Skip to main content

Integrin Structure and Function

  • Chapter
  • First Online:
Cell-Extracellular Matrix Interactions in Cancer

Abstract

Integrins are a large family of heterodimeric glycoprotein receptors first discovered over twenty years ago. They exist as two noncovalently bound a- and b- subunits that function as adhesion molecules and play key roles in many biological processes including actin cytoskeleton organization and transduction of intracellular signals regulating cellular functions. Integrins bind a variety of extracellular matrices including collagens and laminins. The phenotypes observed from the generation of integrin knockout mice have provided a wealth of information on the unique biological functions of specific integrin heterodimers. Structural data obtained from X-ray crystallography and nuclear magnetic resonance (NMR) have provided insight into the structural basis for integrin activation and subsequent transduction of bidirectional signals bidirectionally, important for controlling biological cellular functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Burke RD (1999) Invertebrate integrins: structure, function, and evolution. Int Rev Cytol 191:257–284

    CAS  PubMed  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    CAS  PubMed  Google Scholar 

  • Plow EF, Haas TA, Zhang L, Loftus J, Smith JW (2000) Ligand binding to integrins. J Biol Chem 275:21785–21788

    CAS  PubMed  Google Scholar 

  • Schwartz MA, Schaller MD, Ginsberg MH (1995) Integrins: emerging paradigms of signal transduction. Annu Rev Cell Dev Biol 11:549–599

    CAS  PubMed  Google Scholar 

  • Ruggiero F, Comte J, Cabanas C, Garrone R (1996) Structural requirements for alpha 1 beta 1 and alpha 2 beta 1 integrin mediated cell adhesion to collagen V. J Cell Sci 109(Pt 7):1865–1874

    CAS  PubMed  Google Scholar 

  • Camper L, Hellman U, Lundgren-Akerlund E (1998) Isolation, cloning, and sequence analysis of the integrin subunit alpha10, a beta1-associated collagen binding integrin expressed on chondrocytes. J Biol Chem 273:20383–20389

    CAS  PubMed  Google Scholar 

  • Velling T, Kusche-Gullberg M, Sejersen T, Gullberg D (1999) cDNA cloning and chromosomal localization of human alpha(11) integrin. A collagen-binding, I domain-containing, beta(1)-associated integrin alpha-chain present in muscle tissues. J Biol Chem 274:25735–25742

    CAS  PubMed  Google Scholar 

  • Tashiro K, Monji A, Yoshida I, Hayashi Y, Matsuda K, Tashiro N, Mitsuyama Y (1999) An IKLLI-containing peptide derived from the laminin alpha1 chain mediating heparin-binding, cell adhesion, neurite outgrowth and proliferation, represents a binding site for integrin alpha3beta1 and heparan sulphate proteoglycan. Biochem J 340(Pt 1):119–126

    CAS  PubMed  Google Scholar 

  • van der Flier A, Sonnenberg A (2001) Function and interactions of integrins. Cell Tissue Res 305:285–298

    PubMed  Google Scholar 

  • Takada Y, Ye X, Simon S (2007) The integrins. Genome Biol 8:215

    PubMed  Google Scholar 

  • Gardner H, Broberg A, Pozzi A, Laato M, Heino J (1999) Absence of integrin alpha1beta1 in the mouse causes loss of feedback regulation of collagen synthesis in normal and wounded dermis. J Cell Sci 112:263–272

    CAS  PubMed  Google Scholar 

  • Pozzi A, Zent R (2003) Integrins: sensors of extracellular matrix and modulators of cell function. Nephron Exp Nephrol 94:e77–e84

    CAS  PubMed  Google Scholar 

  • Chen J, Diacovo TG, Grenache DG, Santoro SA, Zutter MM (2002) The alpha(2) integrin subunit-deficient mouse: a multifaceted phenotype including defects of branching morphogenesis and hemostasis. Am J Pathol 161:337–344

    CAS  PubMed  Google Scholar 

  • Hogg N, Bates PA (2000) Genetic analysis of integrin function in man: LAD-1 and other syndromes. Matrix Biol 19:211–222

    CAS  PubMed  Google Scholar 

  • Tronik-Le Roux D, Roullot V, Poujol C, Kortulewski T, Nurden P, Marguerie G (2000) Thrombasthenic mice generated by replacement of the integrin alpha(IIb) gene: demonstration that transcriptional activation of this megakaryocytic locus precedes lineage commitment. Blood 96:1399–1408

    CAS  PubMed  Google Scholar 

  • Hodivala-Dilke KM, McHugh KP, Tsakiris DA, Rayburn H, Crowley D, Ullman-Cullere M, Ross FP, Coller BS, Teitelbaum S, Hynes RO (1999) Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J Clin Invest 103:229–238

    CAS  PubMed  Google Scholar 

  • Scharffetter-Kochanek K, Lu H, Norman K, van Nood N, Munoz F, Grabbe S, McArthur M, Lorenzo I, Kaplan S, Ley K, Smith CW, Montgomery CA, Rich S, Beaudet AL (1998) Spontaneous skin ulceration and defective T cell function in CD18 null mice. J Exp Med 188:119–131

    CAS  PubMed  Google Scholar 

  • Pulkkinen L, Kim DU, Uitto J (1998) Epidermolysis bullosa with pyloric atresia: novel mutations in the beta4 integrin gene (ITGB4). Am J Pathol 152:157–166

    CAS  PubMed  Google Scholar 

  • Pulkkinen L, Kimonis VE, Xu Y, Spanou EN, McLean WH, Uitto J (1997) Homozygous alpha6 integrin mutation in junctional epidermolysis bullosa with congenital duodenal atresia. Hum Mol Genet 6:669–674

    CAS  PubMed  Google Scholar 

  • Ruzzi L, Gagnoux-Palacios L, Pinola M, Belli S, Meneguzzi G, D’Alessio M, Zambruno G (1997) A homozygous mutation in the integrin alpha6 gene in junctional epidermolysis bullosa with pyloric atresia. J Clin Invest 99:2826–2831

    CAS  PubMed  Google Scholar 

  • Takizawa Y, Shimizu H, Nishikawa T, Hatta N, Pulkkinen L, Uitto J (1997) Novel ITGB4 mutations in a patient with junctional epidermolysis bullosa-pyloric atresia syndrome and altered basement membrane zone immunofluorescence for the alpha6beta4 integrin. J Invest Dermatol 108:943–946

    CAS  PubMed  Google Scholar 

  • Vidal F, Aberdam D, Miquel C, Christiano AM, Pulkkinen L, Uitto J, Ortonne JP, Meneguzzi G (1995) Integrin beta 4 mutations associated with junctional epidermolysis bullosa with pyloric atresia. Nat Genet 10:229–234

    CAS  PubMed  Google Scholar 

  • Georges-Labouesse E, Messaddeq N, Yehia G, Cadalbert L, Dierich A, Le Meur M (1996) Absence of integrin alpha 6 leads to epidermolysis bullosa and neonatal death in mice. Nat Genet 13:370–373

    CAS  PubMed  Google Scholar 

  • van der Neut R, Krimpenfort P, Calafat J, Niessen CM, Sonnenberg A (1996) Epithelial detachment due to absence of hemidesmosomes in integrin beta 4 null mice. Nat Genet 13:366–369

    PubMed  Google Scholar 

  • Lee JO, Rieu P, Arnaout MA, Liddington R (1995) Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18). Cell 80:631–638

    CAS  PubMed  Google Scholar 

  • Xiong JP, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, Joachimiak A, Goodman SL, Arnaout MA (2001) Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science 294:339–345

    CAS  PubMed  Google Scholar 

  • Nermut MV, Green NM, Eason P, Yamada SS, Yamada KM (1988) Electron microscopy and structural model of human fibronectin receptor. EMBO J 7:4093–4099

    CAS  PubMed  Google Scholar 

  • Springer TA (1997) Folding of the N-terminal, ligand-binding region of integrin alpha-subunits into a beta-propeller domain. Proc Natl Acad Sci USA 94:65–72

    CAS  PubMed  Google Scholar 

  • Liddington RC, Ginsberg MH (2002) Integrin activation takes shape. J Cell Biol 158:833–839

