Skip to main content

Biochar , Tool for Climate Change Mitigation and Soil Management

  • Reference work entry
Encyclopedia of Sustainability Science and Technology

Definition of the Subject

Biochar is the solid remains of any organic material that has been heated to at least 350oC in a zero-oxygen or oxygen-limited environment, which is intended to be mixed with soils. If the solid remains are not suitable for addition to soils, or will be burned as a fuel or used as an aggregate in construction, it is defined as char not biochar. There is a very wide range of potential biochar feedstocks, e.g., wood waste, timber, agricultural residues and wastes (straws, bagasse, manure, husks, shells, fibers, etc.), leaves, food wastes, paper and sewage sludge, green waste, distiller’s grain, and many others. Pyrolysis is usually the technology of choice for producing biochar, though biomass gasification also produces smaller char yields. Syngas and pyrolytic bio-liquids, which have a potential use as energy carriers, are produced alongside biochar.

The strongest evidence for the beneficial effects of char additions to soils arises from the terra pretasoil...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Biochar:

The porous carbonaceous solid produced by thermochemical conversion of organic materials in an oxygen-depleted atmosphere which has physiochemical properties suitable for the safe and long-term storage of carbon in the environment and, potentially, soil improvement.

Black carbon:

The continuum of solid combustion products ranging from slightly charred degradable biomass to highly condensed, refractory soot. All components of this continuum are high in carbon content, chemically heterogeneous, and dominated by aromatic structures.

Carbon (dioxide) equivalent:

Common measure of global warming potential constructed by converting the emissions of the six greenhouse gases under the Kyoto Protocol of the UNFCCC into the equivalent radiative forcing units of CO2. CO2, N2O, and CH4 are the relevant Kyoto gases to be considered in evaluating biochar.

Carbon abatement (CA):

The net effect of changes in greenhouse gas fluxes that result from the production and application of biochar. This can include any or all of the following: carbon stored in biochar; CO2 equivalent emissions released during pyrolysis; offset CO2 equivalent emissions arising from avoided fossil fuel combustion; offset CO2 equivalent emissions from reduced chemical inputs to agriculture; change in nitrous oxide and/or methane flux through biochar addition to soils; change in carbon in soil organic matter due to biochar addition; and offset CO2 equivalent emissions from changed operations in the field. Which of these components is included will be specified in the text.

Carbon credit:

Any mechanism for allocating an economic value to a unit of carbon (dioxide) abatement. The most common units are EU Allowances (EUAs) (under the EU ETS), Emission Reduction Units (ERUs) (Joint Implementation, UNFCCC), Certified Emission Reductions (CERs) (Clean Development Mechanism, UNFCCC), and Verified Emission Reductions (VERs) (voluntary carbon market).

Carbon stability factor (CSF):

The proportion of the total carbon in freshly produced biochar which remains fixed as recalcitrant carbon over a defined time period (10, 100 years, etc., as defined). A CSF of 0.75 means that 75% of the carbon in the fresh biochar remains as recalcitrant carbon over the defined time horizon, and that 25% of the carbon has been converted into CO2.

Charcoal:

The solid product of natural fire and traditional biomass conversion under partially pyrolytic conditions without yielding bioenergy coproducts.

Mean residence time (MRT):

Inverse of decay rate, this is the average time for which carbon in new biochar remains present in a recalcitrant form.

Net primary productivity (NPP):

A measure of plant growth and the additional CO2 fixed and stored into plant biomass over a period of, for example, 1 year; technically, it is calculated as the balance between net photosynthesis and plant (dark) respiration.

Pyrolysis-biochar system (PBS):

A combination of a specified pyrolysis technology, transport, distribution and storage infrastructure and application of biochar.

Recalcitrant carbon:

Aromatic carbon which is resistant to chemical or biological oxidation and subsequent conversion to CO2.

Terra preta:

Literally “dark earth,” these are localized soils, intensively studied, whose dark color appears to result from historic and prolonged management with charcoal, probably for the enhancement of agricultural productivity in and around the Amazon Basin.

Bibliography

  1. Lehmann J et al (2003) Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357

    Article  CAS  Google Scholar 

  2. Verheijen F et al (2009) Biochar application to soils: a critical scientific review of effects on soil properties, processes and functions. Joint Research Centre, Institute for Environment and Sustainability, Ispra, Italy

    Google Scholar 

  3. Lehmann J et al (eds) (2003) Amazonian dark earths: origin, properties, management. Kluwer, Dordrecht

    Google Scholar 

  4. Seifritz W (1993) Should we store carbon in charcoal? Int J Hydrogen Energy 18:405–407

    Article  CAS  Google Scholar 

  5. Lehmann J, Joseph S (eds) (2009) Biochar for environmental management: science and technology. Earthscan, London

    Google Scholar 

  6. Sohi S et al (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82

    Article  CAS  Google Scholar 

  7. Shackley S, Sohi S (2010) An assessment of the benefits and issues associated with the application of biochar to soil. Department for Environment, Food and Rural Affairs, UK Government, London

    Google Scholar 

  8. Lehmann J et al (2008) Australian climate-carbon cycle feedback reduced by soil black carbon. Nat Geosci 1:832–835

    Article  CAS  Google Scholar 

  9. Lehmann J (2007) A handful of carbon. Nature 447(7141):143–144

    Article  CAS  Google Scholar 

  10. Prentice IC et al (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT et al (eds) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, 881pp

    Google Scholar 

  11. Kuhlbusch TAJ (1998) Black carbon and the carbon cycle. Science 280:1903–1904

    Article  CAS  Google Scholar 

  12. Vitousek PM et al (1986) Human appropriation of the products of photosynthesis. Bioscience 36:368–373

    Article  Google Scholar 

  13. Van Zwieten L et al (2009) Biochar and emissions of non-CO2 greenhouse gases from soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and technology. Earthscan, London, pp 227–250

    Google Scholar 

  14. Ladha JK et al (2005) Efficiency of fertiliser nitrogen in cereal production: retrospects and prospects. Adv Agron 87:85–156

    Article  CAS  Google Scholar 

  15. Houghton JT et al (eds) (1997) Revised 1996 IPCC guidelines for national greenhouse gas inventories. Hadley Centre Meteorological Office, Bracknell

    Google Scholar 

  16. West TO, McBride AC (2005) The contribution of agricultural lime to carbon dioxide emissions in the United States: dissolution, transport, and net emissions. Agric Ecosyst Environ 108:145–154

    Article  CAS  Google Scholar 

  17. Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems – a review. Mitig Adapt Strateg Glob Change 11:403–427

    Article  Google Scholar 

  18. The Royal Society (2009) Geoengineering the climate: Science, governance and uncertainty. The Royal Society, London

    Google Scholar 

  19. Demirbas A, Arin G (2002) An overview of biomass pyrolysis. Energy Sources 24:471–482

    Article  CAS  Google Scholar 

  20. Husk B, Major J (2010) Commercial scale agricultural biochar field trial in Quebec, Canada, over two years: effects of biochar on soil fertility, biology and crop productivity and quality. BlueLeaf, Quebec, p 35

    Google Scholar 

  21. Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30:1479–1493

    Article  CAS  Google Scholar 

  22. Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renewable Sustainable Energy Rev 4:1–73

    Article  CAS  Google Scholar 

  23. Anderson-Teixeira K et al (2009) Changes in soil organic carbon under biofuel crops. GCB Bioenergy 1(1):75–96

    Article  CAS  Google Scholar 

  24. Kammen DM, Lew DJ (2005) Review of technologies for the production and use of charcoal. National Renewable Energy Laboratory, Golden

    Google Scholar 

  25. Accardi-Dey AM, Gschwend PM (2002) Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments. Environ Sci Technol 36(1):21–29

    Article  CAS  Google Scholar 

  26. Antal MJ, Gronli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42(8):1619–1640

    Article  CAS  Google Scholar 

  27. Brown R (2009) Biochar production technology. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan, London

    Google Scholar 

  28. Brownsort P (2009) Biomass pyrolysis processes: performance parameters and their influence on biochar system benefits. MSc dissertation, University of Edinburgh, p 84

