Skip to main content

Enzyme for Biosensing Applications

  • Chapter
  • First Online:
Recognition Receptors in Biosensors

Abstract

Enzymes are very efficient biocatalysts, which have the ability to specifically recognize their substrates and to catalyze their transformation. These unique properties make the enzymes powerful tools to develop analytical devices. Enzyme-based biosensors associate intimately a biocatalyst-containing sensing layer with a transducer. The transformations catalyzed by an enzyme come with the variations of some physicochemical parameters. The role of the transducer is to convert those physicochemical signals into a measurable electrical signal. In biosensors, enzymes are generally immobilized on or close to the transducer. Depending on the chemical and physical characteristics of the enzyme support, different immobilization techniques can be implemented. The transduction mode will be adapted to the physicochemical parameter that is monitored. The variation of the concentration of a substrate or a product in the course of an enzymatic reaction can be detected with the help of a physical or chemical sensor, which then acts as a transducer. Electrochemical biosensors have been then developed involving oxidoreduction reactions. Optical biosensors are based either on fluorescence, absorbance, and bioluminescence or chemiluminescence measurements. Enzymatic reactions are usually associated with a high enthalpy change, which results in a temperature variation that can be recorded using a thermistor. Gravimetric biosensors are based on a mass variation induced by an enzymatic reaction.

Due to their proteic nature, enzymes are often fragile and this instability results in a decrease in the enzyme activity and consequently in a decrease in the biosensor performances. Although, fortunately, not all enzymes are concerned, this can limit the development of enzyme-based biosensors. The first biosensors described were the size of a pH electrode but now the progress in the transducer technology makes the fabrication of miniaturized systems possible and this allows the development of small-sized multi-biosensors and the integration of miniaturized biosensors in lab-on-a-chip-type devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AChE:

Acetylcholinesterase

ADP:

Adenosine 5′-diphosphate

AMP:

Adenosine 5′-monophosphate

ATP:

Adenosine 5′-triphosphate

BSA:

Bovine serum albumin

BuChE:

Butyrylcholinesterase

CL:

Chemiluminescence

CNT:

Carbon nanotube

DAMAB:

N,N-Didecylaminomethylbenzene

DH:

Dehydrogenase

ECL:

Electrochemiluminescence

EDC:

Ethyl-3-[1-dimethylaminopropyl]carbodiimide

ENFET:

Enzyme field-effect transistor

EuTC:

Europium (III) tetracycline

FAD:

Flavin adenine dinucleotide

FET:

Field-effect transistor

FMN:

Flavin mononucleotide

GFOR:

Glucose–fructose oxidoreductase

GOD:

Glucose oxidase

HRP:

Horseradish peroxidase

IDA:

Interdigitated array

ISE:

Ion-selective electrode

ISFET:

Ion-sensitive field-effect transistor

ITO:

Indium tin oxide

LAPS:

Light-addressable potentiometric sensor

MWCNT:

Multiwall carbon nanotube

NAD:

Nicotinamide adenine dinucleotide

NBD-PE:

Nitrobenzoxadiazole dipalmitoylphosphatidylethanolamine

NHS:

N-Hydroxysuccinimide

NP:

Nanoparticle

NTA:

Nitriloacetic acid

OD:

Oxidase

OPH:

Organophosphorus hydrolase

PDDA:

Poly (diallyldimethylammonium chloride)

PEG:

Poly (ethylene glycol)

PQQ:

Pyrroloquinoline quinone

PVA-SbQ:

Poly (vinyl alcohol) bearing styrylpyridinium groups

QCM:

Quartz crystal microbalance

Ru-bipy:

Ruthenium (II) trisbipyridyl

Ru-dpp:

Ruthenium (II) tris(4,7-diphenyl-1,10-phenanthroline)

Ru-phen:

Ruthenium (II) tris(1,10-phenanthroline)

SAM:

Self-assembled monolayer

SAW:

Surface acoustic wave

SPR:

Surface plasmon resonance

SWCNT:

Singlewall carbon nanotube

TTF-TCNQ:

Tetrathiafulvalene-tetracyanoquinodimethane

References

  • Abad JM, Pariente F, Hernandez L, Abruna HD, Lorenzo E (1998) Determination of organophosphorus and carbamate pesticides using a piezoelectric biosensor. Anal Chem 70(14):2848–2855

    Google Scholar 

  • Abdelmalek F, Shadaram M, Boushriha H (2001) Ellipsometry measurements and impedance spectroscopy on Langmuir–Blodgett membranes on Si/SiO2 for ion sensitive sensor. Sens Actuators B Chem 72(3):208–213

    Google Scholar 

  • Alfonta L, Katz E, Willner I (2000) Sensing of acetylcholine by a tricomponent-enzyme layered electrode using faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance transduction methods. Anal Chem 72(5):927–935

    Google Scholar 

  • Andreescu S, Marty J-L (2006) Twenty years research in cholinesterase biosensors: from basic research to practical applications. Biomol Eng 23(1):1–15

    Google Scholar 

  • Arnold MA (1985) Enzyme-based fiber optic sensor. Anal Chem 57(2):565–566

    Google Scholar 

  • Arya SK, Solanki PR, Singh RP, Pandey MK, Datta M, Malhotra BD (2006) Application of octadecanethiol self-assembled monolayer to cholesterol biosensor based on surface plasmon resonance technique. Talanta 69(4):918–926

    Google Scholar 

  • Arya SK, Prusty AK, Singh SP, Solanki PR, Pandey MK, Datta M, Malhotra BD (2007a) Cholesterol biosensor based on N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane self-assembled monolayer. Anal Biochem 363(2):210–218

    Google Scholar 

  • Arya SK, Solanki PR, Singh SP, Kaneto K, Pandey MK, Datta M, Malhotra BD (2007b) Poly-(3-hexylthiophene) self-assembled monolayer based cholesterol biosensor using surface plasmon resonance technique. Biosens Bioelectron 22(11):2516–2524

    Google Scholar 

  • Aylott JW, Richardson DJ, Russell DA (1997) Optical biosensing of nitrate ions using a sol–gel immobilized nitrate reductase. Analyst 122:77–80

    Google Scholar 

  • Bartic C, Campitelli A, Borghs S (2003) Field-effect detection of chemical species with hybrid organic/inorganic transistors. Appl Phys Lett 82(3):475–477

    Google Scholar 

  • Bartlett PN, Booth S, Caruana DJ, Kilburn JD, Santamaria C (1997) Modification of glucose oxidase by the covalent attachment of a tetrathiafulvalene derivative. Anal Chem 69(4):734–742

    Google Scholar 

  • Bartlett PN, Birkin PR, Wang JH, Palmisano F, De Benedetto G (1998) An enzyme switch employing direct electrochemical communication between horseradish peroxidase and a poly(aniline) film. Anal Chem 70(17):3685–3694

    Google Scholar 

  • Basu I, Subramanian RV, Mathew A, Kayastha AM, Chadha A, Bhattacharya E (2005) Solid state potentiometric sensor for the estimation of tributyrin and urea. Sens Actuators B Chem 107(1):418–423

    Google Scholar 

  • Besteman K, Lee JO, Wiertz FGM, Heering HA, Dekker C (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 3(6):727–730

    Google Scholar 

  • Bilitewski U, Drewes W, Schmid RD (1992) Thick film biosensors for urea. Sens Actuators B Chem 7(1–3):321–326

    Google Scholar 

  • Blum LJ (1997a) Bioluminescence-based fiberoptic sensors. In: Bio- and chemi-luminescent sensors. World Scientific, Singapore, pp 113–141

    Google Scholar 

  • Blum LJ (1997b) Chemiluminescence-based fiberoptic sensors. In: Bio- and chemi-luminescent sensors. World Scientific, Singapore, pp 143–179

    Google Scholar 

  • Blum LJ, Gautier SM, Coulet PR (1993) Design of bioluminescence-based fiber optic sensors for flow-injection analysis. J Biotech 31(3):357–368

    Google Scholar 

  • Blum LJ, Gautier SM, Berger A, Michel PE, Coulet PR (1995) Multicomponent organized bioactive layers for fiber-optic luminescent sensors. Sens Actuators B Chem 29(1–3):1–9

    Google Scholar 

  • Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108(2):423–461

    Google Scholar 

  • Bucur B, Andreescu S, Marty J-L (2004) Affinity methods to immobilize acetylcholinesterases for manufacturing biosensors. Anal Lett 37(8):1571–1588

    Google Scholar 

  • Busch M, Gutberlet F, Hobel W, Polster J, Schmidt HL, Schwenk M (1993a) The application of optodes in FIA-based fermentation process control using the software package FIACRE. Sens Actuators B Chem 11(1–3):407–412

    Google Scholar 

  • Busch M, Hobel W, Polster J (1993b) Software FIACRE: bioprocess monitoring on the basis of flow injection analysis using simultaneously a urea optode and a glucose luminescence sensor. J Biotech 31(3):327–343

    Google Scholar 

  • Calvo EJ, Etchenique R, Pietrasanta L, Wolosiuk A, Danilowicz C (2001) Layer-by-layer self-assembly of glucose oxidase and Os(Bpy)2ClPyCH2NH-poly(allylamine) bioelectrode. Anal Chem 73(6):1161–1168

    Google Scholar 

  • Cano M, Luis Ávila J, Mayén M, Mena ML, Pingarrón J, Rodríguez-Amaro R (2008) A new, third generation, PVC/TTF-TCNQ composite amperometric biosensor for glucose determination. J Electroanal Chem 615(1):69–74

    Google Scholar 

  • Cao Z, Jiang X, Xie Q, Yao S (2008) A third-generation hydrogen peroxide biosensor based on horseradish peroxidase immobilized in a tetrathiafulvalene-tetracyanoquinodimethane/multiwalled carbon nanotubes film. Biosens Bioelectron 24(2):222–227

    Google Scholar 

  • Caras S, Janata J (1980) Field effect transistor sensitive to penicillin. Anal Chem 52(12):1935–1937

    Google Scholar 

  • Cass AEG, Davis G, Francis GD, Hill HAO, Aston WJ, Higgins IJ, Plotkin EV, Scott LDL, Turner APF (1984) Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal Chem 56(4):667–671

    Google Scholar 

  • Castillo-Ortega MM, Rodriguez DE, Encinas JC, Plascencia M, Mendez-Velarde FA, Olayo R (2002) Conductometric uric acid and urea biosensor prepared from electroconductive polyaniline-poly(n-butyl methacrylate) composites. Sens Actuators B Chem 85(1–2):19–25

    Google Scholar 

  • Cattaneo MV, Male KB, Luong JHT (1992) A chemiluminescence fiber-optic biosensor system for the determination of glutamine in mammalian cell cultures. Biosens Bioelectron 7(8):569–574

    Google Scholar 

  • Chen H, Wang E (2000) Optical urea biosensor based on ammonium ion selective membrane. Anal Lett 33(6):997–1011

    Google Scholar 

  • Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123(16):3838–3839

    Google Scholar 

  • Choi J-W, Kim Y-K, Lee I-H, Min J, Lee WH (2001) Optical organophosphorus biosensor consisting of acetylcholinesterase/viologen hetero Langmuir–Blodgett film. Biosens Bioelectron 16(9–12):937–943

    Google Scholar 

  • Chudobova I, Vrbova E, Kodicek M, Janovcova J, Kas J (1996) Fibre optic biosensor for the determination of d-glucose based on absorption changes of immobilized glucose oxidase. Anal Chim Acta 319(1–2):103–110

    Google Scholar 

  • Clark JLC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    Google Scholar 

  • Contractor AQ, Sureshkumar TN, Narayanan R, Sukeerthi S, Lal R, Srinivasa RS (1994) Conducting polymer-based biosensors. Electrochim Acta 39(8–9):1321–1324

    Google Scholar 

  • Cordek J, Wang X, Tan W (1999) Direct immobilization of glutamate dehydrogenase on optical fiber probes for ultrasensitive glutamate detection. Anal Chem 71(8):1529–1533

    Google Scholar 

  • Cosnier S (2003) Biosensors based on electropolymerized films: new trends. Anal Bioanal Chem 377(3):507–520

    Google Scholar 

  • Csoeregi E, Schmidtke DW, Heller A (1995) Design and optimization of a selective subcutaneously implantable glucose electrode based on “wired” glucose oxidase. Anal Chem 67(7):1240–1244

    Google Scholar 

  • Danielsson B, Lundström I, Mosbach K, Stiblert L (1979) On a new enzyme transducer combination: the enzyme transistor. Anal Lett 12(11):1189–1199

    Google Scholar 

  • Danielsson B, Paul W, Alan T, Colin P (2005) SENSORS: calorimetric/enthalpimetric. In: Encyclopedia of analytical science. Elsevier, Oxford, pp. 237–245

    Google Scholar 

  • de la Rica R, Fernández-Sánchez C, Baldi A (2006) Polysilicon interdigitated electrodes as impedimetric sensors. Electrochem Commun 8(8):1239–1244

    Google Scholar 

  • de Marcos S, Galindo J, Sierra JF, Galban J, Castillo JR (1999) An optical glucose biosensor based on derived glucose oxidase immobilised onto a sol–gel matrix. Sens Actuators B Chem 57(1–3):227–232

    Google Scholar 

  • de Marcos S, Sanz V, Andreu Y, Galbán J (2006) Comparative study of polymeric supports as the base of immobilisation of chemically modified enzymes. Microchim Acta 153(3):163–170

    Google Scholar 

  • Degani Y, Heller A (1987) Direct electrical communication between chemically modified enzymes and metal electrodes. I. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme. J Phys Chem 91(6):1285–1289

    Google Scholar 

  • Dhand C, Singh SP, Arya SK, Datta M, Malhotra BD (2007) Cholesterol biosensor based on electrophoretically deposited conducting polymer film derived from nano-structured polyaniline colloidal suspension. Anal Chim Acta 602(2):244–251

    Google Scholar 

  • Di J, Shen C, Peng S, Tu Y, Li S (2005) A one-step method to construct a third-generation biosensor based on horseradish peroxidase and gold nanoparticles embedded in silica sol–gel network on gold modified electrode. Anal Chim Acta 553(1–2):196–200

    Google Scholar 

  • Di J, Peng S, Shen C, Gao Y, Tu Y (2007) One-step method embedding superoxide dismutase and gold nanoparticles in silica sol–gel network in the presence of cysteine for construction of third-generation biosensor. Biosens Bioelectron 23(1):88–94

    Google Scholar 

  • Doong R-A, Tsai H-C (2001) Immobilization and characterization of sol–gel-encapsulated acetylcholinesterase fiber-optic biosensor. Anal Chim Acta 434(2):239–246

    Google Scholar 

  • Dremel BAA, Li SY, Schmid RD (1992) On-line determination of glucose and lactate concentrations in animal cell culture based on fibre optic detection of oxygen in flow-injection analysis. Biosens Bioelectron 7(2):133–139

    Google Scholar 

  • Dzyadevych SV, Soldatkin AP, El’skaya AV, Martelet C, Jaffrezic-Renault N (2006) Enzyme biosensors based on ion-selective field-effect transistors. Anal Chim Acta 568(1–2):248–258

    Google Scholar 

  • Esseghaier C, Bergaoui Y, Tlili A, Helali S, Abdelghani A (2008) Impedance spectroscopy on immobilized streptavidin horseradish peroxidase layer for biosensing. Sens Actuators B Chem 134:112–116

    Google Scholar 

  • Fei J, Wu Y, Ji X, Wang J, Hu S, Gao Z (2003) An amperometric biosensor for glucose based on electrodeposited redox polymer/glucose oxidase film on a gold electrode. Anal Sci 19(9):1259–1263

    Google Scholar 

  • Ferretti S, Russell DA, Sapsford KE, Lee S-K, MacCraith BD, Oliva AG, Vidal M, Richardson DJ (2000) Optical biosensing of nitrite ions using cytochrome cd 1 nitrite reductase encapsulated in a sol–gel matrix. Analyst 125:1993–1999

    Google Scholar 

  • Forzani ES, Zhang H, Nagahara LA, Amlani I, Tsui R, Tao N (2004) A conducting polymer nanojunction sensor for glucose detection. Nano Lett 4(9):1785–1788

    Google Scholar 

  • Foulds NC, Lowe CR (1988) Immobilization of glucose oxidase in ferrocene-modified pyrrole polymers. Anal Chem 60(22):2473–2478

    Google Scholar 

  • Gauglitz G, Reichert M (1992) Spectral investigation and optimization of pH and urea sensors. Sens Actuators B Chem 6(1–3):83–86

    Google Scholar 

  • Gautier SM, Blum LJ, Coulet PR (1990a) Alternate determination of ATP and NADH with a single bioluminescence-based fiber-optic sensor. Sens Actuators B Chem 1(1–6):580–584

    Google Scholar 

  • Gautier SM, Blum LJ, Coulet PR (1990b) Fibre-optic biosensor based on luminescence and immobilized enzymes: microdetermination of sorbitol, ethanol and oxaloacetate. J Biolumin Chemilumin 5(1):57–63

    Google Scholar 

  • Gautier SM, Blum LJ, Coulet PR (1991) Cofactor-containing bioluminescent fibre-optic sensor: new developments with poly(vinyl alcohol) matrices. Anal Chim Acta 255(2):253–258

    Google Scholar 

  • Gavalas VG, Law SA, Christopher Ball J, Andrews R, Bachas LG (2004) Carbon nanotube aqueous sol–gel composites: enzyme-friendly platforms for the development of stable biosensors. Anal Biochem 329(2):247–252

    Google Scholar 

  • Godoy S, Leca-Bouvier B, Boullanger P, Blum LJ, Girard-Egrot AP (2005) Electrochemiluminescent detection of acetylcholine using acetylcholinesterase immobilized in a biomimetic Langmuir–Blodgett nanostructure. Sens Actuators B Chem 107(1):82–87

    Google Scholar 

  • Goeders KM, Colton JS, Bottomley LA (2008) Microcantilevers: sensing chemical interactions via mechanical motion. Chem Rev 108(2):522–542

    Google Scholar 

  • Goldfinch MJ, Lowe CR (1984) Solid-phase optoelectronic sensors for biochemical analysis. Anal Biochem 138(2):430–436

    Google Scholar 

  • Grieshaber D, MacKenzie R, Voros J, Reimhult E (2008) Electrochemical biosensors – sensor principles and architectures. Sensors 8:1400–1458

    Google Scholar 

  • Guan J-G, Miao Y-Q, Zhang Q-J (2004) Impedimetric biosensors. J Biosci Bioeng 97(4):219–226

    Google Scholar 

  • Guilbault GG, Lubrano GJ (1973) An enzyme electrode for the amperometric determination of glucose. Anal Chim Acta 64(3):439–455

    Google Scholar 

  • Guo M, Chen J, Li J, Nie L, Yao S (2004) Carbon nanotubes-based amperometric cholesterol biosensor fabricated through layer-by-layer technique. Electroanalysis 16(23):1992–1998

    Google Scholar 

  • Habermüller K, Mosbach M, Schuhmann W (2000) Electron-transfer mechanisms in amperometric biosensors. Fresenius J Anal Chem 366(6):560–568

    Google Scholar 

  • Healey BG, Walt DR (1995) Improved fiber-optic chemical sensor for penicillin. Anal Chem 67(24):4471–4476

    Google Scholar 

  • Heller A (1990) Electrical wiring of redox enzymes. Acc Chem Res 23(5):128–134

    Google Scholar 

  • Hiller M, Kranz C, Huber J, Bäuerle P, Schuhmann W (1996) Amperometric biosensors produced by immobilization of redox enzymes at polythiophene-modified electrode surfaces. Adv Mater 8(3):219–222

    Google Scholar 

  • Hlavay J, Guilbault GG (1994) Determination of sulphite by use of a fiber-optic biosensor based on a chemiluminescent reaction. Anal Chim Acta 299(1):91–96

    Google Scholar 

  • Hlavay J, Haemmerli SD, Guilbault GG (1994) Fibre-optic biosensor for hypoxanthine and xanthine based on a chemiluminescence reaction. Biosens Bioelectron 9(3):189–195

    Google Scholar 

  • Hoa DT, Kumar TNS, Punekar NS, Srinivasa RS, Lal R, Contractor AQ (1992) A biosensor based on conducting polymers. Anal Chem 64(21):2645–2646

    Google Scholar 

  • Ilangovan R, Daniel D, Krastanov A, Zachariah C, Elizabeth R (2006) Enzyme based biosensor for heavy metal ions determination. Biotechnol Biotechnol Equip 20:184–189

    Google Scholar 

  • Inoue Y, Kato Y, Sato K (1992) Surface acoustic wave method for in situ determination of the amounts of enzyme–substrate complex formed on immobilized glucose oxidase during catalytic reaction. J Chem Soc Faraday Trans 88:449–454

    Google Scholar 

  • Iyer R, Pavlov V, Katakis I, Bachas LG (2003) Amperometric sensing at high temperature with a “wired” thermostable glucose-6-phosphate dehydrogenase from Aquifex aeolicus. Anal Chem 75(15):3898–3901

    Google Scholar 

  • Jia J, Wang B, Wu A, Cheng G, Li Z, Dong S (2002) A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol–gel network. Anal Chem 74(9):2217–2223

    Google Scholar 

  • Joshi KA, Tang J, Haddon R, Wang J, Chen W, Mulchandani A (2005a) A disposable biosensor for organophosphorus nerve agents based on carbon nanotubes modified thick film strip electrode. Electroanalysis 17(1):54–58

    Google Scholar 

  • Joshi PP, Merchant SA, Wang Y, Schmidtke DW (2005b) Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites. Anal Chem 77(10):3183–3188

    Google Scholar 

  • Kajiya Y, Sugai H, Iwakura C, Yoneyama H (1991) Glucose sensitivity of polypyrrole films containing immobilized glucose oxidase and hydroquinonesulfonate ions. Anal Chem 63(1):49–54

