissive environment for cell migration and axonal growth, the potential of engineered overexpression of PSA to promote tissue repair has been explored in the adult CNS. Several promising results have been obtained that suggest that PSA engineering may become a valuable therapeutic tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eckhardt M, Mühlenhoff M, Bethe A et al (1995) Molecular characterization of eukaryotic polysialyltransferase-1. Nature 373:715-718

    Article  PubMed  CAS  Google Scholar 

  2. Nakayama J, Fukuda MN, Fredette B et al (1995) Expression cloning of a human polysialyltransferase that forms the polysialylated neural cell adhesion molecule present in embryonic brain. Proc Natl Acad Sci USA 92:7031-7035

    Article  PubMed  CAS  Google Scholar 

  3. Yang P, Yin X, Rutishauser U (1992) Intercellular space is affected by the polysialic acid content of NCAM. J Cell Biol 116:1487-1496

    Article  PubMed  CAS  Google Scholar 

  4. Johnson CP, Fujimoto I, Rutishauser U et al (2005) Direct evidence that neural cell adhesion molecule NCAM polysialylation increases intermembrane repulsion and abrogates adhesion. J Biol Chem 280:137-145

    PubMed  CAS  Google Scholar 

  5. Fujimoto I, Bruses JL, Rutishauser U (2001) Regulation of cell adhesion by polysialic acid. Effects on cadherin, immunoglobulin cell adhesion molecule, and integrin function and independence from neural cell adhesion molecule binding or signaling activity. J Biol Chem 276:31745-31751

    Article  PubMed  CAS  Google Scholar 

  6. Tang J, Rutishauser U, Landmesser L (1994) Polysialic acid regulates growth cone behavior during sorting of motor axons in the plexus region. Neuron 13:405-414

    Article  PubMed  CAS  Google Scholar 

  7. Rutishauser U (2008) Polysialic acid in the plasticity of the developing and adult vertebrate nervous system Nat. Rev Neurosci 9:26-35

    Article  CAS  Google Scholar 

  8. El Maarouf A, Rutishauser U (2005) Polysialic acid in adult brain plasticity. In: Fukuda M, Rutishauser U, Schnaar RL (eds) Neuroglycobiology. Oxford University Press, London, pp 39-57

    Chapter  Google Scholar 

  9. Tomasiewicz H, Ono K, Yee D et al (1993) Genetic deletion of a neural cell adhesion molecule variant N-CAM-180 produces distinct defects in the central nervous system. Neuron 11:1163-1174

    Article  PubMed  CAS  Google Scholar 

  10. Ono K, Tomasiewicz H, Magnuson T et al (1994) N-CAM mutation inhibits tangential neuronal migration and is phenocopied by enzymatic removal of polysialic acid. Neuron 13:595-609

    Article  PubMed  CAS  Google Scholar 

  11. Cremer H, Lange R, Christoph A et al (1994) Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367:455-369

    Article  PubMed  CAS  Google Scholar 

  12. Hu H, Tomasiewicz H, Magnuson T et al (1996) The role of polysialic acid in migration of olfactory bulb interneuron precursors in the subventricular zone. Neuron 16:735-743

    Article  PubMed  CAS  Google Scholar 

  13. Petridis AK, El Maarouf A, Rutishauser U (2004) Polysialic acid regulates cell contact-dependent neuronal differentiation of progenitor cells from the subventricular zone. Dev Dyn 230:675-684

    Article  PubMed  CAS  Google Scholar 

  14. Weinhold B, Seidenfaden R, Röckle I et al (2005) Genetic ablation of polysialic acid causes severe neurodevelopmental defects rescued by deletion of the neural cell adhesion molecule. J Biol Chem 280:42971-42977

    Article  PubMed  CAS  Google Scholar 

  15. Angata K, Huckaby V, Ranscht B et al (2007) Polysialic acid-directed migration and differentiation of neural precursors are essential for mouse brain development. Mol Cell Biol 27:6659-6668

    Article  PubMed  CAS  Google Scholar 

  16. Doetsch F, Alvarez-Buylla A (1996) Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci USA 93:14895-14900

    Article  PubMed  CAS  Google Scholar 

  17. Burgess AL, Seki T, Rutishauser U (2007) Removal of polysialic acid increases neuronal differentiation of adult neural progenitor cells in vitro and in vivo. Program No. 563.2. 2007 neuroscience meeting planner. Society for Neuroscience, Online, San Diego, CA

    Google Scholar 

  18. Yoshida K, Rutishauser U, Crandall JE et al (1999) Polysialic acid facilitates migration of luteinizing hormone-releasing hormone neurons on vomeronasal axons. J Neurosci 19:794-801

    PubMed  CAS  Google Scholar 

  19. Tang J, Landmesser L, Rutishauser U (1992) Polysialic acid influences specific pathfinding by avian motoneurons. Neuron 8:1031-1044

    Article  PubMed  CAS  Google Scholar 

  20. Tang J, Rutishauser U, Landmesser L (1994) Polysialic acid regulates growth cone behavior during sorting of motor axons in the plexus region. Neuron 13:405-414

    Article  PubMed  CAS  Google Scholar 

  21. Yin X, Watanabe M, Rutishauser U (1995) Effect of polysialic acid on the behavior of retinal ganglion cell axons during growth into the optic tract and tectum. Development 121:3439-3446

    PubMed  CAS  Google Scholar 

  22. El Maarouf A, Rutishauser U (2003) Removal of polysialic acid induces aberrant pathways, synaptic vesicle distribution, and terminal arborization of retinotectal axons. J Comp Neurol 460:203-211

    Article  PubMed  CAS  Google Scholar 

  23. Daston MM, Bastmeyer M, Rutishauser U et al (1996) Spatially restricted increase in polysialic acid enhances corticospinal axon branching related to target recognition and innervation. J Neurosci 16:5488-5497

    PubMed  CAS  Google Scholar 

  24. El Maarouf A, Petridis AK, Rutishauser U (2005) CNS axon regeneration is promoted by engineered expression of polysialic acid on scar astrocytes”. Program No. 223.10. 2005 neuroscience meeting planner. Society for Neuroscience, Online, Washington, DC

    Google Scholar 

  25. El Maarouf A, Petridis AK, Rutishauser U (2006) Use of polysialic acid in repair of the central nervous system. Proc Natl Acad Sci USA 103:16989-16994

    Article  PubMed  CAS  Google Scholar 

  26. Cajal SG (1928) Degeneration and regeneration of the nervous system, Vol 1 and 2. Oxford University Press, London

    Google Scholar 

  27. David S, Aguayo AJ (1981) Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214:931-933

    Article  PubMed  CAS  Google Scholar 

  28. Rudge JS, Silver J (1990) Inhibition of neurite outgrowth on astroglial scars in vitro. J Neurosci 10:3594-3603

    PubMed  CAS  Google Scholar 

  29. Fawcett JW (1999) Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377-391

    Article  PubMed  CAS  Google Scholar 

  30. Schwab ME (2004) Nogo and axon regeneration. Curr Opin Neurobiol 14:118-124

    Article  PubMed  CAS  Google Scholar 

  31. Batcholor PE, Howells DW (2003) CNS regeneration: clinical possibility or basic science fantasy? J Clin Neurosci 10:523-534

    Article  Google Scholar 

  32. Aubert I, Ridet JL, Schachner M et al (1998) Expression of L1 and PSA during sprouting and regeneration in the adult hippocampal formation. J Comp Neurol 399:1-19

    Article  PubMed  CAS  Google Scholar 

  33. Dusart I, Morel MP, Wehrle R et al (1999) (1999) Late axonal sprouting of injured Purkinje cells and its temporal correlation with permissive changes in the glial scar. J Comp Neurol 408:399-418

    Article  PubMed  CAS  Google Scholar 

  34. Franz CK, Rutishauser U, Rafuse VF et al (2005) (2005) Polysialylated neural cell adhesion molecule is necessary for selective targeting of regenerating motor neurons. J Neurosci 25:2081-2091

    Article  PubMed  CAS  Google Scholar 

  35. Holland EC, Varmus HE (1998) Basic fibroblast growth factor induces cell migration and proliferation after glia-specific gene transfer in mice. Proc Natl Acad Sci USA 95:1218-1223

    Article  PubMed  CAS  Google Scholar 

  36. Lewis BC, Chinnasamy N, Morgan RA et al (2001) (2001) Development of an avian leukosis-sarcoma virus subgroup A pseudotyped lentiviral vector. J Virol 75:9339-9344

    Article  PubMed  CAS  Google Scholar 

  37. Zhang Y, Zhang X, Yeh J et al (2007) Engineered expression of polysialic acid enhances Purkinje cell axonal regeneration in L1/GAP-43 double transgenic mice. Eur J NeuroSci 25:351-361

    Article  PubMed  CAS  Google Scholar 

  38. Zhang Y, Ghadiri-Sani M, Zhang X et al (2007) Induced expression of polysialic acid in the spinal cord promotes regeneration of sensory axons. Mol Cell Neurosci 35:109-119

    Article  PubMed  CAS  Google Scholar 

  39. Bunge MB (2001) Bridging areas of injury in the spinal cord. Neuroscientist 7:325-339

    Article  PubMed  CAS  Google Scholar 

  40. Bunge MB, Pearse DD (2003) Transplantation strategies to promote repair of the injured spinal cord. J Rehabil Res Dev 40:55-62

    Article  PubMed  Google Scholar 

  41. Chen ZL, Yu WM, Strickland S (2007) Peripheral regeneration. Annu Rev Neurosci 30:209-233

    Article  PubMed  Google Scholar 

  42. Papastefanaki F, Chen J, Lavdas AA et al (2007) Grafts of Schwann cells engineered to express PSA-NCAM promote functional recovery after spinal cord lesion 130(Pt 8):2159-2174

    Google Scholar 

  43. Magavi SS, Leavitt BR, Macklis JD et al (2000) Induction of neurogenesis in the neocortex of adult mice. Nature 405:951-955

    Article  PubMed  CAS  Google Scholar 

  44. Arvidsson A, Collin T, Kirik D et al (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963-970

    Article  PubMed  CAS  Google Scholar 

  45. Picard-Riera N, Decker L, Delarasse C et al (2002) Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. Proc Natl Acad Sci USA 99:13211-13216

    Article  PubMed  CAS  Google Scholar 

  46. Jin K, Sun Y, Xie L et al (2003) Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 24:171-189

    Article  PubMed  CAS  Google Scholar 

  47. Chen J, Magavi SSP, Macklis JD et al (2004) Neurogenesis of corticospinal motor neurons extending spinal projections in adult mice. Proc Natl Acad Sci USA 101:16357-16362

    Article  PubMed  CAS  Google Scholar 

  48. Glaser T, Brose C, Franceschini I et al (2007) NCAM polysialylation enhances the sensitivity of ES Cell-derived neural precursors to migration guidance cues. Stem Cells 25:3016-3025

    Article  PubMed  CAS  Google Scholar 

  49. Franceschini I, Vitry S, Padilla F et al (2004) Migrating and myelinating potential of neural precursors engineered to overexpress PSA-NCAM. Mol Cell Neurosci 27:151-162

    Article  PubMed  CAS  Google Scholar 

  50. Torregrossa P, Buhl L, Bancila M et al (2004) Selection of poly-alpha 2, 8-sialic acid mimotopes from a random phage peptide library and analysis of their bioactivity. J Biol Chem 279:30707-30714

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahman El Maarouf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Maarouf, A.E., Rutishauser, U. (2010). Use of PSA-NCAM in Repair of the Central Nervous System. In: Berezin, V. (eds) Structure and Function of the Neural Cell Adhesion Molecule NCAM. Advances in Experimental Medicine and Biology, vol 663. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1170-4_9

Download citation

Publish with us

Policies and ethics