Skip to main content

Transport, Synthesis, and Incorporation of n–3 and n–6 Fatty Acids in Brain Glycerophospholipids

  • Chapter
  • First Online:
Beneficial Effects of Fish Oil on Human Brain

Neural membranes are composed of glycerophospholipids, sphingolipids, cholesterol, and proteins. Glycerophospholipids and sphingolipids contain nonpolar fatty acyl, alkenyl, and alkyl chains. The degree of unsaturation in polyunsaturated fatty acids (PUFA) determines many neural membrane properties including membrane order, packing pattern, and fluidity. Variations in the head group, length of the fatty acid acyl chains, and degree of saturation and unsaturation produce changes in surface charge and physicochemical characteristics of neural membranes. Collective evidence suggests that PUFA modulate many neural membrane properties and functions (Yehuda et al., 2002; Farooqui and Horrocks, 2007; Farooqui, 2009). Three families of PUFA are known to occur in neural membranes: the n–3 PUFA family is characterized by having their first double bond at carbon atom number 3; n–6 PUFA family members have their first double bond at carbon atom number 6, when counted from the methyl end of the carbon chain; and n–9 family member contains first double bond at carbon atom number 9 from fatty acid methyl end. Examples of n–3 fatty acids are α-linolenic acid (ALA; 18:3n–3) acid, eicosapentaenoic acid (EPA; 20:5n–3), and docosahexaenoic acid (DHA; 22:6n–3). Examples of n–6 fatty acid family are linoleic acid (LA; 18:2n–6), arachidonic acid (ARA; 20:4n–6), and adrenic acid (AA; 22:4n–6), and example of n–9 family is oleic acid. Mammals cannot introduce double bond between carbon 1 and 6 due to the lack of desaturases but can introduce a double bond after the ninth carbon through the action of Δ9-desaturase. In mammalian synaptosomal plasma membrane glycerophospholipids, n–6 and n–3 PUFA are mainly located at the sn-2 position of glycerol moiety. Majority of ARA and oleic acid is associated with phosphatidylcholine (PtdCho), whereas phosphatidylethanolamine (PtdEtn) and ethanolamine plasmalogens (PlsEtn) contain both ARA and DHA at the sn-2 position of glycerol moiety. Phosphatidylserine (PtdSer) is enriched in DHA (Glomset, 2006). Sphingomyelin and glycolipids in synaptosomal plasma membranes contain amide-linked stearic acid instead of a mixture of this acid with other amide-linked fatty acids. Although the physiological significance of this unique distribution of lipid head groups, esterified fatty acids, and amide-linked fatty acids is not fully understood, asymmetric distribution of glycerophospholipids and sphingolipids between the two leaflets of neural membrane may contribute to dynamic lipid substructures (Glomset, 2006). In neural membranes, DHA and ARA are substrates for lipid mediators. LA and ALA are precursors for the synthesis of ARA and DHA, respectively. The importance of ARA and DHA is related to their specific interactions with membrane proteins and their ability to serve as precursors for eicosanoids and docosanoids. Collective evidence suggests that the incorporation of ARA and DHA in neural membranes not only induces changes in physicochemical properties of membranes but also modulates membrane functions through the generation of lipid mediators (Horrocks and Farooqui, 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbar M., and Kim H.Y. (2002). Protective effects of docosahexaenoic acid in staurosporine-induced apoptosis: involvement of phosphatidylinositol-3 kinase pathway. J. Neurochem. 82:655–665.

    PubMed  CAS  Google Scholar 

  • Baker R.A., and Chang H.Y. (1981). A comparison of lysophosphatidylcholine acyltransferase activities in neuronal nuclei and microsomes isolated from immature rabbit cerebral cortex. Biochim. Biophys. Acta. 666:223–229.

    PubMed  CAS  Google Scholar 

  • Bezard J., Blond J.P., Bernard A., and Clouet P. (1994). The metabolism and availability of essential fatty acids in animal and human tissues. Reprod. Nutr. Dev. 34:539–568.

    PubMed  CAS  Google Scholar 

  • Bourre J.M., Durand G., Pascal G., and Youyou A. (1989). Brain cell and tissue recovery in rats made deficient in n-3 fatty acids by alteration of dietary fat. J. Nutr. 119:15–22.

    PubMed  CAS  Google Scholar 

  • Bourre J.M., and Piciotti M. (1992). Delta-6 desaturation of alpha-linolenic acid in brain and liver during development and aging in the mouse. Neurosci. Lett. 141:65–68.