    Google Scholar 

  • Kaku T, Karan HI, Okamoto Y (1994) Amperometric glucose sensors based on immobilized glucose oxidase–polyquinone system. Anal Chem 66(8):1231–1235

    Google Scholar 

  • Kang X, Cheng G, Dong S (2001) A novel electrochemical SPR biosensor. Electrochem Commun 3(9):489–493

    Google Scholar 

  • Kar S, Arnold MA (1992) Fiber-optic ammonia sensor for measuring synaptic glutamate and extracellular ammonia. Anal Chem 64(20):2438–2443

    Google Scholar 

  • Karousos NG, Aouabdi S, Way AS, Reddy SM (2002) Quartz crystal microbalance determination of organophosphorus and carbamate pesticides. Anal Chim Acta 469(2):189–196

    Google Scholar 

  • Khan GF, Ohwa M, Wernet W (1996) Design of a stable charge transfer complex electrode for a third-generation amperometric glucose sensor. Anal Chem 68(17):2939–2945

    Google Scholar 

  • Koncki R, Lenarczuk T, Radomska A, Glab S (2001) Optical biosensors based on Prussian blue films. Analyst 126:1080–1085

    Google Scholar 

  • Kondoh J, Matsui Y, Shiokawa S (1993) New biosensor using shear horizontal surface acoustic wave device. Jpn J Appl Phys 32:2376–2379

    Google Scholar 

  • Kondoh J, Matsui Y, Shiokawa S, Wlodarski WB (1994) Enzyme-immobilized SH-SAW biosensor. Sens Actuators B Chem 20(2–3):199–203

    Google Scholar 

  • Köneke R, Menzel C, Ulber R, Schügerl K, Scheper T, Saleemuddin M (1996) Reversible coupling of glucoenzymes on fluoride-sensitive FET biosensors based on lectin-glucoprotein binding. Biosens Bioelectron 11(12):1229–1236

    Google Scholar 

  • Koopal CGJ, de Ruiter B, Nolte RJM (1991) Amperometric biosensor based on direct communication between glucose oxidase and a conducting polymer inside the pores of a filtration membrane. J Chem Soc Chem Commun 1691–1692

    Google Scholar 

  • Korell U, Spichiger UE (1993) Membraneless immobilization of xanthine oxidase on organic conducting salt/silicone oil electrodes. Electroanalysis 5(9–10):869–876

    Google Scholar 

  • Korell U, Spichiger UE (1994) Novel membranes amperometric peroxide biosensor based on a tetrathiafulvalene-p-tetracyanoquinodimethane electrode. Anal Chem 66(4):510–515

    Google Scholar 

  • Lange MA, Chambers JQ (1985) Amperometric determination of glucose with a ferrocene-mediated glucose oxidase/polyacrylamide gel electrode. Anal Chim Acta 175:89–97

    Google Scholar 

  • Länge K, Rapp B, Rapp M (2008) Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391(5):1509–1519

    Google Scholar 

  • Langer JJ, Filipiak M, Kecinska J, Jasnowska J, Wlodarczak J, Buladowski B (2004) Polyaniline biosensor for choline determination. Surf Sci 573(1):140–145

    Google Scholar 

  • Leca B, Blum LJ (2000) Luminol electrochemiluminescence with screen-printed electrodes for low-cost disposable oxidase-based optical sensors. Analyst 125(5):789–791

    Google Scholar 

  • Leca B, Marty JL (1997a) Reagentless ethanol sensor based on a NAD-dependent dehydrogenase. Biosens Bioelectron 12(11):1083–1088

    Google Scholar 

  • Leca B, Marty JL (1997b) Reusable ethanol sensor based on a NAD(+)-dependent dehydrogenase without coenzyme addition. Anal Chim Acta 340(1–3):143–148

    Google Scholar 

  • Leca B, Morelis RM, Coulet PR (1995) Design of a choline sensor via direct coating of the transducer by photopolymerization of the sensing layer. Sens Actuators B Chem 27(1–3):436–439

    Google Scholar 

  • Leca BD, Verdier AM, Blum LJ (2001) Screen-printed electrodes as disposable or reusable optical devices for luminol electrochemiluminescence. Sens Actuators B Chem 74(1–3):190–193

    Google Scholar 

  • Lee S-J, Saleemuddin M, Scheper T, Loos H, Sahm H (1994a) A fluorometric fiber-optic biosensor for dual analysis of glucose and fructose using glucose–fructose-oxidoreductase isolated from Zymomonas mobilis. J Biotech 36(1):39–44

    Google Scholar 

  • Lee SJ, Scheper T, Buckmann AF (1994b) Application of a flow injection fibre optic biosensor for the analysis of different amino acids. Biosens Bioelectron 9(1):29–32

    Google Scholar 

  • Lee W-Y, Kim S-R, Kim T-H, Lee KS, Shin M-C, Park J-K (2000a) Sol–gel-derived thick-film conductometric biosensor for urea determination in serum. Anal Chim Acta 404(2):195–203

    Google Scholar 

  • Lee W-Y, Lee KS, Kim T-H, Shin M-C, Park J-K (2000b) Microfabricated conductometric urea biosensor based on sol–gel immobilized urease. Electroanalysis 12(1):78–82

    Google Scholar 

  • Lenarczuk T, Wencel D, Glab S, Koncki R (2001) Prussian blue-based optical glucose biosensor in flow-injection analysis. Anal Chim Acta 447(1–2):23–32

    Google Scholar 

  • Li L, Walt DR (1995) Dual-analyte fiber-optic sensor for the simultaneous and continuous measurement of glucose and oxygen. Anal Chem 67(20):3746–3752

    Google Scholar 

  • Li C-I, Lin Y-H, Shih C-L, Tsaur J-P, Chau L-K (2002a) Sol–gel encapsulation of lactate dehydrogenase for optical sensing of l-lactate. Biosens Bioelectron 17(4):323–330

    Google Scholar 

  • Li YX, Zhu LD, Zhu GY, Zhao CA (2002b) A chemiluminescence optical fiber glucose biosensor based on co-immobilizing glucose oxidase and horseradish peroxidase in a sol–gel film. Chem Res Chin Univ 18(1):12–15

    Google Scholar 

  • Lin Y, Lu F, Wang J (2004) Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents. Electroanalysis 16(1–2):145–149

    Google Scholar 

  • Liu S, Ju H (2003) Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosens Bioelectron 19(3):177–183

    Google Scholar 

  • Liu D, Ge K, Chen K, Nie L, Yao S (1995) Clinical analysis of urea in human blood by coupling a surface acoustic wave sensor with urease extracted from pumpkin seeds. Anal Chim Acta 307(1):61–69

    Google Scholar 

  • Liu J, Chou A, Rahmat W, Paddon-Row MN, Gooding JJ (2005) Achieving direct electrical connection to glucose oxidase using aligned single walled carbon nanotube arrays. Electroanalysis 17(1):38–46

    Google Scholar 

  • Llopis X, Merkoçi A, del Valle M, Alegret S (2005) Integration of a glucose biosensor based on an epoxy-graphite-TTF·TCNQ-GOD biocomposite into a FIA system. Sens Actuators B Chem 107(2):742–748

    Google Scholar 

  • Lojou É, Bianco P (2004) Membrane electrodes for protein and enzyme electrochemistry. Electroanalysis 16(13–14):1113–1121