    Google Scholar 

  29. Gaur S, Reed TB (1995) An atlas of thermal data for biomass and other fuels. NREL, Colorado, p 189

    Book  Google Scholar 

  30. Masek O et al (2010) Pyrolysis systems for biochar production – influence of biochar production conditions on its structure, properties and environmental stability. Fuel. doi:10.1016/j.fuel.2011.08.044

    Google Scholar 

  31. Belanger N et al (2004) Forest regrowth as the controlling factor of soil nutrient availability 75 years after fire in a deciduous forest of Southern Quebec. Plant Soil 262(1–2):363–372

    Article  CAS  Google Scholar 

  32. Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5(7):381–387

    Article  Google Scholar 

  33. Cheng CH, Lehmann J, Engelhard MH (2008) Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta 72(6):1598–1610

    Article  CAS  Google Scholar 

  34. Cheng CH et al (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37(11):1477–1488

    Article  CAS  Google Scholar 

  35. Liang B et al (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70(5):1719–1730

    Article  CAS  Google Scholar 

  36. Downie A (2009) Personal email communication with P. Brownsort concerning slow pyrolysis, July 2009

    Google Scholar 

  37. Kurosaki F et al (2007) Macroporous carbon prepared by flash heating of sawdust. Carbon 45(3):671–673

    Article  CAS  Google Scholar 

  38. Helsen L et al (1997) Low-temperature pyrolysis of CCA-treated wood waste: chemical determination and statistical analysis of metal input and output; mass balances. Waste Manage 17(1):79–86

    Article  CAS  Google Scholar 

  39. Lievens C et al (2009) Fast pyrolysis of heavy metal contaminated willow: influence of the plant part. Fuel 88(8):1417–1425

    Article  CAS  Google Scholar 

  40. Ryu C, Sharifi VN, Swithenbank J (2007) Waste pyrolysis and generation of storable char. Int J Energy Res 31(2):177–191

    Article  CAS  Google Scholar 

  41. Vassilev SV, Braekman-Danheux C (1999) Characterization of refuse-derived char from municipal solid waste: 2. Occurrence, abundance and source of trace elements. Fuel Process Technol 59(2–3):135–161

    Article  CAS  Google Scholar 

  42. Vassilev SV, Braekman-Danheux C, Laurent P (1999) Characterization of refuse-derived char from municipal solid waste: 1. Phase mineral chemical composition. Fuel Process Technol 59(2–3):95–134

    Article  CAS  Google Scholar 

  43. Hwang IH et al (2008) Improving the quality of waste-derived char by removing ash. Waste Manage 28(2):424–434

    Article  CAS  Google Scholar 

  44. Miladinovic N, Bayer-Souchet F, Larsen HF (2009) Project neptune. In: End-User Workshop, Ghent

    Google Scholar 

  45. McGrath T, Sharma R, Hajaligol M (2001) An experimental investigation into the formation of polycyclic-aromatic hydrocarbons (PAH) from pyrolysis of biomass materials. Fuel 80(12):1787–1797

    Article  CAS  Google Scholar 

  46. McGrath TE, Chan WG, Hajaligol MR (2003) Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose. J Anal Appl Pyrol 66(1–2):51–70

    Article  CAS  Google Scholar 

  47. McGrath TE et al (2007) Formation of polycyclic aromatic hydrocarbons from tobacco: The link between low temperature residual solid (char) and PAH formation. Food Chem Toxicol 45(6):1039–1050

    Article  CAS  Google Scholar 

  48. Milne TA, Evans RJ, Abatzoglou N (1998) Biomass gasifier “tars”: their nature, formation, and conversion. National Renewable Energy Laboratory, Golden, p 204

    Book  Google Scholar 

  49. Zhurinsh A, Zandersons J, Dobele G (2005) Slow pyrolysis studies for utilization of impregnated waste timber materials. J Anal Appl Pyrol 74(1–2):439–444

    Article  CAS  Google Scholar 

  50. Creaser CS et al (2007) UK soil and herbage pollutant survey: environmental concentrations of polycyclic aromatic hydrocarbons in UK soil and herbage. Environment Agency, Bristol

    Google Scholar 

  51. Mašek O (2007) Studies on pyrolytic gasification of low-rank solid fuels in the presence of steam. School of Engineering, Hokkaido University, Sapporo

    Google Scholar 

  52. Defra (2008) Guidelines to Defra’s greenhouse gas conversion factors for company reporting. Defra, London

    Google Scholar 

  53. Defra (2009) Guidelines to Defra/DECC’s GHG conversion factors for company reporting. Defra, London

    Google Scholar 

  54. Anderson-Teixeira K et al (2009) Changes in soil organic carbon under biofuel crops. GCB Bioenergy 1(1):75–96

    Article  CAS  Google Scholar 

  55. Hammond J, Shackley S, Sohi S, Brownsort P (2011) Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK. Energy Policy 39:2646–2655

    Article  CAS  Google Scholar 

  56. Roberts KG et al (2010) Life cycle assessment of biochar systems: estimating the energetic, economic and climate change potential. Environ Sci Technol 44(2):827–833

    Article  CAS  Google Scholar 

  57. Ibarrola R (2009) Pyrolysis for waste treatment: a life cycle assessment of biodegradable waste, bioenergy generation and biochar productionin Glasgow and Clyde Valley. Msc dissertaiton, School of GeoSciences, University of Edinburgh

    Google Scholar 

  58. Gaunt J, Cowie A (2009) Biochar, greenhouse gas accounting and emissions trading. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan, London, pp 317–340

    Google Scholar 

  59. Gaunt JL, Lehmann J (2008) Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environ Sci Technol 42:4152–4158

    Article  CAS  Google Scholar 

  60. Downie A, Klatt P, Munroe P (2007) Slow pyrolysis: Australian demonstration plant successful on multi-feedstocks. In: Bioenergy 2007 Conference, Finland

    Google Scholar 

  61. Dynamotive Energy Systems Corporation (1999) BioThermTM – a system for continuous quality, fast pyrolysis biooil. In: Fourth Biomass Conference of the Americas, Oakland

    Google Scholar 

  62. Hornung A (2008) Fast, intermediate or slow pyrolysis for fuels production, power generation from various biomasses or as pre-conditioning unit for gasifiers. http://www3.imperial.ac.uk/pls/portallive/docs/1/44315696.pdf. Accessed 15 Aug 2009

  63. Hornung A et al (2006) Thermo-chemical conversion of straw – Haloclean intermediate pyrolysis. In: 17th International Symposium on Analytical and Applied Pyrolysis, Budapest

    Google Scholar 

  64. Redlein D, Kingston A (2007) The portential role of agrichar in the commercialization of dynamotive’s fast pyrolysis process. In: International Agrichar Initiative Conference, Terrigal

    Google Scholar 

  65. Bradshaw J et al (2007) CO2 storage capacity estimation: issues and development of standards. Int J Greenhouse Gas Control 1:62–68

    Article  CAS  Google Scholar 

  66. Lenton T (2010) The potential for land-based biological CO2 removal to lower future atmospheric CO2 concentration. Carbon Manag 1(1):16

    Article  Google Scholar 

  67. Andreae MO, Gelencser A (2006) Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys 6:3131–3148

    Article  CAS  Google Scholar 

  68. Woolf D, Amonette J, Street-Perrott A, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:56

    Article  CAS  Google Scholar 

  69. Fowles M (2007) Black carbon sequestration as an alternative to bioenergy. Biomass Bioenergy 31:426–432

    Article  CAS  Google Scholar 

  70. Doornbosch R, Steenblik R (2007) Biofuels: is the cure worse than the disease? Organisation for Economic Cooperation and Development, Paris, p 57