    CAS  PubMed  Google Scholar 

  • Adair BD, Yeager M (2002) Three-dimensional model of the human platelet integrin alpha IIbbeta 3 based on electron cryomicroscopy and x-ray crystallography. Proc Natl Acad Sci USA 99:14059–14064

    CAS  PubMed  Google Scholar 

  • Lau TL, Dua V, Ulmer TS (2008a) Structure of the integrin alphaIIb transmembrane segment. J Biol Chem 283:16162–16168

    CAS  PubMed  Google Scholar 

  • Lau TL, Partridge AW, Ginsberg MH, Ulmer TS (2008b) Structure of the integrin beta3 transmembrane segment in phospholipid bicelles and detergent micelles. Biochemistry 47:4008–4016

    CAS  PubMed  Google Scholar 

  • Lau TL, Kim C, Ginsberg MH, Ulmer TS (2009) The structure of the integrin alphaIIbbeta3 transmembrane complex explains integrin transmembrane signalling. EMBO J 28:1351–1361

    CAS  PubMed  Google Scholar 

  • Gottschalk KE (2005) A coiled-coil structure of the alphaIIbbeta3 integrin transmembrane and cytoplasmic domains in its resting state. Structure 13:703–712

    CAS  PubMed  Google Scholar 

  • Li R, Babu CR, Lear JD, Wand AJ, Bennett JS, DeGrado WF (2001) Oligomerization of the integrin alphaIIbbeta3: roles of the transmembrane and cytoplasmic domains. Proc Natl Acad Sci USA 98:12462–12467

    CAS  PubMed  Google Scholar 

  • Ulmer TS, Yaspan B, Ginsberg MH, Campbell ID (2001) NMR analysis of structure and dynamics of the cytosolic tails of integrin alpha IIb beta 3 in aqueous solution. Biochemistry 40:7498–7508

    CAS  PubMed  Google Scholar 

  • Vinogradova O, Velyvis A, Velyviene A, Hu B, Haas T, Plow E, Qin J (2002) A structural mechanism of integrin alpha(IIb)beta(3) “inside-out” activation as regulated by its cytoplasmic face. Cell 110:587–597

    CAS  PubMed  Google Scholar 

  • Weljie AM, Hwang PM, Vogel HJ (2002) Solution structures of the cytoplasmic tail complex from platelet integrin alpha IIb- and beta 3-subunits. Proc Natl Acad Sci USA 99:5878–5883

    CAS  PubMed  Google Scholar 

  • Vinogradova O, Vaynberg J, Kong X, Haas TA, Plow EF, Qin J (2004) Membrane-mediated structural transitions at the cytoplasmic face during integrin activation. Proc Natl Acad Sci USA 101:4094–4099

    CAS  PubMed  Google Scholar 

  • Vinogradova O, Haas T, Plow EF, Qin J (2000) A structural basis for integrin activation by the cytoplasmic tail of the alpha IIb-subunit. Proc Natl Acad Sci USA 97:1450–1455

    CAS  PubMed  Google Scholar 

  • Hughes PE, Diaz-Gonzalez F, Leong L, Wu C, McDonald JA, Shattil SJ, Ginsberg MH (1996) Breaking the integrin hinge. A defined structural constraint regulates integrin signaling. J Biol Chem 271:6571–6574

    CAS  PubMed  Google Scholar 

  • Hughes PE, O’Toole TE, Ylanne J, Shattil SJ, Ginsberg MH (1995) The conserved membrane-proximal region of an integrin cytoplasmic domain specifies ligand binding affinity. J Biol Chem 270:12411–12417

    CAS  PubMed  Google Scholar 

  • Czuchra A, Meyer H, Legate KR, Brakebusch C, Fassler R (2006) Genetic analysis of beta1 integrin “activation motifs” in mice. J Cell Biol 174:889–899

    CAS  PubMed  Google Scholar 

  • Calderwood DA, Fujioka Y, de Pereda JM, Garcia-Alvarez B, Nakamoto T, Margolis B, McGlade CJ, Liddington RC, Ginsberg MH (2003) Integrin beta cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. Proc Natl Acad Sci USA 100:2272–2277

    CAS  PubMed  Google Scholar 

  • Ratnikov BI, Partridge AW, Ginsberg MH (2005) Integrin activation by talin. J Thromb Haemost 3:1783–1790

    CAS  PubMed  Google Scholar 

  • Luo BH, Carman CV, Springer TA (2007) Structural basis of integrin regulation and signaling. Annu Rev Immunol 25:619–647

    CAS  PubMed  Google Scholar 

  • Xiong JP, Stehle T, Goodman SL, Arnaout MA (2003) New insights into the structural basis of integrin activation. Blood 102:1155–1159

    CAS  PubMed  Google Scholar 

  • Arnaout MA, Goodman SL, Xiong JP (2007) Structure and mechanics of integrin-based cell adhesion. Curr Opin Cell Biol 19:495–507

    CAS  PubMed  Google Scholar 

  • Wegener KL, Campbell ID (2008) Transmembrane and cytoplasmic domains in integrin activation and protein-protein interactions (review). Mol Membr Biol 25:376–387

    CAS  PubMed  Google Scholar 

  • Wegener KL, Partridge AW, Han J, Pickford AR, Liddington RC, Ginsberg MH, Campbell ID (2007) Structural basis of integrin activation by talin. Cell 128:171–182

    CAS  PubMed  Google Scholar 

  • Montanez E, Ussar S, Schifferer M, Bosl M, Zent R, Moser M, Fassler R (2008) Kindlin-2 controls bidirectional signaling of integrins. Genes Dev 22:1325–1330

    CAS  PubMed  Google Scholar 

  • Moser M, Nieswandt B, Ussar S, Pozgajova M, Fassler R (2008) Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med 14:325–330

    CAS  PubMed  Google Scholar 

  • Calderwood DA, Yan B, de Pereda JM, Alvarez BG, Fujioka Y, Liddington RC, Ginsberg MH (2002) The phosphotyrosine binding-like domain of talin activates integrins. J Biol Chem 277:21749–21758

    CAS  PubMed  Google Scholar 

  • Calderwood DA, Zent R, Grant R, Rees JG, Hynes RO, Ginsberg MH (1999) The talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation. J Biol Chem 274:28071–28074

    CAS  PubMed  Google Scholar 

  • Yin H, Litvinov RI, Vilaire G, Zhu H, Li W, Caputo GA, Moore DT, Lear JD, Weisel JW, Degrado WF, Bennett JS (2006) Activation of platelet alphaIIbbeta3 by an exogenous peptide corresponding to the transmembrane domain of alphaIIb. J Biol Chem 281:36732–36741

    CAS  PubMed  Google Scholar 

  • Loh E, Qi W, Vilaire G, Bennett JS (1996) Effect of cytoplasmic domain mutations on the agonist-stimulated ligand binding activity of the platelet integrin alphaIIbbeta3. J Biol Chem 271:30233–30241

    CAS  PubMed  Google Scholar 

  • Li R, Mitra N, Gratkowski H, Vilaire G, Litvinov R, Nagasami C, Weisel JW, Lear JD, DeGrado WF, Bennett JS (2003) Activation of integrin alphaIIbbeta3 by modulation of transmembrane helix associations. Science 300:795–798

    CAS  PubMed  Google Scholar 

  • Li W, Metcalf DG, Gorelik R, Li R, Mitra N, Nanda V, Law PB, Lear JD, Degrado WF, Bennett JS (2005) A push-pull mechanism for regulating integrin function. Proc Natl Acad Sci USA 102:1424–1429

    CAS  PubMed  Google Scholar 

  • Li R, Gorelik R, Nanda V, Law PB, Lear JD, DeGrado WF, Bennett JS (2004) Dimerization of the transmembrane domain of Integrin alphaIIb subunit in cell membranes. J Biol Chem 279:26666–26673

    CAS  PubMed  Google Scholar 

  • Partridge AW, Liu S, Kim S, Bowie JU, Ginsberg MH (2005) Transmembrane domain helix packing stabilizes integrin alphaIIbbeta3 in the low affinity state. J Biol Chem 280:7294–7300