    Google Scholar 

  • Luo X-L, Xu J-J, Zhao W, Chen H-Y (2004a) Glucose biosensor based on ENFET doped with SiO2 nanoparticles. Sens Actuators B Chem 97(2–3):249–255

    Google Scholar 

  • Luo X-L, Xu J-J, Zhao W, Chen H-Y (2004b) A novel glucose ENFET based on the special reactivity of MnO2 nanoparticles. Biosens Bioelectron 19(10):1295–1300

    Google Scholar 

  • Luo X, Killard AJ, Morrin A, Smyth MR (2006) Enhancement of a conducting polymer-based biosensor using carbon nanotube-doped polyaniline. Anal Chim Acta 575(1):39–44

    Google Scholar 

  • Mabeck J, Malliaras G (2006) Chemical and biological sensors based on organic thin-film transistors. Anal Bioanal Chem 384(2):343–353

    Google Scholar 

  • Marquette CA, Blum LJ (1999) Luminol electrochemiluminescence-based fibre optic biosensors for flow injection analysis of glucose and lactate in natural samples. Anal Chim Acta 381(1):1–10

    Google Scholar 

  • Marquette C, Blum L (2006) Applications of the luminol chemiluminescent reaction in analytical chemistry. Anal Bioanal Chem 385(3):546–554

    Google Scholar 

  • Marquette C, Blum L (2008) Electro-chemiluminescent biosensing. Anal Bioanal Chem 390(1):155–168

    Google Scholar 

  • Marquette CA, Leca BD, Blum LJ (2001) Electrogenerated chemiluminescence of luminol for oxidase-based fibre-optic biosensors. Luminescence 16(2):159–165

    Google Scholar 

  • Martin SP, Lamb DJ, Lynch JM, Reddy SM (2003) Enzyme-based determination of cholesterol using the quartz crystal acoustic wave sensor. Anal Chim Acta 487(1):91–100

    Google Scholar 

  • Mascini M (1995) Enzyme-based optical-fibre biosensors. Sens Actuators B Chem 29(1–3):121–125

    Google Scholar 

  • McCurley MF (1994) An optical biosensor using a fluorescent, swelling sensing element. Biosens Bioelectron 9(7):527–533

    Google Scholar 

  • Mena ML, Yáñez-Sedeño P, Pingarrón JM (2005) A comparison of different strategies for the construction of amperometric enzyme biosensors using gold nanoparticle-modified electrodes. Anal Biochem 336(1):20–27

    Google Scholar 

  • Merkoçi A, Braga S, Fàbregas E, Alegret S (1999) A potentiometric biosensor for d-amygdalin based on a consolidated biocomposite membrane. Anal Chim Acta 391(1):65–72

    Google Scholar 

  • Michel PE, Gautier-Sauvigne SM, Blum LJ (1998) Luciferin incorporation in the structure of acrylic microspheres with subsequent confinement in a polymeric film: a new method to develop a controlled release-based biosensor for ATP, ADP and AMP. Talanta 47(1):169–181

    Google Scholar 

  • Mitsubayashi K, Kon T, Hashimoto Y (2003) Optical bio-sniffer for ethanol vapor using an oxygen-sensitive optical fiber. Biosens Bioelectron 19(3):193–198

    Google Scholar 

  • Mourzina IG, Yoshinobu T, Ermolenko YE, Vlasov YG, Schöning MJ, Iwasaki H (2004) Immobilization of urease and cholinesterase on the surface of semiconductor transducer for the development of light-addressable potentiometric sensors. Microchim Acta 144(1):41–50

    Google Scholar 

  • Moussy F, Jakeway S, Harrison DJ, Rajotte RV (1994) In vitro and in vivo performance and lifetime of perfluorinated ionomer-coated glucose sensors after high-temperature curing. Anal Chem 66(22):3882–3888

    Google Scholar 

  • Mulchandani A, Pan S, Chen W (1999) Fiber-optic enzyme biosensor for direct determination of organophosphate nerve agents. Biotechnol Prog 15(1):130–134

    Google Scholar 

  • Narayanaswamy R, Sevilla F (1988) An optical fibre probe for the determination of glucose based on immobilized glucose dehydrogenase. Anal Lett 21(7):1165–1175

    Google Scholar 

  • Navas Diaz A, Ramos Peinado MC (1997) Sol–gel cholinesterase biosensor for organophosphorus pesticide fluorimetric analysis. Sens Actuators B Chem 39(1–3):426–431

    Google Scholar 

  • Nishizawa M, Matsue T, Uchida I (1992) Penicillin sensor based on a microarray electrode coated with pH-responsive polypyrrole. Anal Chem 64(21):2642–2644

    Google Scholar 

  • Noguer T, Leca B, Jeanty G, Marty JL (1999) Biosensors based on enzyme inhibition: detection of organophosphorus and carbamate insecticides and dithiocarbamate fungicides. Field Anal Chem Technol 3(3):171–178

    Google Scholar 

  • Notsu H, Tatsuma T, Fujishima A (2002) Tyrosinase-modified boron-doped diamond electrodes for the determination of phenol derivatives. J Electroanal Chem 523(1–2):86–92

    Google Scholar 

  • Ohara TJ, Rajagopalan R, Heller A (1994) “Wired” enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances. Anal Chem 66(15):2451–2457

    Google Scholar 

  • Opitz N, Lubbers DW (1988) Electrochromic dyes, enzyme reactions and hormone–protein interactions in fluorescence optic sensor (optode) technology. Talanta 35(2):123–127

    Google Scholar 

  • Palmisano F, Centonze D, Guerrieri A, Zambonin PG (1993) An interference-free biosensor based on glucose oxidase electrochemically immobilized in a non-conducting poly(pyrrole) film for continuous subcutaneous monitoring of glucose through microdialysis sampling. Biosens Bioelectron 8(9–10):393–399

    Google Scholar 

  • Palmisano F, Rizzi R, Centonze D, Zambonin PG (2000) Simultaneous monitoring of glucose and lactate by an interference and cross-talk free dual electrode amperometric biosensor based on electropolymerized thin films. Biosens Bioelectron 15(9–10):531–539

    Google Scholar 

  • Palmisano F, Zambonin PG, Centonze D, Quinto M (2002) A disposable, reagentless, third-generation glucose biosensor based on overoxidized poly(pyrrole)/tetrathiafulvalene-tetracyanoquinodimethane composite. Anal Chem 74(23):5913–5918

    Google Scholar 

  • Pandey PC, Mishra AP (1988) Conducting polymer-coated enzyme microsensor for urea. Analyst 113:329–331

    Google Scholar 

  • Pandey PC, Upadhyay S, Sharma S (2003) TTF-TCNQ functionalized ormosil based electrocatalytic biosensor: a comparative study on bioelectrocatalysis. Electroanalysis 15(13):1115–1119

    Google Scholar 

  • Papkovsky DB (1993) Luminescent porphyrins as probes for optical (bio)sensors. Sens Actuators B Chem 11(1–3):293–300

    Google Scholar 

  • Papkovsky DB, Olah J, Kurochkin IN (1993) Fibre-optic lifetime-based enzyme biosensor. Sens Actuators B Chem 11(1–3):525

    Google Scholar 

  • Park K-Y, Choi S-B, Lee M, Sohn B-K, Choi S-Y (2002) ISFET glucose sensor system with fast recovery characteristics by employing electrolysis. Sens Actuators B Chem 83(1–3):90–97