    Google Scholar 

  71. Berndes G, Hoogwijk M, van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25(1):1–28

    Article  Google Scholar 

  72. Fischer G, Schrattenholzer L (2001) Global bioenergy potentials through 2050. Biomass Bioenergy 20(3):151–159

    Article  Google Scholar 

  73. Hoogwijk M et al (2003) Exploration of the ranges of the global potential of biomass for energy. Biomass Bioenergy 25:119–133

    Article  Google Scholar 

  74. IPCC (2007) Mitigation of climate change: contribution of the working group III to the fourth assessment report. Cambridge University Press, Cambridge

    Google Scholar 

  75. International Energy Agency (2008) Energy technology perspectives 2008. IEA/OECD, Paris

    Google Scholar 

  76. McCarl B et al (2009) Economics of biochar production, utilisation and emissions. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan, London, pp 341–357

    Google Scholar 

  77. Giampietro M, Mayumi K (2009) The biofuel delusion: the fallacy of large-scale agro-biofuel production. Earthscan, London

    Google Scholar 

  78. Bapat HD, Manahan SE (1998) Chemchar gasification of hazardous wastes and mixed wastes on a biochar matrix. Abstr Pap Am Chem Soc 215:U571–U571

    Google Scholar 

  79. Joseph S et al (2009) Biochar for soil fertility and carbon sequestration: a review of current understanding. In: Australia and New Zealand Biochar Researchers Network, p 13

    Google Scholar 

  80. Thornley P (2009) Personal verbal communication with S. Shackley, Sept 2009

    Google Scholar 

  81. Agency E (2009) Minimising greenhouse gas emissions from biomass energy generation. Environment Agency, Bristol, p 43

    Google Scholar 

  82. Bates J, Edberg O, Nuttall C (2009) Minimising greenhouse gas emissions from biomass energy generation. Environment Agency, Bristol, p 43

    Google Scholar 

  83. Oguntunde PG et al (2008) Effects of charcoal production on soil physical properties in Ghana. J Plant Nutr Soil Sci 171:591–596

    Article  CAS  Google Scholar 

  84. Asai H et al (2009) Biochar amendment techniques for upland rice production in northern Laos. Field Crops Res 111:81–84

    Article  Google Scholar 

  85. Fernandes MB et al (2003) Characterization of carbonaceous combustion residues: I. Morphological, elemental and spectroscopic features. Chemosphere 51(8):785–795

    Article  CAS  Google Scholar 

  86. Van Zwieten L et al (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil, 327:235–246

    Article  CAS  Google Scholar 

  87. Brodowski S et al (2005) Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma 128(1–2):116–129

    Article  CAS  Google Scholar 

  88. Bird MI et al (2008) X-ray microtomographic imaging of charcoal. J Archaeol Sci 35:2698–2706

    Article  Google Scholar 

  89. Janik LJ, Taylor JA, Skjemstad JO (1998) Non-living soil organic matter: what do we know about it? Aust J Exp Agric 38:667–680

    Article  Google Scholar 

  90. Brodowski S et al (2006) Aggregate-occluded black carbon in soil. Eur J Soil Sci 57(4):539–546

    Article  Google Scholar 

  91. Schmidt MWI, Noack AG (2000) Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Glob Biogeochem Cycles 14(3):777–793

    Article  CAS  Google Scholar 

  92. Pignatello JJ, Kwon S, Lu Y (2006) Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic Acids. Environ Sci Technol 40(24):7757–7763

    Article  CAS  Google Scholar 

  93. Watts CW et al (2005) Biological and physical processes that mediate micro-aggregation of clays. Soil Sci 170:573–583

    Article  CAS  Google Scholar 

  94. Beaton JD, Peterson HB, Bauer N (1960) Some aspects of phosphate adsorption by charcoal. Soil Sci Soc Am Proc 24:340–346

    Article  CAS  Google Scholar 

  95. Lehmann CJ, Rondon M (2006) Bio-char soil management on highly-weathered soils in the tropics. In: Uphoff NT (ed) Biological approaches to sustainable soil systems. CRC Press, Boca Raton, pp 517–530

    Chapter  Google Scholar 

  96. Yu X-Y, Ying G-G, Kookana RS (2006) Sorption and desorption behaviors of diuron in soils amended with charcoal. J Agric Food Chem 54:8545–8550

    Article  CAS  Google Scholar 

  97. Rhodes AH, Carlin A, Semple KT (2008) Impact of black carbon in the extraction and mineralization of phenanthrene in soil. Environ Sci Technol 42(3):740–745

    Article  CAS  Google Scholar 

  98. Major J et al (2009) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Change Biol. doi:10.1111/j.1365-2486.2009.02044.x

    Google Scholar 

  99. Yamato M et al (2006) Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci Plant Nutr 52:489–495

    Article  CAS  Google Scholar 

  100. Rondon MA et al (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fert Soils 43(6):699–708

    Article  Google Scholar 

  101. Warnock DD et al (2007) Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant Soil 300:9–20

    Article  CAS  Google Scholar 

  102. Masiello CA, Druffel ERM (1998) Black carbon deep sea sediments. Science 280:1911–1913

    Article  CAS  Google Scholar 

  103. Masiello CA, Druffel ERM, Currie LA (2002) Radiocarbon measurements of black carbon in aerosols and ocean sediments. Geochim Cosmochim Acta 66(6):1025–1036

    Article  CAS  Google Scholar 

  104. Oros DR et al (2002) Organic tracers from wild fire residues in soils and rain/river wash-out. Water Air Soil Pollut 137(1/4):203–233

    Article  CAS  Google Scholar 

  105. Dai X et al (2005) Black carbon in a temperate mixed-grass savanna. Soil Biol Biochem 37(10):1879–1881

    Article  CAS  Google Scholar 

  106. Nguyen BT et al (2008) Long-term black carbon dynamics in cultivated soil. Biogeochemistry 89:295–308

    Article  CAS  Google Scholar 

  107. Kimetu JM et al (2008) Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11:726–739

    Article  CAS  Google Scholar 

  108. Liang B et al (2009) Stability of biomass-derived black carbon in soils. Geochim Cosmochim Acta 72:6069–6078

    Article  CAS  Google Scholar 

  109. Forbes MS, Raison RJ, Skjemstad JO (2006) Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Sci Total Environ 370:190–206

    Article  CAS  Google Scholar 

  110. Brewer CE et al (2009) Characterization of biochar from fast pyrolysis and gasification systems. Environ Prog Sustainable Energy 28(3):386–396

    Article  CAS  Google Scholar 

  111. Hamer U et al (2004) Interactive priming of black carbon and glucose mineralisation. Org Geochem 35(7):823–830

    Article  CAS  Google Scholar 

  112. Spokas KA (2010) Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Manage 1(2):289–303

    Article  CAS  Google Scholar 

  113. Lehmann J et al (2009) Stability of biochar in soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan, London, pp 317–340

    Google Scholar 

  114. Bucheli TD et al (2004) Polycyclic aromatic hydrocarbons, black carbon, and molecular markers in soils of Switzerland. Chemosphere 56(11):1061–1076

    Article  CAS  Google Scholar 

  115. Rumpel C et al (2007) Composition and reactivity of morphologically distinct charred materials left after slash-and-burn practices in agricultural tropical soils. Org Geochem 38(6):911–920

    Article  CAS  Google Scholar 

  116. Fernandes MB, Brooks P (2003) Characterization of carbonaceous combustion residues: II. Nonpolar organic compounds. Chemosphere 53(5):447–458

    Article  CAS  Google Scholar 

  117. Brown RA et al (2006) Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Org Geochem 37(3):321–333

    Article  CAS  Google Scholar 

  118. Cornelissen G et al (2005) Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ Sci Technol 39(18):6881–6895

    Article  CAS  Google Scholar 

  119. Zimmerman JR et al (2004) Addition of carbon sorbents to reduce PCB and PAH bioavailability in marine sediments: physicochemical tests. Environ Sci Technol 38(20):5458–5464

