Skip to main content

Multiple Criteria Decision Making

  • Reference work entry
  • First Online:
Encyclopedia of Operations Research and Management Science
  • 501 Accesses

Introduction

Multiple Criteria Decision Making (MCDM) refers to making decisions in the presence of multiple, usually conflicting, objectives. Multiple criteria decision problems pervade almost all decision situations ranging from common household decisions to complex strategic and policy level decisions in corporations and governments. Prior to the development of MCDM as a discipline, such problems have been traditionally addressed as single-criterion optimization problems by (i) deriving a composite measure of the objectives and optimizing it, or (ii) by choosing one of the objectives as the main decision objective for optimization and solving the problem by requiring an acceptable level of achievement in each of the other objectives. MCDM as a discipline was founded on two key concepts of human behavior, introduced and explored in detail by Herbert Simon in the 1950s: satisficing and bounded rationality (Simon 1957). The two are intertwined because satisficing involves finding...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benayoun, R., De Montgolfier, J., Tergny, J., & Larichev, O. (1971). Linear programming with multiple objective functions: Step method (STEM). Mathematical Programming, 1, 366–375.

    Article  Google Scholar 

  • Bitran, G. R., & Rivera, J. M. (1982). A combined approach to solving binary multicriteria problems. Naval Research Logistics, 29, 181–201.

    Article  Google Scholar 

  • Chankong, V., Haimes, Y. Y., Thadathil, J., & Zionts, S. (1984). Multiple criteria optimization: A state of the art review. In Decision making with multiple objectives (pp. 36–90). Berlin: Springer.

    Google Scholar 

  • Geoffrion, A. M. (1968). Proper efficiency and the theory of vector maximization. Journal of Mathematical Analysis and Applications, 22, 618–630.

    Article  Google Scholar 

  • Keeney, R. L., & Raiffa, H. (1976). Decisions with multiple objectives: Preferences and value trade-offs. New York: John Wiley.

    Google Scholar 

  • Klein, D., & Hannan, E. (1982). An algorithm for the multiple objective integer linear programming problem. European Journal of Operational Research, 9, 378–385.

    Article  Google Scholar 

  • Korhonen, P., & Laakso, J. (1986). A visual interactive method for solving the multiple criteria problem. European Journal of Operational Research, 24, 277–287.

    Article  Google Scholar 

  • Korhonen, P., Wallenius, J., & Zionts, S. (1984). Solving the discrete multiple criteria problem using convex cones. Management Science, 30, 1336–1345.

    Article  Google Scholar 

  • Lee, S. M. (1972). Goal programming for decision analysis. Philadelphia: Auerbach Publishers.

    Google Scholar 

  • Lotfi, V., Stewart, T. J., & Zionts, S. (1992). An aspiration-level interactive model for multiple criteria decision making. Computers and Operations Research, 19, 671–681.

    Article  Google Scholar 

  • Lotfi, V., Yoon, Y. S., & Zionts, S. (1997). Aspiration-based search algorithm (ABSALG) for multiple objective linear programming problems: Theory and comparative tests. Management Science, 43, 1047–1059.

    Article  Google Scholar 

  • Pasternak, H., & Passy, V. (1973). Bicriterion mathematical programs with boolean variables. In Multiple criteria decision making. Columbia: University of South Carolina Press.

    Google Scholar 

  • Ramesh, R., Karwan, M. H., & Zionts, S. (1989). Preference structure representation using convex cones in multicriteria integer programming. Management Science, 35, 1092–1105.

    Article  Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.

    Google Scholar 

  • Simon, H. (1957). Administrative behavior. New York: The Free Press.

    Google Scholar 

  • Steuer, R. E. (1976). Multiple objective linear programming with interval criterion weights. Management Science, 23, 305–316.

    Article  Google Scholar 

  • Villarreal, B., & Karwan, M. H. (1981). Multicriteria integer programming: A (hybrid) dynamic programming recursive approach. Mathematical Programming, 21, 204–223.

    Article  Google Scholar 

  • Wallenius, J., Dyer, J., Fishburn, P., Steuer, R., Zionts, S., & Deb, K. (2008). Multiple criteria decision making/multiattribute utility theory: Recent accomplishments and what lies ahead. Management Science, 54, 1336–1349.

    Article  Google Scholar 

  • Wang, J. G., & Zionts, S. (2005). WebAIM: An online aspiration-level interactive method. Multi-Criteria Decision Analysis, 13, 51–63.

    Article  Google Scholar 

  • Wang, J. G., & Zionts, S. (2008). Negotiating wisely: Considerations based on multi-criteria decision making/multi-attribute utility theory. European Journal of Operational Research, 188, 191–205.

    Article  Google Scholar 

  • Yu, P. L., & Zeleny, M. (1976). Linear multiparametric programming by multicriteria simplex method. Management Science, 23, 159–170.

    Article  Google Scholar 

  • Zionts, S. (1979). MCDM: If not a roman numeral, then what? Interfaces, 9, 94–101.

    Article  Google Scholar 

  • Zionts, S., & Wallenius, J. (1976). An interactive programming method for solving the multiple criteria problem. Management Science, 22, 652–663.

    Article  Google Scholar 

  • Zionts, S., & Wallenius, J. (1980). Identifying efficient vectors: Some theory and computational results. Operations Research, 28, 788–793.

    Article  Google Scholar 

  • Zionts, S., & Wallenius, J. (1983). An interactive multiple objective linear programming method for a class of underlying nonlinear utility functions. Management Science, 29, 519–529.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramaswamy Ramesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Ramesh, R., Zionts, S. (2013). Multiple Criteria Decision Making. In: Gass, S.I., Fu, M.C. (eds) Encyclopedia of Operations Research and Management Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1153-7_653

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1153-7_653

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1137-7

  • Online ISBN: 978-1-4419-1153-7

  • eBook Packages: Business and Economics

Publish with us

Policies and ethics