    Google Scholar 

  • Pasic A, Koehler H, Schaupp L, Pieber T, Klimant I (2006) Fiber-optic flow-through sensor for online monitoring of glucose. Anal Bioanal Chem 386(5):1293–1302

    Google Scholar 

  • Pasic A, Koehler H, Klimant I, Schaupp L (2007) Miniaturized fiber-optic hybrid sensor for continuous glucose monitoring in subcutaneous tissue. Sens Actuators B Chem 122(1):60–68

    Google Scholar 

  • Patolsky F, Zayats M, Katz E, Willner I (1999) Precipitation of an insoluble product on enzyme monolayer electrodes for biosensor applications: characterization by faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance analyses. Anal Chem 71(15):3171–3180

    Google Scholar 

  • Patolsky F, Weizmann Y, Willner I (2004) Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew Chem Int Ed Engl 43(16):2113–2117

    Google Scholar 

  • Pei J, Tian F, Thundat T (2004) Glucose biosensor based on the microcantilever. Anal Chem 76(2):292–297

    Google Scholar 

  • Pishko MV, Katakis I, Lindquist S-E, Ye L, Heller BAGA (1990) Direct electrical communication between graphite electrodes and surface adsorbed glucose oxidase/redox polymer complexes. Angew Chem Int Ed Engl 29(1):82–84

    Google Scholar 

  • Poghossian A, Schöning MJ (2004) Detecting both physical and (bio-)chemical parameters by means of ISFET devices. Electroanalysis 16(22):1863–1872

    Google Scholar 

  • Poghossian A, Schöning MJ (2007) Chemical and biological field-effect sensors for liquids – status report. In: Marks RS, Cullen DC, Karube I, Lowe CR, Weetall HH (eds) Handbook of biosensors and biochips. Wiley, Chichester, pp 395–411

    Google Scholar 

  • Poghossian A, Schoning MJ, Schroth P, Simonis A, Luth H (2001a) An ISFET-based penicillin sensor with high sensitivity, low detection limit and long lifetime. Sens Actuators B Chem 76(1–3):519–526

    Google Scholar 

  • Poghossian A, Yoshinobu T, Simonis A, Ecken H, Luth H, Schoning MJ (2001b) Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS? Sens Actuators B Chem 78(1–3):237–242

    Google Scholar 

  • Preuschoff F, Spohn U, Janasek D, Weber E (1994) Photodiode-based chemiluminometric biosensors for hydrogen peroxide and l-lysine. Biosens Bioelectron 9(8):543–549

    Google Scholar 

  • Qian L, Yang X (2006) Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor. Talanta 68(3):721–727

    Google Scholar 

  • Ramanathan K, Danielsson B (2001) Principles and applications of thermal biosensors. Biosens Bioelectron 16(6):417–423

    Google Scholar 

  • Ramos MC, Torijas MC, Diaz AN (2001) Enhanced chemiluminescence biosensor for the determination of phenolic compounds and hydrogen peroxide. Sens Actuators B Chem 73–75(1):71

    Google Scholar 

  • Rebriiev AV, Starodub NF (2004) Enzymatic biosensor based on the ISFET and photopolymeric membrane for the determination of urea. Electroanalysis 16(22):1891–1895

    Google Scholar 

  • Ren C, Song Y, Li Z, Zhu G (2005) Hydrogen peroxide sensor based on horseradish peroxidase immobilized on a silver nanoparticles/cysteamine/gold electrode. Anal Bioanal Chem 381(6):1179–1185

    Google Scholar 

  • Rhines TD, Arnold MA (1989) Fiber-optic biosensor for urea based on sensing of ammonia gas. Anal Chim Acta 227:387–396

    Google Scholar 

  • Riklin A, Katz E, Wiliner I, Stocker A, Buckmann AF (1995) Improving enzyme–electrode contacts by redox modification of cofactors. Nature 376(6542):672–675

    Google Scholar 

  • Rochette JF, Sacher E, Meunier M, Luong JHT (2005) A mediatorless biosensor for putrescine using multiwalled carbon nanotubes. Anal Biochem 336(2):305–311

    Google Scholar 

  • Rosenzweig Z, Kopelman R (1996) Analytical properties and sensor size effects of a micrometer-sized optical fiber glucose biosensor. Anal Chem 68(8):1408–1413

    Google Scholar 

  • Rubio-Retama J, Hernando J, Lopez-Ruiz B, Hartl A, Steinmuller D, Stutzmann M, Lopez-Cabarcos E, AntonioGarrido J (2006) Synthetic nanocrystalline diamond as a third-generation biosensor support. Langmuir 22(13):5837–5842

    Google Scholar 

  • Russell RJ, Pishko MV, Simonian AL, Wild JR (1999) Poly(ethylene glycol) hydrogel-encapsulated fluorophore–enzyme conjugates for direct detection of organophosphorus neurotoxins. Anal Chem 71(21):4909–4912

    Google Scholar 

  • Salimi A, Compton RG, Hallaj R (2004) Glucose biosensor prepared by glucose oxidase encapsulated sol–gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode. Anal Biochem 333(1):49–56

    Google Scholar 

  • Sanz V, de Marcos S, Galban J (2007) A reagentless optical biosensor based on the intrinsic absorption properties of peroxidase. Biosens Bioelectron 22(6):956–964

    Google Scholar 

  • Sasso SV, Pierce RJ, Walla R, Yacynych AM (1990) Electropolymerized 1,2-diaminobenzene as a means to prevent interferences and fouling and to stabilize immobilized enzyme in electrochemical biosensors. Anal Chem 62(11):1111–1117

    Google Scholar 

  • Sassolas A, Blum LJ, Leca-Bouvier BD (2008) Electrogeneration of polyluminol and chemiluminescence for new disposable reagentless optical sensors. Anal Bioanal Chem 390(3):865–871

    Google Scholar 

  • Sassolas A, Blum LJ, Leca-Bouvier B (2009) Polymeric luminol on pre-treated screen-printed electrodes for the design of performant reagentless (bio)sensors. Sens Actuators B Chem 139:214–221

    Google Scholar 

  • Schäferling M, Wolfbeis OS (2007) Europium tetracycline as a luminescent probe for nucleoside phosphates and its application to the determination of kinase activity. Chemistry 13(15):4342–4349

    Google Scholar 

  • Schaffar BPH, Wolfbeif OS (1990) A fast responding fibre optic glucose biosensor based on an oxygen optrode. Biosens Bioelectron 5(2):137–148

    Google Scholar 

  • Schlapfer P, Mindt W, Racine PH (1974) Electrochemical measurement of glucose using various electron acceptors. Clin Chim Acta 57(3):283–289

    Google Scholar 

  • Schubert F (1993) A fiber-optic enzyme sensor for the determination of adenosine diphosphate using internal analyte recycling. Sens Actuators B Chem 11(1–3):531–535

    Google Scholar 

  • Schuhmann W, Lammert R, Hämmerle M, Schmidt H-L (1991) Electrocatalytic properties of polypyrrole in amperometric electrodes. Biosens Bioelectron 6(8):689–697

    Google Scholar 

  • Schuhmann W, Kranz C, Huber J, Wohlschläger H (1993) Conducting polymer-based amperometric enzyme electrodes. Towards the development of miniaturized reagentless biosensors. Synth Met 61(1–2):31–35

    Google Scholar 

  • Seker S, Becerik I (2004) A neural network model in the calibration of glucose sensor based on the immobilization of glucose oxidase into polypyrrole matrix. Electroanalysis 16(18):1542–1549

    Google Scholar 

  • Shervedani RK, Mehrjardi AH, Zamiri N (2006) A novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensor. Bioelectrochemistry 69(2):201–208

    Google Scholar 

  • Shul’ga AA, Soldatkin AP, El’skaya AV, Dzyadevich SV, Patskovsky SV, Strikha VI (1994) Thin-film conductometric biosensors for glucose and urea determination. Biosens Bioelectron 9(3):217–223

    Google Scholar 

  • Sierra JF, Galban J, Castillo JR (1997) Determination of glucose in blood based on the intrinsic fluorescence of glucose oxidase. Anal Chem 69(8):1471–1476

    Google Scholar 

  • Simonian AL, Flounders AW, Wild JR (2004) FET-based biosensors for the direct detection of organophosphate neurotoxins. Electroanalysis 16(22):1896–1906

    Google Scholar 

  • Solanki PR, Arya SK, Nishimura Y, Iwamoto M, Malhotra BD (2007) Cholesterol biosensor based on amino-undecanethiol self-assembled monolayer using surface plasmon resonance technique. Langmuir 23(13):7398–7403

    Google Scholar 

  • Soldatkin AP, Arkhypova VN, Dzyadevych SV, El’skaya AV, Gravoueille J-M, Jaffrezic-Renault N, Martelet C (2005) Analysis of the potato glycoalkaloids by using of enzyme biosensor based on pH-ISFETs. Talanta 66(1):28–33

    Google Scholar 

  • Song Y, Wang L, Ren C, Zhu G, Li Z (2006) A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized in DNA films on a gold electrode. Sens Actuators B Chem 114(2):1001–1006

    Google Scholar 

  • Spohn U, Preuschoff F, Blankenstein G, Janasek D, Kula MR, Hacker A (1995) Chemiluminometric enzyme sensors for flow-injection analysis. Anal Chim Acta 303(1):109–120

    Google Scholar 

  • Sternberg R, Bindra DS, Wilson GS, Thevenot DR (1988) Covalent enzyme coupling on cellulose acetate membranes for glucose sensor development. Anal Chem 60(24):2781–2786

    Google Scholar 

  • Stoica L, Ludwig R, Haltrich D, Gorton L (2006) Third-generation biosensor for lactose based on newly discovered cellobiose dehydrogenase. Anal Chem 78(2):393–398

    Google Scholar 

  • Subramanian A, Oden PI, Kennel SJ, Jacobson KB, Warmack RJ, Thundat T, Doktycz MJ (2002) Glucose biosensing using an enzyme-coated microcantilever. Appl Phys Lett 81(2):385–387

    Google Scholar 

  • Tatsuma T, Mori H, Fujishima A (2000) Electron transfer from diamond electrodes to heme peptide and peroxidase. Anal Chem 72(13):2919–2924

    Google Scholar 

  • Thevenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16(1–2):121–131

    Google Scholar 

  • Tian F, Xu B, Zhu L, Zhu G (2001) Hydrogen peroxide biosensor with enzyme entrapped within electrodeposited polypyrrole based on mediated sol–gel derived composite carbon electrode. Anal Chim Acta 443(1):9–16

    Google Scholar 

  • Tian Y, Mao L, Okajima T, Ohsaka T (2002) Superoxide dismutase-based third-generation biosensor for superoxide anion. Anal Chem 74(10):2428–2434

    Google Scholar 

  • Tian Y, Mao L, Okajima T, Ohsaka T (2005) A carbon fiber microelectrode-based third-generation biosensor for superoxide anion. Biosens Bioelectron 21(4):557–564

    Google Scholar 

  • Trettnak W, Wolfbeis OS (1989a) A fiber optic lactate biosensor with an oxygen optrode as the transducer. Anal Lett 22(9):2191–2197

    Google Scholar 

  • Trettnak W, Wolfbeis OS (1989b) Fully reversible fibre-optic glucose biosensor based on the intrinsic fluorescence of glucose oxidase. Anal Chim Acta 221:195–203

    Google Scholar 

  • Trettnak W, Leiner MJP, Wolfbeis OS (1989) Fibre-optic glucose sensor with a pH optrode as the transducer. Biosensors 4(1):15–26

    Google Scholar 

  • Trettnak W, Reininger F, Zinterl E, Wolfbeis OS (1993) Fiber-optic remote detection of pesticides and related inhibitors of the enzyme acetylcholine esterase. Sens Actuators B Chem 11(1–3):87–93

    Google Scholar 

  • Tsafack VC, Marquette CA, Leca B, Blum LJ (2000a) An electrochemiluminescence-based fibre optic biosensor for choline flow injection analysis. Analyst 125:151–155

    Google Scholar 

  • Tsafack VC, Marquette CA, Pizzolato F, Blum LJ (2000b) Chemiluminescent choline biosensor using histidine-modified peroxidase immobilised on metal-chelate substituted beads and choline oxidase immobilised on anion-exchanger beads co-entrapped in a photocrosslinkable polymer. Biosens Bioelectron 15(3–4):125–133

    Google Scholar 

  • Tsai W-C, Cass AEG (1995) Ferrocene-modified horseradish peroxidase enzyme electrodes. A kinetic study on reactions with hydrogen peroxide and linoleic hydroperoxide. Analyst 120:2249–2254

    Google Scholar 

  • Tsai YC, Li SC, Chen JM (2005) Cast thin film biosensor design based on a Nafion backbone, a multiwalled carbon nanotube conduit, and a glucose oxidase function. Langmuir 21(8):3653–3658

    Google Scholar 

  • Tymecki L, Zwierkowska E, Koncki R (2005) Strip bioelectrochemical cell for potentiometric measurements fabricated by screen-printing. Anal Chim Acta 538(1–2):251–256

    Google Scholar 

  • Updike SJ, Hicks GP (1967) The enzyme electrode. Nature 214:986–988

    Google Scholar 

  • Vaidya R, Wilkins E (1994) Effect of interference on amperometric glucose biosensors with cellulose acetate membranes. Electroanalysis 6(8):677–682

    Google Scholar 

  • Védrine C, Fabiano S, Tran-Minh C (2003) Amperometric tyrosinase based biosensor using an electrogenerated polythiophene film as an entrapment support. Talanta 59(3):535–544

    Google Scholar 

  • Vidal J-C, Espuelas J, Castillo J-R (2004) Amperometric cholesterol biosensor based on in situ reconstituted cholesterol oxidase on an immobilized monolayer of flavin adenine dinucleotide cofactor. Anal Biochem 333(1):88–98

    Google Scholar 

  • Viticoli M, Curulli A, Cusma A, Kaciulis S, Nunziante S, Pandolfi L, Valentini F, Padeletti G (2006) Third-generation biosensors based on TiO2 nanostructured films. Mater Sci Eng C 26(5–7):947–951

    Google Scholar 

  • Viveros L, Paliwal S, McCrae D, Wild J, Simonian A (2006) A fluorescence-based biosensor for the detection of organophosphate pesticides and chemical warfare agents. Sens Actuators B Chem 115(1):150–157

    Google Scholar 

  • Volotovsky V, Kim N (1998) Cyanide determination by an ISFET-based peroxidase biosensor. Biosens Bioelectron 13(9):1029–1033

    Google Scholar 

  • Walker JP, Asher SA (2005) Acetylcholinesterase-based organophosphate nerve agent sensing photonic crystal. Anal Chem 77(6):1596–1600