    Article  CAS  Google Scholar 

  120. Wingate JR, De Leij FAAM, Hutchings T (2009) Method of forming ion exchange charcoal. Patent No. GB2451509A, UK Intellectual Property Office, The Forestry Commission, p 51

    Google Scholar 

  121. Bruun S, Jensen ES, Jensen LS (2008) Microbial mineralization and assimilation of black carbon: Dependency on degree of thermal alteration. Org Geochem 39:839–845

    Article  CAS  Google Scholar 

  122. Kuzyakov Y et al (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41:210–219

    Article  CAS  Google Scholar 

  123. Nguyen BT, Lehmann J (2009) Black carbon decomposition under varying water regimes. Org Geochem 40:846–853

    Article  CAS  Google Scholar 

  124. Cheng CH et al (2008) Stability of black carbon in soils across a climatic gradient. J Geophys Res Biogeosci 113:2027

    Article  CAS  Google Scholar 

  125. Yanai Y, Toyota K, Okazaki M (2007) Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci Plant Nutr 53:181–188

    Article  CAS  Google Scholar 

  126. Murage EW, Voroney P, Beyaert RP (2007) Turnover of carbon in the free light fraction with and without charcoal as determined using the 13C natural abundance method. Geoderma 138(1–2):133–143

    Article  CAS  Google Scholar 

  127. Brodowski S et al (2007) Black carbon contribution to stable humus in German arable soils. Geoderma 139(1–2):220–228

    Article  CAS  Google Scholar 

  128. Smith JL, Collins HP, Bailey VL (2010) The effect of young biochar on soil respiration. Soil Biol Biochem 42:2345–2347

    Article  CAS  Google Scholar 

  129. Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44:1295–1301

    Article  CAS  Google Scholar 

  130. Bruun EW et al (2011) Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass Bioenergy 35:1182–1189

    Article  CAS  Google Scholar 

  131. Wardle DA, Nilsson M-C, Zackrisson O (2008) Fire-derived charcoal causes loss of forest humus. Science 320:629

    Article  CAS  Google Scholar 

  132. Liang B et al (2010) Black carbon affects the cycling of non-black carbon in soil. Org Geochem 41:206–213

    Article  CAS  Google Scholar 

  133. Woolf D (2009) Personal verbal communication with S. Sohi concerning recent meta-analysis of global soil carbon and soil black carbon data, Sept 2009

    Google Scholar 

  134. Kimetu JM, Lehmann J (2010) Stability and stabilisation of biochar and green manure in soil with different organic carbon contents. Aust J Soil Res 48:577–585

    Article  CAS  Google Scholar 

  135. Spokas KA et al (2009) Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77:574–581

    Article  CAS  Google Scholar 

  136. Steiner C et al (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291(1–2):275–290

    Article  CAS  Google Scholar 

  137. Major J et al (2010) Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil

    Google Scholar 

  138. Lehmann J et al (2005) Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: Application to black carbon particles. Global Biogeochemical Cycles 19(1):GB1013

    Article  CAS  Google Scholar 

  139. Clough TJ et al (2010) Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil. Soil Biology and Biochemistry 74(3)

    Google Scholar 

  140. Singh BP, et al (2010) Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. Journal of Environmental Quality, 39. doi:10.2134/jeq2009.0138

    Google Scholar 

  141. Taghizadeh-Toosi A et al (2011) Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches. J Environ Qual 40

    Google Scholar 

  142. Rondon M, Ramirez JA, Lehmann J (2005) Charcoal additions reduce net emissions of greenhouse gases to the atmosphere. In: Proceedings of the 3rd USDA Symposium on Greenhouse Gases and Carbon Sequestration, Baltimore, 21–24 Mar 2005

    Google Scholar 

  143. Rogovska N et al (2008) Greenhouse gas emissions from soils as affected by addition of biochar. In: The 2008 Joint Annual Meeting of ASA, CSSA and SSSA, Houston

    Google Scholar 

  144. Rogovska N et al (2009) Greenhouse gas emissions from soils as affected by addition of biochar. In: North American Biochar Conference, University of Colorado, Boulder, 9–12 Aug 2009

    Google Scholar 

  145. Condron L et al (2009) Biochar effects on nitrous oxide emissions from a pasture soil. In: Asia Pacific Biochar Conference, Gold Coast, 17–20 May 2009

    Google Scholar 

  146. Clough TJ et al (2008) Nitrous oxide – novel mitigation methodologies: objective 2 – biochar effects on urinary-N N2O emissions. Report to the Ministry of Agriculture and Forestry (ed), p 15

    Google Scholar 

  147. van Zwieten L et al (2010) Influence of biochars on flux of N2O and CO2 from ferrosol. Aust J Soil Res 48:555–568

    Article  CAS  Google Scholar 

  148. DeLuca TH, Aplet GH (2008) Charcoal and carbon storage in forest soils of the Rocky Mountain West. Front Ecol Environ 6:18–24

    Article  Google Scholar 

  149. Rumpel C et al (2006) Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture. Geoderma 130(1–2):35–46

    Article  CAS  Google Scholar 

  150. Major J et al (2010) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Change Biol 16:1366–1379

    Article  Google Scholar 

  151. Glaser B et al (2000) Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Org Geochem 31:669–678

    Article  CAS  Google Scholar 

  152. Spycher G, Soilins P, Rose S (1983) Carbon and nitrogen in the light fraction of a forest soil: vertical distribution and seasonal patterns. Soil Sci 135:79–87

    Article  CAS  Google Scholar 

  153. Czimczik CI, Schmidt MWI, Schulze ED (2005) Effects of increasing fire frequency on black carbon and organic matter in Podzols of Siberian Scots pine forests. Eur J Soil Sci 56(3):417–428

    Article  Google Scholar 

  154. Ohlson M et al (2009) The charcoal carbon pool in boreal forest soils. Nat Geosci 2:692–695

    Article  CAS  Google Scholar 

  155. Seiler W, Crutzen PJ (1980) Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim Change 2:207–247

    Article  CAS  Google Scholar 

  156. Kaal J et al (2008) A detailed pyrolysis-GC/MS analysis of a black carbon-rich acidic colluvial soil (Atlantic ranker) from NW Spain. Appl Geochem 23:2395–2405

    Article  CAS  Google Scholar 

  157. Gaskin JW et al (2007) Potential for pyrolysis char to affect soil moisture and nutrient status of loamy sand soil. In: Georgia Water Resources Conference, University of Georgia, Georgia

    Google Scholar 

  158. Shackley S, Hammond J, Gaunt J, Ibarrola R (2011) The feasibility and costs of biochar deployment in the UK. Carbon Manag 3(2):335–356

    Article  Google Scholar 

  159. Deenik J, McClellan T, Uehara G, Antal M, Campbell S (2010) Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Sci Soc Am J 74:1259–1270

    Article  CAS  Google Scholar 

  160. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1237

    Article  CAS  Google Scholar 

  161. Brown T, Wright M, Brown R (2011) Estimating profitability of two biochar production scenarios: slow pyrolysis vs fast pyrolysis. Biofuels Bioprod Bioref 5:54–68

    Article  CAS  Google Scholar 

  162. Yoder J, Galinato S, Granatstein D, Garcia-Perez M (2011) Economic tradeoff between biochar and bio-oil production via pyrolysis. Biomass Bioenergy 35:1851–1862

    Article  CAS  Google Scholar 

  163. Garcia-Perez M (2008) The formation of polyaromatic hydrocarbons and dioxins during pyrolysis. Washington State University, 63pp

    Google Scholar 

  164. Beesley L, Moreno-Jimenez E, Gomez-Eyles J (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158(1):155–160

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge financial support from the UK’s Engineering and Physical Sciences Research Council (EPSRC), the UK Government, and the European Regional Development Fund (Interreg IVb) in supporting the UK Biochar Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Shackley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Shackley, S. et al. (2012). Biochar , Tool for Climate Change Mitigation and Soil Management. In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_386

Download citation

Publish with us

Policies and ethics