    CAS  PubMed  Google Scholar 

  • Luo BH, Carman CV, Takagi J, Springer TA (2005) Disrupting integrin transmembrane domain heterodimerization increases ligand binding affinity, not valency or clustering. Proc Natl Acad Sci USA 102:3679–3684

    CAS  PubMed  Google Scholar 

  • Luo BH, Springer TA, Takagi J (2004) A specific interface between integrin transmembrane helices and affinity for ligand. PLoS Biol 2:e153

    PubMed  Google Scholar 

  • Goldmann WH, Bremer A, Haner M, Aebi U, Isenberg G (1994) Native talin is a dumbbell-shaped homodimer when it interacts with actin. J Struct Biol 112:3–10

    CAS  PubMed  Google Scholar 

  • Law DA, Nannizzi-Alaimo L, Phillips DR (1996) Outside-in integrin signal transduction. Alpha IIb beta 3-(GP IIb IIIa) tyrosine phosphorylation induced by platelet aggregation. J Biol Chem 271:10811–10815

    CAS  PubMed  Google Scholar 

  • Sakai T, Jove R, Fassler R, Mosher DF (2001) Role of the cytoplasmic tyrosines of beta 1A integrins in transformation by v-src. Proc Natl Acad Sci USA 98:3808–3813

    CAS  PubMed  Google Scholar 

  • Kloeker S, Major MB, Calderwood DA, Ginsberg MH, Jones DA, Beckerle MC (2004) The Kindler syndrome protein is regulated by transforming growth factor-beta and involved in integrin-mediated adhesion. J Biol Chem 279:6824–6833

    CAS  PubMed  Google Scholar 

  • Ma YQ, Qin J, Wu C, Plow EF (2008) Kindlin-2 (Mig-2): a co-activator of beta3 integrins. J Cell Biol 181:439–446

    CAS  PubMed  Google Scholar 

  • Shi X, Ma YQ, Tu Y, Chen K, Wu S, Fukuda K, Qin J, Plow EF, Wu C (2007) The MIG-2/integrin interaction strengthens cell-matrix adhesion and modulates cell motility. J Biol Chem 282:20455–20466

    CAS  PubMed  Google Scholar 

  • Ussar S, Moser M, Widmaier M, Rognoni E, Harrer C, Genzel-Boroviczeny O, Fassler R (2008) Loss of Kindlin-1 causes skin atrophy and lethal neonatal intestinal epithelial dysfunction. PLoS Genet 4:e1000289

    PubMed  Google Scholar 

  • Moser M, Bauer M, Schmid S, Ruppert R, Schmidt S, Sixt M, Wang HV, Sperandio M, Fassler R (2009) Kindlin-3 is required for beta2 integrin-mediated leukocyte adhesion to endothelial cells. Nat Med 15:300–305

    CAS  PubMed  Google Scholar 

  • Zaidel-Bar R, Itzkovitz S, Ma’ayan A, Iyengar R, Geiger B (2007) Functional atlas of the integrin adhesome. Nat Cell Biol 9:858–867

    CAS  PubMed  Google Scholar 

  • Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285:1028–1032

    CAS  PubMed  Google Scholar 

  • Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev 10:21–33

    CAS  Google Scholar 

  • Legate KR, Wickstrom SA, Fassler R (2009) Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev 23:397–418

    CAS  PubMed  Google Scholar 

  • Monkley SJ, Zhou XH, Kinston SJ, Giblett SM, Hemmings L, Priddle H, Brown JE, Pritchard CA, Critchley DR, Fassler R (2000) Disruption of the talin gene arrests mouse development at the gastrulation stage. Dev Dyn 219:560–574

    CAS  PubMed  Google Scholar 

  • Brown NH, Gregory SL, Rickoll WL, Fessler LI, Prout M, White RA, Fristrom JW (2002) Talin is essential for integrin function in Drosophila. Dev Cell 3:569–579

    CAS  PubMed  Google Scholar 

  • Gallant ND, Michael KE, Garcia AJ (2005) Cell adhesion strengthening: contributions of adhesive area, integrin binding, and focal adhesion assembly. Mol Biol Cell 16:4329–4340

    CAS  PubMed  Google Scholar 

  • Humphries JD, Wang P, Streuli C, Geiger B, Humphries MJ, Ballestrem C (2007) Vinculin controls focal adhesion formation by direct interactions with talin and actin. J Cell Biol 179:1043–1057

    CAS  PubMed  Google Scholar 

  • Saunders RM, Holt MR, Jennings L, Sutton DH, Barsukov IL, Bobkov A, Liddington RC, Adamson EA, Dunn GA, Critchley DR (2006) Role of vinculin in regulating focal adhesion turnover. Eur J Cell Biol 85:487–500

    CAS  PubMed  Google Scholar 

  • Brakebusch C, Fassler R (2003) The integrin-actin connection, an eternal love affair. EMBO J 22:2324–2333

    CAS  PubMed  Google Scholar 

  • Fyrberg C, Ketchum A, Ball E, Fyrberg E (1998) Characterization of lethal Drosophila melanogaster alpha-actinin mutants. Biochem Genet 36:299–310

    CAS  PubMed  Google Scholar 

  • Craig DH, Haimovich B, Basson MD (2007) Alpha-actinin-1 phosphorylation modulates pressure-induced colon cancer cell adhesion through regulation of focal adhesion kinase-Src interaction. Am J Physiol 293:C1862–C1874

    CAS  Google Scholar 

  • Weins A, Schlondorff JS, Nakamura F, Denker BM, Hartwig JH, Stossel TP, Pollak MR (2007) Disease-associated mutant alpha-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity. Proc Natl Acad Sci USA 104:16080–16085

    CAS  PubMed  Google Scholar 

  • Legate KR, Montanez E, Kudlacek O, Fassler R (2006) ILK, PINCH and parvin: the tIPP of integrin signalling. Nature Rev 7:20–31

    CAS  Google Scholar 

  • Sakai T, Li S, Docheva D, Grashoff C, Sakai K, Kostka G, Braun A, Pfeifer A, Yurchenco PD, Fassler R (2003) Integrin-linked kinase (ILK) is required for polarizing the epiblast, cell adhesion, and controlling actin accumulation. Genes Dev 17:926–940

    CAS  PubMed  Google Scholar 

  • Wang HV, Chang LW, Brixius K, Wickstrom SA, Montanez E, Thievessen I, Schwander M, Muller U, Bloch W, Mayer U, Fassler R (2008) Integrin-linked kinase stabilizes myotendinous junctions and protects muscle from stress-induced damage. J Cell Biol 180:1037–1049

    CAS  PubMed  Google Scholar 

  • Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, Nomura S, Fujimoto J, Okada M, Yamamoto T (1995) Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377:539–544

    CAS  PubMed  Google Scholar 

  • Larjava H, Plow EF, Wu C (2008) Kindlins: essential regulators of integrin signalling and cell-matrix adhesion. EMBO Rep 9:1203–1208

    CAS  PubMed  Google Scholar 

  • Turner CE (2000) Paxillin and focal adhesion signalling. Nat Cell Biol 2:E231–E236

    CAS  PubMed  Google Scholar 

  • Alon R, Feigelson SW, Manevich E, Rose DM, Schmitz J, Overby DR, Winter E, Grabovsky V, Shinder V, Matthews BD, Sokolovsky-Eisenberg M, Ingber DE, Benoit M, Ginsberg MH (2005) Alpha4beta1-dependent adhesion strengthening under mechanical strain is regulated by paxillin association with the alpha4-cytoplasmic domain. J Cell Biol 171:1073–1084

    CAS  PubMed  Google Scholar 

  • Zamir E, Geiger B (2001) Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sci 114:3583–3590

    CAS  PubMed  Google Scholar 

  • Butler B, Gao C, Mersich AT, Blystone SD (2006) Purified integrin adhesion complexes exhibit actin-polymerization activity. Curr Biol 16:242–251

    CAS  PubMed  Google Scholar 

  • Pollard TD (2007) Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct 36:451–477

    CAS  PubMed  Google Scholar 

  • Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Ann Rev Cell Dev Biol 21:247–269

    CAS  Google Scholar 

  • Kiosses WB, Shattil SJ, Pampori N, Schwartz MA (2001) Rac recruits high-affinity integrin alphavbeta3 to lamellipodia in endothelial cell migration. Nat Cell Biol 3:316–320

    CAS  PubMed  Google Scholar 

  • Guillou H, Depraz-Depland A, Planus E, Vianay B, Chaussy J, Grichine A, Albiges-Rizo C, Block MR (2008) Lamellipodia nucleation by filopodia depends on integrin occupancy and downstream Rac1 signaling. Exp Cell Res 314:478–488

    CAS  PubMed  Google Scholar 

  • Fukata M, Nakagawa M, Kaibuchi K (2003) Roles of Rho-family GTPases in cell polarisation and directional migration. Curr Opin Cell Biol 15:590–597

    CAS  PubMed  Google Scholar 

  • Harburger DS, Calderwood DA (2009) Integrin signalling at a glance. J Cell Sci 122:159–163

    CAS  PubMed  Google Scholar 

  • Schlaepfer DD, Hunter T (1996) Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases. Mol Cell Biol 16:5623–5633

    CAS  PubMed  Google Scholar 

  • Calalb MB, Polte TR, Hanks SK (1995) Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol Cell Biol 15:954–963

    CAS  PubMed  Google Scholar 

  • Parsons JT (2003) Focal adhesion kinase: the first ten years. J Cell Sci 116:1409–1416

    CAS  PubMed  Google Scholar 

  • Walker JL, Fournier AK, Assoian RK (2005) Regulation of growth factor signaling and cell cycle progression by cell adhesion and adhesion-dependent changes in cellular tension. Cytokine Growth Factor Rev 16:395–405

    CAS  PubMed  Google Scholar 

  • Slack-Davis JK, Eblen ST, Zecevic M, Boerner SA, Tarcsafalvi A, Diaz HB, Marshall MS, Weber MJ, Parsons JT, Catling AD (2003) PAK1 phosphorylation of MEK1 regulates fibronectin-stimulated MAPK activation. J Cell Biol 162:281–291

    CAS  PubMed  Google Scholar 

  • Nagy T, Wei H, Shen TL, Peng X, Liang CC, Gan B, Guan JL (2007) Mammary epithelial-specific deletion of the focal adhesion kinase gene leads to severe lobulo-alveolar hypoplasia and secretory immaturity of the murine mammary gland. J Biol Chem 282:31766–31776

    CAS  PubMed  Google Scholar 

  • Peng X, Kraus MS, Wei H, Shen TL, Pariaut R, Alcaraz A, Ji G, Cheng L, Yang Q, Kotlikoff MI, Chen J, Chien K, Gu H, Guan JL (2006) Inactivation of focal adhesion kinase in cardiomyocytes promotes eccentric cardiac hypertrophy and fibrosis in mice. J Clin Invest 116:217–227

    CAS  PubMed  Google Scholar 

  • Schober M, Raghavan S, Nikolova M, Polak L, Pasolli HA, Beggs HE, Reichardt LF, Fuchs E (2007) Focal adhesion kinase modulates tension signaling to control actin and focal adhesion dynamics. J Cell Biol 176:667–680

    CAS  PubMed  Google Scholar 

  • Braren R, Hu H, Kim YH, Beggs HE, Reichardt LF, Wang R (2006) Endothelial FAK is essential for vascular network stability, cell survival, and lamellipodial formation. J Cell Biol 172:151–162

    CAS  PubMed  Google Scholar 

  • Vaynberg J, Fukuda T, Chen K, Vinogradova O, Velyvis A, Tu Y, Ng L, Wu C, Qin J (2005) Structure of an ultraweak protein-protein complex and its crucial role in regulation of cell morphology and motility. Mol cell 17:513–523

    CAS  PubMed  Google Scholar 

  • Velyvis A, Vaynberg J, Yang Y, Vinogradova O, Zhang Y, Wu C, Qin J (2003) Structural and functional insights into PINCH LIM4 domain-mediated integrin signaling. Nat Struct Biol 10:558–564

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy Zent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Srichai, M.B., Zent, R. (2010). Integrin Structure and Function. In: Zent, R., Pozzi, A. (eds) Cell-Extracellular Matrix Interactions in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0814-8_2

Download citation

Publish with us

Policies and ethics