    Google Scholar 

  • Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108(2):814–825

    Google Scholar 

  • Wang J, Musameh M (2005) Carbon-nanotubes doped polypyrrole glucose biosensor. Anal Chim Acta 539(1–2):209–213

    Google Scholar 

  • Wang X, Dzyadevych SV, Chovelon J-M, Renault NJ, Chen L, Xia S, Zhao J (2006) Development of a conductometric nitrate biosensor based on methyl viologen/Nafion® composite film. Electrochem Commun 8(2):201–205

    Google Scholar 

  • Watson LD, Maynard P, Cullen DC, Sethi RS, Brettle J, Lowe CR (1987) A microelectronic conductimetric biosensor. Biosensors 3:101–115

    Google Scholar 

  • Willner I, Katz E (2000) Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew Chem Int Ed Engl 39(7):1180–1218

    Google Scholar 

  • Willner I, Heleg-Shabtai V, Blonder R, Katz E, Tao G, Buckmann AF, Heller A (1996) Electrical wiring of glucose oxidase by reconstitution of FAD-modified monolayers assembled onto Au-electrodes. J Am Chem Soc 118(42):10321–10322

    Google Scholar 

  • Wolfbeis OS, Li H (1993) Fluorescence optical urea biosensor with an ammonium optrode as transducer. Biosens Bioelectron 8(3–4):161–166

    Google Scholar 

  • Wolfbeis OS, Oehme I, Papkovskaya N, Klimant I (2000) Sol–gel based glucose biosensors employing optical oxygen transducers, and a method for compensating for variable oxygen background. Biosens Bioelectron 15(1–2):69–76

    Google Scholar 

  • Wolfbeis OS, Schäferling M, Dürkop A (2003) Reversible optical sensor membrane for hydrogen peroxide using an immobilized fluorescent probe, and its application to a glucose biosensor. Microchim Acta 143(4):221–227

    Google Scholar 

  • Wu XJ, Choi MMF (2003) Hydrogel network entrapping cholesterol oxidase and octadecylsilica for optical biosensing in hydrophobic organic or aqueous micelle solvents. Anal Chem 75(16):4019–4027

    Google Scholar 

  • Wu XJ, Choi MMF (2004) An optical glucose biosensor based on entrapped-glucose oxidase in silicate xerogel hybridised with hydroxyethyl carboxymethyl cellulose. Anal Chim Acta 514(2):219–226

    Google Scholar 

  • Wu J, Qu Y (2006) Mediator-free amperometric determination of glucose based on direct electron transfer between glucose oxidase and an oxidized boron-doped diamond electrode. Anal Bioanal Chem 385(7):1330–1335

    Google Scholar 

  • Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I (2003) “Plugging into enzymes”: nanowiring of redox enzymes by a gold nanoparticle. Science 299(5614):1877–1881

    Google Scholar 

  • Xie X, Suleiman AA, Guilbault GG (1990) A urea fiber optic biosensor based on absorption measurement. Anal Lett 23(12):2143–2153

    Google Scholar 

  • Xie X, Suleiman AA, Guilbault GG (1991) Determination of urea in serum by a fiber-optic fluorescence biosensor. Talanta 38(10):1197–1200

    Google Scholar 

  • Xie X, Suleiman AA, Guilbault GG, Yang Z, Z-a S (1992a) Flow-injection determination of ethanol by fiber-optic chemiluminescence measurement. Anal Chim Acta 266(2):325–329

    Google Scholar 

  • Xie X, Suleiman AA, Guilbault GG (1992b) A fluorescence-based fiber optic biosensor for the flow-injection analysis of penicillin. Biotechnol Bioeng 39(11):1147–1150

    Google Scholar 

  • Xie X, Shakhsher Z, Suleiman AA, Guilbault GG, Yang Z, Z-a S (1994) A fiber optic biosensor for sulfite analysis in food. Talanta 41(2):317–321

    Google Scholar 

  • Xu J-J, Zhao W, Luo X-L, Chen H-Y (2005a) A sensitive biosensor for lactate based on layer-by-layer assembling MnO2 nanoparticles and lactate oxidase on ion-sensitive field-effect transistors. Chem Commun 792–794

    Google Scholar 

  • Xu JJ, Wang G, Zhang Q, Xia XH, Chen HY (2005b) Third generation horseradish peroxidase biosensor based on self-assembling carbon nanotubes to gold electrode surface. Chin Chem Lett 16(4):523–526

    Google Scholar 

  • Yabuki S-I, Shinohara H, Aizawa M (1989) Electro-conductive enzyme membrane. J Chem Soc Chem Commun 945–946

    Google Scholar 

  • Yamato H, Ohwa M, Wernet W (1995) A polypyrrole/three-enzyme electrode for creatinine detection. Anal Chem 67(17):2776–2780

    Google Scholar 

  • Yan X, Ji H-F, Lvov Y (2004) Modification of microcantilevers using layer-by-layer nanoassembly film for glucose measurement. Chem Phys Lett 396(1–3):34–37

    Google Scholar 

  • Yan X, Xu XK, Ji HF (2005) Glucose oxidase multilayer modified microcantilevers for glucose measurement. Anal Chem 77(19):6197–6204

    Google Scholar 

  • Yang Y, Wang Z, Yang M, Guo M, Wu Z, Shen G, Yu R (2006) Inhibitive determination of mercury ion using a renewable urea biosensor based on self-assembled gold nanoparticles. Sens Actuators B Chem 114(1):1–8

    Google Scholar 

  • Yin L-T, Chou J-C, Chung W-Y, Sun T-P, Hsiung K-P, Hsiung S-K (2001) Glucose ENFET doped with MnO2 powder. Sens Actuators B Chem 76(1–3):187–192

    Google Scholar 

  • Zayats M, Kharitonov AB, Katz E, Buckmann AF, Willner I (2000) An integrated NAD+-dependent enzyme-functionalized field-effect transistor (ENFET) system: development of a lactate biosensor. Biosens Bioelectron 15(11–12):671–680

    Google Scholar 

  • Zayats M, Katz E, Baron R, Willner I (2005) Reconstitution of apo-glucose dehydrogenase on pyrroloquinoline quinone-functionalized Au nanoparticles yields an electrically contacted biocatalyst. J Am Chem Soc 127(35):12400–12406

    Google Scholar 

  • Zayats M, Willner B, Willner I (2008) Design of amperometric biosensors and biofuel cells by the reconstitution of electrically contacted enzyme electrodes. Electroanalysis 20(6):583–601

    Google Scholar 

  • Zhang W, Chang H, Rechnitz GA (1997) Dual-enzyme fiber optic biosensor for pyruvate. Anal Chim Acta 350(1–2):59–65

    Google Scholar 

  • Zhou Z, Qiao L, Zhang P, Xiao D, Choi M (2005) An optical glucose biosensor based on glucose oxidase immobilized on a swim bladder membrane. Anal Bioanal Chem 383(4):673–679

    Google Scholar 

  • Zhou Q, Xie Q, Fu Y, Su Z, Jia X, Yao S (2007) Electrodeposition of carbon nanotubes-chitosan-glucose oxidase biosensing composite films triggered by reduction of p-benzoquinone or H2O2. J Phys Chem B 111(38):11276–11284

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Leca-Bouvier, B.D., Blum, L.J. (2010). Enzyme for Biosensing Applications. In: Zourob, M. (eds) Recognition Receptors in Biosensors. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0919-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0919-0_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0918-3

  • Online ISBN: 978-1-4419-0919-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics