Skip to main content

Phosphene Mapping Techniques for Visual Prostheses

  • Chapter
  • First Online:
Visual Prosthetics

Abstract

Mapping of the visual world onto the visual system occurs in a highly ordered manner, yet with substantial interindividual variability. Since the retinal map of the scene at the photoreceptor level is fully determined by the optical projection of the eye, it is likely that a proximal map generated by a retinal prosthesis closely adheres to the same geometric projection. Once the nerve signals enter the optic nerve, this orderly map is redistributed, and while maps at more proximal levels still follow general rules, special mapping techniques in individual LGN or cortical prosthesis recipients will be required to allow reconstruction of spatial ­relationships in the outside world by means of a disorderly array of phosphenes.

This chapter provides an overview of mapping techniques that have been used in a number of laboratories; discuss the strengths and weaknesses of each; and suggest ways in which various techniques can be combined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HMD:

Head mounted display

MDS:

Multidimensional scaling

TMS:

Transcranial magnetic stimulation

References

  1. Bak M, Girvin JP, Hambrecht FT, et al. (1990), Visual sensations produced by intracortical microstimulation of the human occipital cortex. Med Biol Eng Comput, 28(3): p. 257–9.

    Article  Google Scholar 

  2. Brelen ME, Duret F, Gerard B, et al. (2005), Creating a meaningful visual perception in blind volunteers by optic nerve stimulation. J Neural Eng, 2(1): p. S22–8.

    Article  Google Scholar 

  3. Brindley G, Lewin W (1968), The sensations produced by electrical stimulation of the visual cortex. J Physiol (Lond), 196: p. 479–93.

    Google Scholar 

  4. Chai XY, Zhang LL, Shao F, et al. (2007), Tactile based phosphene positioning system for visual prosthesis. Invest Ophthalmol Vis Sci, 48: p. ARVO E-Abstr. 662.

    Google Scholar 

  5. Cowey A, Walsh V (2000), Magnetically induced phosphenes in sighted, blind and blindsighted observers. Neuroreport, 11(14): p. 3269–73.

    Article  Google Scholar 

  6. Dagnelie G, Vogelstein JV (1999), Phosphene mapping procedures for prosthetic vision. In Vision Science and its Applications, Optical Society of America, Washington, DC.

    Google Scholar 

  7. Dagnelie G, Yin VT, Hess D, Yang L (2003), Phosphene mapping strategies for cortical visual prosthesis recipients. J Vis, 3(12): p. 222.

    Google Scholar 

  8. Delbeke J, Oozeer M, Veraart C (2003), Position, size and luminosity of phosphenes generated by direct optic nerve stimulation. Vision Res, 43(9): p. 1091–102.

    Article  Google Scholar 

  9. Dobelle WH (2000), Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J, 46(1): p. 3–9.

    Article  Google Scholar 

  10. Dobelle WH, Mladejovsky MG (1974), Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol, 243(2): p. 553–76.

    Google Scholar 

  11. Dobelle WH, Turkel J, Henderson DC, Evans JR (1979), Mapping the representation of the visual field by electrical stimulation of human visual cortex. Am J Ophthalmol, 88(4): p. 727–35.

    Google Scholar 

  12. Drasdo N, Fowler CW (1974), Non-linear projection of the retinal image in a wide-angle schematic eye. Br J Ophthalmol, 58: p. 709–14.

    Article  Google Scholar 

  13. Everitt BS, Rushton DN (1978), A method for plotting the optimum positions of an array of cortical electrical phosphenes. Biometrics, 34(3): p. 399–410.

    Article  Google Scholar 

  14. Fernandez E, Alfaro A, Tormos JM, et al. (2002), Mapping of the human visual cortex using image-guided transcranial magnetic stimulation. Brain Res Brain Res Protoc, 10(2): p. 115–24.

    Article  Google Scholar 

  15. Gargini C, Terzibasi E, Mazzoni F, Strettoi E (2007), Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: a morphological and ERG study. J Comp Neurol, 500(2): p. 222–38.

    Article  Google Scholar 

  16. Gothe J, Brandt SA, Irlbacher K, et al. (2002), Changes in visual cortex excitability in blind subjects as demonstrated by transcranial magnetic stimulation. Brain, 125(Pt 3): p. 479–90.

    Article  Google Scholar 

  17. Holmes G (1918), Disturbances of vision by cerebral lesions. Br J Ophthalmol, 2(7): p. 353–84.

    Article  Google Scholar 

  18. Humayun MS, de Juan E, Jr., Dagnelie G, et al. (1996), Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol, 114(1): p. 40–6.

    Google Scholar 

  19. Humayun MS, de Juan E, Jr., Weiland JD, et al. (1999), Pattern electrical stimulation of the human retina. Vision Res, 39(15): p. 2569–76.

    Article  Google Scholar 

  20. Humayun MS, Weiland JD, Fujii GY, et al. (2003), Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res, 43(24): p. 2573–81.

    Article  Google Scholar 

  21. Kaido T, Hoshida T, Taoka T, Sakaki T (2004), Retinotopy with coordinates of lateral occipital cortex in humans. J Neurosurg, 101(1): p. 114–8.

    Article  Google Scholar 

  22. Kandel E, Schwartz J, Jesell T (2000), Principles of Neural Science, 4 ed., McGraw-Hill, New York, NY.

    Google Scholar 

  23. Kruskal JB (1964), Nonmetric multidimensional-scaling – a numerical-method. Psychometrika, 29(2): p. 115–29.

    Article  MATH  MathSciNet  Google Scholar 

  24. Marg E, Rudiak D (1994), Phosphenes induced by magnetic stimulation over the occipital brain – description and probable site of stimulation. Optom Vis Sci, 71(5): p. 301–11.

    Article  Google Scholar 

  25. Milam AH, Li ZY, Fariss RN (1998), Histopathology of the human retina in retinitis pigmentosa. Prog Retin Eye Res, 17(2): p. 175–205.

    Article  Google Scholar 

  26. Mladejovsky MG, Eddington DK, Evans JR, Dobelle WH (1976), A computer-based brain stimulation system to investigate sensory prostheses for the blind and deaf. IEEE Trans Biomed Eng, 23(4): p. 286–96.

    Article  Google Scholar 

  27. Ray PG, Meador KJ, Epstein CM, et al. (1998), Magnetic stimulation of visual cortex: factors influencing the perception of phosphenes. J Clin Neurophysiol, 15(4): p. 351–7.

    Article  Google Scholar 

  28. Schmidt EM, Bak MJ, Hambrecht FT, et al. (1996), Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain, 119: p. 507–22.

    Article  Google Scholar 

  29. Veraart C, Raftopoulos C, Mortimer JT, et al. (1998), Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res, 813: p. 181–6.

    Article  Google Scholar 

  30. Veraart C, Wanet-Defalque MC, Gerard B, et al. (2003), Pattern recognition with the optic nerve visual prosthesis. Artif Organs, 27(11): p. 996–1004.

    Article  Google Scholar 

  31. Zhang L, Chai X, Ling S, et al. (2009), Dispersion and accuracy of simulated phosphene positioning using tactile board. Artif Organs, 33(12): p. 1109–16.

    Article  Google Scholar 

Download references

Acknowledgment

Supported in part by PHS grant # EY012843.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Christiaan Stronks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stronks, H.C., Dagnelie, G. (2011). Phosphene Mapping Techniques for Visual Prostheses. In: Dagnelie, G. (eds) Visual Prosthetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0754-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0754-7_19

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0753-0

  • Online ISBN: 978-1-4419-0754-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics