Skip to main content

Response Surface Methodology

  • Reference work entry
  • First Online:
Encyclopedia of Operations Research and Management Science

Introduction

Response surface methodology (RSM) is a technique to determine design factor settings to improve or optimize the performance or response of a process or product. It combines design of experiments, regression analysis and optimization methods in a general purpose strategy to optimize the expected value of a stochastic response. In their landmark paper, Box and Wilson (1951) describe the development and application of this sequential method to chemical process design, in which yields of particular compounds were maximized. Since that time the method has been applied successfully in many areas. Recent texts devoted to RSM include Myers et al. (2009) and del Castillo (2007).

Problem Setting and Background

Mathematically, RSM solves:

$$ { \max\ }f(x) \equiv {\text{E}}\left( {Y(x)} \right) $$

where Y is a random variable whose mean is an unknown function of the d-dimensional factor vector xand whose variance (arising from experimental error) is an unknown constant value,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banks, J., Carson, J. S., II, Nelson, B. L., & Nicol, D. M. (2009). Discrete-event system simulation (5th ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Barton, R. R., & Meckesheimer, M. (2006). Metamodel-based simulation optimization. Chapter 18. In S. G. Henderson & B. L. Nelson (Eds.), Simulation: Handbooks in operations research and management science. Elsevier B.V.

    Google Scholar 

  • Bettonvil, B., del Castillo, E., & Kleijnen, J. P. C. (2009). Statistical testing of multiresponse simulation-based optimization. European Journal of Operational Research, 199, 448–458.

    Article  Google Scholar 

  • Biles, W. E. (1974). A gradient regression search procedure for simulation experimentation. In H. J. Highland, H. Steinberg, & M. F. Morris (Eds.), Proceedings of the 1974 winter simulation conference (pp. 491–497). New York: Association for Computing Machinery.

    Google Scholar 

  • Box, G. E. P., & Behnken, D. W. (1960). Some new three-level designs for the study of quantitative variables. Technometrics, 2, 455–475.

    Article  Google Scholar 

  • Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society, Series B, 26, 211–252.

    Google Scholar 

  • Box, G. E. P., & Wilson, K. B. (1951). On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society, Series B, 13, 1–45.

    Google Scholar 

  • Chang, K.-H., & Wan, H. (2009). Stochastic trust region response surface convergent method for generally distributed response surface. In M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, & R. G. Ingalls (Eds.), Proceedings of the 2009 winter simulation conference (pp. 563–573). Piscataway, NJ: Institute of Electrical and Electronics Engineers.

    Chapter  Google Scholar 

  • Cheng, R. C. H., & Currie, C. S. M. (2004). Optimization by simulation metamodelling methods. In R. G. Ingalls, M. D. Rossetti, J. S. Smith, & B. A. Peters (Eds.), Proceedings of the 2004 winter simulation conference (pp. 485–490). Piscataway, NJ: Institute of Electrical and Electronics Engineers.

    Google Scholar 

  • del Castillo, E. (2007). Process optimization: A statistical approach. New York: Springer (softcover reprint version 2010).

    Book  Google Scholar 

  • Donohue, J. M. (1995). The use of variance reduction techniques in the estimation of simulation metamodels. In C. Alexopoulos, K. Kang, D. Goldsman, & W. Lilegdon (Eds.), Proceedings of the 1995 winter simulation conference (pp. 194–200). Piscataway, NJ: Institute of Electronic and Electrical Engineers.

    Google Scholar 

  • Donohue, J. M., Houck, E. C., & Myers, R. H. (1995). Simulation designs for the estimation of quadratic response surface gradients in the presence of model misspecification. Management Science, 41, 244–262.

    Article  Google Scholar 

  • Joshi, S., Sherali, H. D., & Tew, J. D. (1998). An enhanced response surface methodology (RSM) algorithm using gradient deflection and second-order search strategies. Computers and Operations Research, 25, 531–541.

    Article  Google Scholar 

  • Kleijnen, J. P. C. (2008). Response surface methodology for constrained simulation optimization: An overview. Simulation Modelling Practice and Theory, 16, 50–64.

    Article  Google Scholar 

  • Kleijnen, J. P. C., den Hertog, D., & Angün, E. (2004). Response surface methodology’s steepest ascent and step size revisited: Correction. European Journal of Operational Research, 170, 664–666.

    Article  Google Scholar 

  • Law, A. M., & Kelton, W. D. (2000). Simulation modeling and analysis (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Li, R., & Lin, D. K. J. (2003). Analysis methods for supersaturated design: Some comparisons. Journal of Data Science, 1, 249–260.

    Google Scholar 

  • Lin, D. K. J. (1993). A new class of supersaturated designs. Technometrics, 35, 28–31.

    Article  Google Scholar 

  • Mihram, G. A. (1970). An efficient procedure for locating the optimal simular response. In P. J. Kiviat & M. Araten (Eds.), Proceedings of the fourth annual conference on the applications of simulation (pp. 154–161). New York: Association for Computing Machinery.

    Google Scholar 

  • Montgomery, D. C. (2009). Design and analysis of experiments (7th ed.). New York: John Wiley and Sons.

    Google Scholar 

  • Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2009). Response surface methodology (2nd ed.). New York: John Wiley and Sons.

    Google Scholar 

  • Neddermeijer, H. G., van Oortmarssen, G. J., Piersma, N., & Dekker, R. (2000). A framework for response surface methodology for simulation optimization. In J. A. Joines, R. R. Barton, K. Kang, & P. A. Fishwick (Eds.), Proceedings of the 2000 winter simulation conference (pp. 129–136). Piscataway, NJ: Institute of Electronic and Electrical Engineers.

    Chapter  Google Scholar 

  • Nicolai, R. P., Dekker, R., Piersma, N., & van Oortmarssen, G. J. (2004). Automated response surface methodology for stochastic optimization models with unknown variance. In R. G. Ingalls, M. D. Rossetti, J. S. Smith, & B. A. Peters (Eds.), Proceedings of the 2004 winter simulation conference (pp. 491–499). Piscataway, NJ: Institute of Electronic and Electrical Engineers.

    Google Scholar 

  • Nozari, A., Arnold, S. F., & Pegden, C. D. (1987). Statistical analysis for use with the Schruben and Margolin correlation induction strategy. Operations Research, 35, 127–139.

    Article  Google Scholar 

  • Plackett, R. L., & Burman, J. P. (1946). The design of optimum multifactorial experiments. Biometrika, 33, 305–325.

    Article  Google Scholar 

  • Sanchez, S. M., Wan, H., & Lucas, T. W. (2009). Two-phase screening procedure for simulation experiments. ACM Transactions on Modeling and Computer Simulation, 19, 1–24.

    Article  Google Scholar 

  • Satterthwaite, F. E. (1959). Random balance experimentation. Technometrics, 1, 111–137.

    Article  Google Scholar 

  • Schruben, L. W., & Margolin, B. H. (1978). Pseudorandom number assignment in statistically designed simulation and distribution sampling experiments. Journal of the American Statistical Association, 73, 504–520.

    Article  Google Scholar 

  • Staum, J. (2009). Better simulation metamodeling: The what, why and how of stochastic kriging. In M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, & R. G. Ingalls (Eds.), Proceedings of the 2009 winter simulation conference (pp. 119–133). Piscataway, NJ: Institute of Electrical and Electronics Engineers.

    Chapter  Google Scholar 

  • Tew, J. D. A., & Wilson, J. R. (1992). Validation of simulation analysis methods for the Schruben-Margolin correlation-induction strategy. Operations Research, 40, 87–103.

    Article  Google Scholar 

  • Tew, J. D., & Wilson, J. R. (1994). Estimating simulation metamodels using combined correlation-based variance reduction techniques. IIE Transactions, 26, 2–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell R. Barton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Barton, R.R. (2013). Response Surface Methodology. In: Gass, S.I., Fu, M.C. (eds) Encyclopedia of Operations Research and Management Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1153-7_1143

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1153-7_1143

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1137-7

  • Online ISBN: 978-1-4419-1153-7

  • eBook Packages: Business and Economics

Publish with us

Policies and ethics