    PubMed  CAS  Google Scholar 

  • Cabrini L., Bochicchio D., Bordoni A., Sassi S., Marchetti M., and Maranesi M. (2005). Correlation between dietary polyunsaturated fatty acids and plasma homocysteine concentration in vitamin B6-deficient rats. Nutr. Metab. Cardiovasc. Dis. 15:94–99.

    PubMed  CAS  Google Scholar 

  • Cao J., Blond J.P., and Bezard J. (1993). Inhibition of fatty acid delta 6- and delta 5-desaturation by cyclopropene fatty acids in rat liver microsomes. Biochim. Biophys. Acta. 1210:27–34.

    PubMed  CAS  Google Scholar 

  • Cao Y., Murphy K.J., McIntyre T.M., Zimmerman G.A., and Prescott S.M. (2000). Expression of fatty acid-CoA ligase 4 during development and in brain. FEBS Lett. 467:263–267.

    PubMed  CAS  Google Scholar 

  • Cao J., Liu Y., Lockwood J., Burn P., and Shi Y. (2004). A novel cardiolipin-remodeling pathway revealed by a gene encoding an endoplasmic reticulum-associated acyl-CoA:lysocardiolipin acyltransferase (ALCAT1) in mouse. J Biol. Chem. 279:31727–31734.

    PubMed  CAS  Google Scholar 

  • Cao J., Shan D., Revett T., Li D., Wu L., Liu W., Tobin J., and Gimeno R.E. (2008). Molecular Identification of a novel mammalian brain isoform of Acyl-CoA:Lysophospholipid acyltransferase with prominent ethanolamine lysophospholipid acylating activity, LPEAT2. J. Biol. Chem. 283:19049–19057.

    PubMed  CAS  Google Scholar 

  • Castagnet P.I., and Giusto N.M. (1997). Acyl-CoA:lysophosphatidylcholine acyltransferase activity in bovine retina rod outer segments. Arch. Biochem. Biophys. 340:124–134.

    PubMed  CAS  Google Scholar 

  • Chen C.T., Green J.T., Orr S.K., and Bazinet R.P. (2008). Regulation of brain polyunsaturated fatty acid uptake and turnover. Prostaglandins Leukot. Essent. Fatty Acids 79:85–91.

    CAS  Google Scholar 

  • Cho H.P., Nakamura M., and Clarke S.D. (1999a). Cloning, expression, and fatty acid regulation of the human delta-5 desaturase. J. Biol. Chem. 274:37335–37339.

    PubMed  CAS  Google Scholar 

  • Cho H.P., Nakamura M., and Clarke S.D. (1999b). Cloning, expression, and nutritional regulation of the mammalian Delta-6 desaturase. J. Biol. Chem. 274:471–477.

    PubMed  CAS  Google Scholar 

  • Coleman R.A., Lewin T.M., and Muoio D.M. (2000). Physiological and nutritional regulation of enzymes of triacylglycerol synthesis. Annu. Rev. Nutr. 20:77–103.

    PubMed  CAS  Google Scholar 

  • Contreras M.A., Sheaff-Greiner R., Chang M.C.J., Myers C.S., Salem N. Jr., and Rapoport S.I. (2000). Nutritional deprivation of alpha-linolenic acid decreases but does not abolish turnover and availability of unacylated docosahexaenoic acid and docosahexaenoyl-CoA in rat brain. J. Neurochem. 75:2392–2400.

    PubMed  CAS  Google Scholar 

  • Contreras M.A., Chang M.C.J., Rosenberger T.A., Greiner R.S., Myers C.S., Salem N. Jr., and Rapoport S.I. (2001). Chronic nutritional deprivation of n-3 alpha-linolenic acid does not affect n-6 arachidonic acid recycling within brain phospholipids of awake rats. J Neurochem. 79:1090–1099.

    PubMed  CAS  Google Scholar 

  • Corbin D.R., and Sun G.Y. (1978). Characterization of the enzymic transfer of arachidonoyl groups to 1-acyl-phosphoglycerides in mouse synaptosome fraction. J. Neurochem. 30:77–82.

    PubMed  CAS  Google Scholar 

  • Corkey B.E., Deeney J.T., Yaney G.C., Tornheim K., and Prentki M. (2000). The role of long-chain fatty acyl-CoA esters in beta-cell signal transduction. J. Nutr. 130(2S Suppl):299S–304S.

    PubMed  CAS  Google Scholar 

  • Crawford M.A. (2006). Docosahexaenoic acid in neural signaling systems. Nutri. Health 18:263–276.

    CAS  Google Scholar 

  • Das U.N. (2007). A defect in the activity of Δ6 and Δ5-desaturases may be a factor in the initiation and progression of atherosclerosis. Prostaglandins Leukot. Essent. Fatty Acids 76:251–268.

    CAS  Google Scholar 

  • DeGeorge J.J., Noronha J.G., Bell J., Robinson P., and Rapoport S.I. (1989). Intravenous injection of [1–14C]arachidonate to examine regional brain lipid metabolism in unanesthetized rats. J. Neurosci. Res. 24:413–423.

    PubMed  CAS  Google Scholar 

  • Deka N., Sun G.Y., and MacQuarrie R. (1986). Purification and properties of acyl-CoA:1-acyl-sn-glycero-3-phosphocholine-O-acyltransferase from bovine brain microsomes. Arch. Biochem. Biophys. 246:554–563.

    PubMed  CAS  Google Scholar 

  • DeMar J.C.J., Ma K.Z., Bell J.M., and Rapoport S.I. (2004). Half-lives of docosahexaenoic acid in rat brain phospholipids are prolonged by 15 weeks of nutritional deprivation of n-3 polyunsaturated fatty acids. J. Neurochem. 91:1125–1137.

    PubMed  CAS  Google Scholar 

  • Denys A., Hichami A., and Khan N.A. (2005). n-3PUFAs modulate T-cell activation via protein kinase C-α and -ε and the NF-κ B signaling pathway. J. Lipid Res. 46:752–758.

    PubMed  CAS  Google Scholar 

  • Dutta-Roy A.K. (2000). Transport mechanisms for long-chain polyunsaturated fatty acids in the human placenta. Am. J. Clin Nutr. 71(1 Suppl):315S–322S.

    PubMed  CAS  Google Scholar 

  • Faergeman N.J., and Knudsen J. (1997). Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem. J. 323:1–12.

    PubMed  CAS  Google Scholar 

  • Farooqui A.A., Horrocks L.A., and Farooqui T. (2000a). Deacylation and reacylation of neural membrane glycerophospholipids. J. Mol. Neurosci. 14:123–135.

    PubMed  CAS  Google Scholar 

  • Farooqui A.A., Horrocks L.A., and Farooqui T. (2000b). Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids 106:1–29.

    PubMed  CAS  Google Scholar 

  • Farooqui A.A., and Horrocks L.A. (2001a). Plasmalogens, phospholipase A2, and docosahexaenoic acid turnover in brain tissue. J. Mol. Neurosci. 16:263–272.

    CAS  Google Scholar 

  • Farooqui A.A., and Horrocks L.A. (2001b). Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.

    PubMed  CAS  Google Scholar 

  • Farooqui A.A., and Horrocks L.A. (2006). Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist 12:245–260.

    PubMed  CAS  Google Scholar 

  • Farooqui A.A., and Horrocks L.A. (2007). Glycerophospholipid Metabolism in Brain. Springer, New York.

    PubMed  CAS  Google Scholar 

  • Farooqui A.A., Ong W.Y., and Horrocks L.A. (2008). Neurochemical Aspects of Excitotoxicity. Springer, New York.

    Google Scholar 

  • Farooqui A.A. (2009). Hot Topics in Neural Membrane Lipidology. Springer New York.

    Google Scholar 

  • Ferrier G.R., Redondo I., Zhu J.Q., and Murphy M.G. (2002). Differential effects of docosahexaenoic acid on contractions and L-type Ca2+ current in adult cardiac myocytes. Cardiovasc. Res. 54:601–610.

    PubMed  CAS  Google Scholar 

  • Fonlupt P., Croset M., and Lagarde M. (1994). Incorporation of arachidonic and docosahexaenoic acids into phospholipids of rat brain membranes. Neurosci. Lett. 171:137–141.

    PubMed  CAS  Google Scholar 

  • Galli C., and Rise P. (2006). Origin of fatty acids in the body: endogenous synthesis versus dietary intake. Eur. J. Lipid Sci. 108:521–525.

    CAS  Google Scholar 

  • Garcia M.C., Ward G., Ma Y.C., Salem N. Jr., and Kim H.Y. (1998). Effect of docosahexaenoic acid on the synthesis of phosphatidylserine in rat brain in microsomes and C6 glioma cells. J. Neurochem. 70:24–30.

    PubMed  CAS  Google Scholar 

  • Glatz J.F., Luiken J.J., and Bonen H. (2001). Involvement of membrane-associated proteins in the acute regulation of cellular fatty acid uptake. J. Mol. Neurosci. 16:123–132.

    PubMed  CAS  Google Scholar 

  • Glomset J.A. (2006). Role of docosahexaenoic acid in neuronal plasma membranes. Sci STKE 2006:pe6.

    Google Scholar 

  • Green J.T., Orr S.K., and Bazinet R.P. (2008). The emerging role of group VI calcium-independent phospholipase A2 in releasing docosahexaenoic acid from brain phospholipids. J. Lipid Res. 49:939–944.

    PubMed  CAS  Google Scholar 

  • Green P., and Yavin E. (1993). Elongation, desaturation, and esterification of essential fatty acids by fetal rat brain in vivo. J. Lipid Res. 34:2099–2107.

    PubMed  CAS  Google Scholar 

  • Greenwalt D.E., Scheck S.H., and Rhinehart-Jones T. (1995). Heart CD36 expression is increased in murine models of diabetes and in mice fed a high fat diet. J. Clin. Invest. 96:1382–1388.

    PubMed  CAS  Google Scholar 

  • Gronn M., Christensen E., Hagve T.A., and Christophersen B.O. (1992). Effects of dietary purified eicosapentaenoic acid (20:5 (n-3)) and docosahexaenoic acid (22:6(n-3)) on fatty acid desaturation and oxidation in isolated rat liver cells. Biochim. Biophys. Acta. 1125:35–43.

    PubMed  CAS  Google Scholar 

  • Grossfield A., Feller S., and Pitman M.C. (2006). A role for direct interactions in the modulation of rhodopsin by omega-3 polyunsaturated lipids. Proc. Nat. Acad. Sci USA 103:4888–4893.

    PubMed  CAS  Google Scholar 

  • Hamano H., Nabekura J., Nishikawa M., and Ogawa T. (1996). Docosahexaenoic acid reduces GABA response in substantia nigra neuron of rat. J. Neurophysiol. 75:1264–1270.

    PubMed  CAS  Google Scholar 

  • Hamilton J.A., and Brunaldi K. (2007). A model for fatty acid transport into the brain. J. Mol. Neurosci. 33:12–17.

    PubMed  CAS  Google Scholar 

  • Hishikawa D., Shindou H., Kobayashi S., Nakanishi H., Taguchi R., and Shimizu T. (2008). Discovery of a lysophospholipid acyltransferase family essential for membrane asymmetry and diversity. Proc. Natl. Acad. Sci. USA 105:2830–2835.

    CAS  Google Scholar 

  • Horrocks L.A. (1972). Content, composition, and metabolism of mammalian and avian lipids that contain ether groups. In: Snyder F. (ed.), Ether Lipids: Chemistry and Biology, pp. 177–272. Academic Press, New York.

    Google Scholar 

  • Horrocks L.A., and Farooqui A.A. (2004). Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot. Essent. Fatty Acids 70:361–372.

    PubMed  CAS  Google Scholar 

  • Hu Z., Dai Y., Prentki M., Chohnan S., and Lane M.D. (2005). A role for hypothalamic malonyl-CoA in the control of food intake. J. Biol. Chem. 280:39681–39683.

    PubMed  CAS  Google Scholar 

  • Huster, D., Arnold, K., and Gawrisch, K. (1998). Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipids mixtures. Biochemistry 37: 17299–17308.

    PubMed  CAS  Google Scholar 

  • Igarashi M., Ma K., Chang L., Bell J.M., and Rapoport S.I. (2007a). Dietary n-3 PUFA deprivation for 15 weeks upregulates elongase and desaturase expression in rat liver but not brain. J Lipid Res. 48:2463–2470.

    PubMed  CAS  Google Scholar 

  • Igarashi M., De Mar J.C. Jr., Ma K., Chang L., Bell J.M., and Rapoport S.I. (2007b). Docosahexaenoic acid synthesis from alpha-linolenic acid by rat brain is unaffected by dietary n-3 PUFA deprivation. J. Lipid Res. 48:1150–1158.

    PubMed  Google Scholar 

  • Ikemoto A., Ohishi M., Hata N., Misawa Y., Fujii Y., and Okuyama H. (2000). Effect of n-3 fatty acid deficiency on fatty acid composition and metabolism of aminophospholipids in rat brain synaptosomes. Lipids 35:1107–1115.

    PubMed  CAS  Google Scholar 

  • Infante J.P., and Huszagh V.A. (1997). On the molecular etiology of decreased arachidonic (20:4n-6), docosapentaenoic (22:5n-6) and docosahexaenoic (22:6n-3) acids in Zellweger syndrome and other peroxisomal disorders. Mol. Cell. Biochem. 168:101–115.

    PubMed  CAS  Google Scholar 

  • Infante J.P., and Huszagh V.A. (1998). Analysis of the putative role of 24-carbon polyunsaturated fatty acids in the biosynthesis of docosapentaenoic (22:5n-6) and docosahexaenoic (22:6n-3) acids. FEBS Lett. 431:1–6.

    PubMed  CAS  Google Scholar 

  • Innis S.M., and Dyer R.A. (2002). Brain astrocyte synthesis of docosahexaenoic acid from n-3 fatty acids is limited at the elongation of docosapentaenoic acid. J. Lipid Res. 43:1529–1536.

    PubMed  CAS  Google Scholar 

  • Jackson S.K., Abate W., Parton J., Jones S., and Harwood J.L. (2008a). Lysophospholipid metabolism facilitates Toll-like receptor 4 membrane translocation to regulate the inflammatory response. J. Leuko. Biol. 84:86–92.

    PubMed  CAS  Google Scholar 

  • Jackson S.K., Abate W., and Tonks A.J. (2008b). Lysophospholipid acyltransferases: Novel potential regulators of the inflammatory response and target for new drug discovery. Pharmacol. Ther. 119:104–114.

    PubMed  CAS  Google Scholar 

  • Jones C.R., Arai T., and Rapoport S.I. (1997). Evidence for the involvement of docosahexaenoic acid in cholinergic stimulated signal transduction at the synapse. Neurochem. Res. 22:663–670.

    PubMed  CAS  Google Scholar 

  • Lagarde M., Bernoud N., Brossard N., Lemaitre-Delaunay D., Thies F., Croset M., and Lecerf J. (2001). Lysophosphatidylcholine as a preferred carrier form of docosahexaenoic acid to the brain. J. Mol. Neurosci. 16:201–204.

    PubMed  CAS  Google Scholar 

  • Laposata M., Reich E.L., and Majerus P.W. (1985). Arachidonoyl-CoA synthetase. Separation from nonspecific acyl-CoA synthetase and distribution in various cells and tissues. J. Biol. Chem. 260:11016–11020.

    PubMed  CAS  Google Scholar 

  • Lauritzen L., Hansen H.S., Jorgensen M.H., and Michaelsen K.F. (2001). The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog. Lipid Res. 40:1–94.

    PubMed  CAS  Google Scholar 

  • Lee H.J., Ghelardoni L., Chang L., Bosetti F., Rapoport S.I., and Bazinet R.P. (2005). Topiramate does not alter the kinetics of arachidonic or docosahexaenoic acid in brain phospholipids of the unanesthetized rat. Neurochem. Res. 30:677–683.

    PubMed  CAS  Google Scholar 

  • Lewin T.M., Kim J.H., Granger D.A., Vance J.E., and Coleman R.A. (2001). Acyl-CoA synthetase isoforms 1, 4, and 5 are present in different subcellular membranes in rat liver and can be inhibited independently. J. Biol. Chem. 276:24674–24679.

    PubMed  CAS  Google Scholar 

  • Li Q., Wang M., Tan L., Wang C., Ma J., Li N., Li Y., Xu G., and Li J.S. (2005). Docosahexaenoic acid changes lipid composition and interleukin-2 receptor signaling in membrane rafts. J. Lipid Res. 46:1904–1913.

    PubMed  CAS  Google Scholar 

  • Lin A.Y., Sun G.Y., and MacQuarrie R. (1984). Partial purification and properties of long-chain acyl-CoA hydrolase from rat brain cytosol. Neurochem. Res. 9:1571–1591.

    PubMed  CAS  Google Scholar 

  • Ma D.W.L., Seo J., Switzer K.C., Fan Y.Y., McMurray D.N., Lupton J.R., and Chapkin R.S. (2004). n-3 PUFA and membrane microdomains: a new frontier in bioactive lipid research. J. Nutr. Biochem. 15:700–706.

    PubMed  CAS  Google Scholar 

  • MacDonald J.I.S., and Sprecher H. (1991). Phospholipid fatty acid remodeling in mammalian cells. Biochim. Biophys. Acta 1084:105–121.

    PubMed  CAS  Google Scholar 

  • Martin R.E. (1998). Docosahexaenoic acid decreases phospholipase A2 activity in the neurites/nerve growth cones of PC12 cells. J. Neurosci. Res. 54:805–813.

    PubMed  CAS  Google Scholar 

  • Martin R.E., Wickham J.Q., Om A.S., Sanders J., and Ceballos N. (2000). Uptake and incorporation of docosahexaenoic acid (DHA) into neuronal cell body and neurite/nerve growth cone lipids: Evidence of compartmental DHA metabolism in nerve growth factor-differentiated PC12 cells. Neurochem. Res. 25:715–723.

    PubMed  CAS  Google Scholar 

  • Martínez M., and Mougan I. (1998). Fatty acid composition of human brain phospholipids during normal development. J. Neurochem. 71:2528–2533.

    PubMed  Google Scholar 

  • Marszalek J.R., Kitidis C., Dirusso C.C., and Lodish H.F. (2005). Long-chain acyl-CoA synthetase 6 preferentially promotes DHA metabolism. J. Biol. Chem. 280:10817–10826.

    PubMed  CAS  Google Scholar 

  • Mitchell D.C., Gawrisch K., Litman B.J., and Salem N., Jr. (1998). Why is docosahexaenoic acid essential for nervous system function? Biochem. Soc. Trans. 26:365–370.

    PubMed  CAS  Google Scholar 

  • Monier S., Dietzen D.J., Hastings W.R., Lubin D.M., and Korzchalia T.V. (1996). Oligomerization of VIP21-caveolin in vitro is stabilized by long chain fatty acylation or cholesterol. FEBS Lett. 388:143–149.

    PubMed  CAS  Google Scholar 

  • Nakamura M.T., and Nava T.Y. (2002). Gene regulation of mammalian desaturases. Biochem. Soc. Trans. 30:1076–1079.

    PubMed  CAS  Google Scholar 

  • Nakamura M.T., and Nara T.Y. (2004). Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu. Rev. Nutr. 24:345–376.

    PubMed  CAS  Google Scholar 

  • Nemazanyy I., Panasyuk G., Breus O., Zhyvoloup A., Filonenko V., and Gout IT. (2006). Identification of a novel CoA synthase isoform, which is primarily expressed in the brain. Biochem. Biophys. Res. Commun. 341:995–1000.

    PubMed  CAS  Google Scholar 

  • Niu S.L., Mitchell D.C., Lim S.Y., Wen Z.M., Kim H.Y., Salem N. Jr., and Litman B.J. (2004). Reduced G protein-coupled signaling efficiency in retinal rod outer segments in response to n-3 fatty acid deficiency. J. Biol. Chem. 279:31098–31104.

    PubMed  CAS  Google Scholar 

  • Norris A.W., and Spector A.A. (2002). Very long chain n-3 and n-6 polyunsaturated fatty acids bind strongly to liver fatty acid-binding protein. J. Lipid Res. 43:646–653.

    PubMed  CAS  Google Scholar 

  • Ojima A., Nakagawa Y., Sugiura T., Masuzawa Y., and Waku K. (1987). Selective transacylation of 1–0-alkylglycerophosphoethanolamine by docosahexaenoate and arachidonate in rat brain microsomes. J. Neurochem. 48:1403–1410.

    PubMed  CAS  Google Scholar 

  • Onuma Y., Masuzawa Y., Ishima Y., and Waku K. (1984). Selective incorporation of docosahexaenoic acid in rat brain. Biochim. Biophys. Acta 793:80–85.

    PubMed  CAS  Google Scholar 

  • Polozova A. Gionfriddo E., and Salem N. Jr. (2006). Effect of docosahexaenoic acid on tissue targeting and metabolism of plasma lipoproteins. Prostaglandins Leukot. Essent. Fatty Acids 75:183–190.

    CAS  Google Scholar 

  • Polozova A., and Salem N. Jr. (2007). Role of liver and plasma lipoproteins in selective transport of n-3 fatty acids to tissues: a comparative study of 14C-DHA and 3H-oleic acid tracers. J. Mol. Neurosci. 33:56–66.

    PubMed  CAS  Google Scholar 

  • Pownall H.J. (2001). Cellular transport of nonesterified fatty acids. J. Mol. Neurosci. 16:109–115.

    PubMed  CAS  Google Scholar 

  • Prentki M., and Corkey B.E. (1996). Are the beta-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes. 45:273–283.

    PubMed  CAS  Google Scholar 

  • Rapoport S.I. (1999). In vivo fatty acid incorporation into brain phospholipids in relation to signal transduction and membrane remodeling. Neurochem. Res. 24:1403–1415.

    PubMed  CAS  Google Scholar 

  • Rapoport S.I., Chang M.C.J., and Spector A.A. (2001). Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. J. Lipid Res. 42:678–685.

    PubMed  CAS  Google Scholar 

  • Rapoport S.I., Rao J.S., and Igarashi S. (2007). Brain metabolism of nutritionally essential polyunsaturated fatty acids depends on both the diet and the liver. Prostaglandins Leukot. Essent. Fatty Acids 77:251–261.

    PubMed  CAS  Google Scholar 

  • Rapoport S.I. (2007). Brain arachidonic and docosahexaenoic acid cascades are selectively altered by drugs, diet and disease. Prostaglandins Leukot. Essent. Fatty Acids 79:153–156.

    Google Scholar 

  • Rapoport S.I. (2008). Arachidonic acid and the brain. J. Nutr. 138:2515–2520.

    PubMed  CAS  Google Scholar 

  • Reddy T.S., and Bazan N.G. (1984). Long-chain acyl coenzyme A synthetase activity during the postnatal development of the mouse brain. Int. J. Devl. Neurosci. 2:447–450.

    CAS  Google Scholar 

  • Reddy T.S., Sprecher H., and Bazan N.G. (1984). Long-chain acyl-coenzyme A synthetase from rat brain microsomes. Kinetic studies using [1–14C]docosahexaenoic acid substrate. Eur. J. Biochem. 145:21–29.

    PubMed  CAS  Google Scholar 

  • Ross B.M., and Kish S.J. (1994). Characterization of lysophospholipid metabolizing enzymes in human brain. J. Neurochem. 63:1839–1848.

    PubMed  CAS  Google Scholar 

  • Rotstein N.P., Politi L.E., German O.L., and Girotti R. (2003). Protective effect of docosahexaenoic acid on oxidative stress-induced apoptosis of retina photoreceptors. Invest. Ophthalmol. Vis. Sci. 44:2252–2259.

    PubMed  Google Scholar 

  • Salem N. Jr., Kim H.Y., and Yergey J.A. (1986). Docosahexaenoic acid: membrane function and metabolism. In: Simopoulos A.P., Kifer R.R., and Martin R.E. (eds.), Health Effects of Polyunsaturated Fatty Acids in Seafoods, pp. 263–318. Academic Press, Orlando.

    Google Scholar 

  • Salem N. Jr., Pawlosky R., Wegher B., and Hibbeln J. (1999). In vivo conversion of linoleic acid to arachidonic acid in human adults. Prostaglandins Leukot. Essent. Fatty Acids 60:407–410.

    CAS  Google Scholar 

  • SanGiovanni J.P., and Chew E.Y. (2005). The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog. Retinal Eye Res. 24:87–138.

    CAS  Google Scholar 

  • Schmidt A., Wolde M., Thiele C., Fest W., Kratzin H., Podtelejnikov A.V., Witke W., Huttner W.B., and Söling H.D. (1999). Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401:133–141.

    PubMed  CAS  Google Scholar 

  • Scott B.L., and Bazan N.G. (1989). Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc. Natl. Acad. Sci. USA 86:2903–2907.

    PubMed  CAS  Google Scholar 

  • Shaikh S.R., Dumaual A.C., LoCassio D., Siddiqui R.A., and Stillwell W. (2003). Acyl chain unsaturation in PEs modulates phase separation from lipid raft molecules. Biochem. Biophys. Res. Commun. 311:793–796.

    CAS  Google Scholar 

  • Shaikh, S.R. Dumaual A.C., Castillo A., LoCassio D., Siddiqui R.A., and Stillwell W., and Wassall S.R. (2004). Oleic and docosahexaenoic acid differentially phase separate from lipid raft molecules: A comparative NMR, DSC, AFM, and detergent extraction study. Biophys. J. 87:1752–1766.

    PubMed  CAS  Google Scholar 

  • Shikano M., Masuzawa Y., Yazawa K., Takayama K., Kudo I., and Inoue K. (1994). Complete discrimination of docosahexaenoate from arachidonate by 85 kDa cytosolic phospholipase A2 during the hydrolysis of diacyl- and alkenylacylglycerophosphoethanolamine. Biochim. Biophys. Acta 1212:211–216.

    PubMed  CAS  Google Scholar 

  • Shindou H., Hishikawa D., Harayama T., Yuki K., and Shimizu T. (2009). Recent progress on acyl CoA: lysophospholipid acyltransferase research. J. Lipid Res. 50 Suppl:S46-S51.

    PubMed  CAS  Google Scholar 

  • Simopoulos A.P. (2004). Omega-3 fatty acids and antioxidants in edible wild plants. Biol. Res. 37:263–277.

    PubMed  Google Scholar 

  • Simopoulos A.P. (2006). Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed. Pharmacother. 60:502–507.

    PubMed  CAS  Google Scholar 

  • Söderberg M., Edlund C., Kristensson K., and Dallner G. (1991). Fatty acid composition of brain phospholipids in aging and in Alzheimer's disease. Lipids 26:421–425.

    PubMed  Google Scholar 

  • Soupene E., and Kuypers F.A. (2008). Mammalian long-chain acyl-CoA synthetases. Exp. Biol. Med. (Maywood) 233:507–521.

    CAS  Google Scholar 

  • Soupene Y., Chen Y.O., Bonacci T.M., Bredt D.S., Li S., Bensch W.R., Moller D.E., Kowala M., Konard R.J., and Cao G. (2008). Identification and characterization of a major liver lysophosphatidylcholine acyltransferase. J. Biol. Chem. 283:8258–8265.

    Google Scholar 

  • Sprecher H., Chen Q., Yin F.Q. (1999). Regulation of the biosynthesis of 22:5n-6 and 22:6n-3: a complex intracellular process. Lipids 34(Suppl):S153–S156.

    PubMed  CAS  Google Scholar 

  • Stillwell W., Shaikh S.R., Zerouga M., Siddiqui R., and Wassall S.R. (2005). Docosahexaenoic acid affects cell signaling by altering lipid rafts. Reprod. Nutr. Develop. 45:559–579.

    CAS  Google Scholar 

  • Stinson A.M., Wiegand R.D., and Anderson R.E. (1991). Fatty acid and molecular species compositions of phospholipids and diacylglycerols from rat retina membranes. Exp. Eye Res. 52:213–218.

    PubMed  CAS  Google Scholar 

  • Stoffel W., Holz B., Jenke B., Binczek E., Günter R.H. Kiss C., Karakesisoglou I., Thevis M., Weber A.A., Arnhold S., and Addicks K. (2008). Delta6-Desaturase (FADS2) deficiency unveils the role of omega3- and omega6-polyunsaturated fatty acids. EMBO J. 27:2281–2292.

    PubMed  CAS  Google Scholar 

  • Stremmel W., Pohl L., Ring A., and Herrman T. (2001). A new concept of cellular uptake and intracellular trafficking of long-chain fatty acids. Lipids 36:981–989.

    PubMed  CAS  Google Scholar 

  • Strokin M., Sergeeva M., and Reiser G. (2003). Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. Br. J. Pharmacol. 139:1014–1022.

    PubMed  CAS  Google Scholar 

  • Sun G.Y., and MacQuarrie R.A. (1989). Deacylation-reacylation of arachidonoyl groups in cerebral phospholipids. Ann. N.Y. Acad. Sci. 559:37–55.

    PubMed  CAS  Google Scholar 

  • Sun G.Y., and Su K.L. (1979). Metabolism of arachidonoyl phosphoglycerides in mouse brain sucellular fractions. J. Neurochem. 32:1053–1059.

    PubMed  CAS  Google Scholar 

  • Tsuge H., Hotta N., and Hayakawa T. (2000). Effects of vitamin B-6 on (n-3) polyunsaturated fatty acid metabolism. J. Nutr. 130(2S Suppl):333S–334S.

    PubMed  CAS  Google Scholar 

  • Utsunomiya A., Owada Y., Yoshimoto T., and Kondo H. (1997). Localization of mRNA for fatty acid transport protein in developing and mature brain of rats. Brain Res. Mol. Brain Res. 46:217–222.

    PubMed  CAS  Google Scholar 

  • Van Horn C.G., Caviglia M., Li L.O., Wang S., Granger D.A., and Coleman R.A. (2005). Characterization of recombinant long-chain rat acyl-CoA synthetase isoforms 3 and 6: identification of a novel variant of isoform 6. Biochemistry 44:1635–1644.

    PubMed  Google Scholar 

  • Vilaro S., Camps L., Reina M., Rerez-Clausell J., Llobera M., and Olivecrona T. (1990). Localization of lipoprotein lipase to discrete areas of the guinea pig brain. Brain Res. 506:249–253.

    PubMed  CAS  Google Scholar 

  • Visioli F., Crawford M.A., Cunnane S., Rise P., and Galli C. (2006). Lipid transport, dietary fats, and endogenous lipid synthesis: hypotheses on saturation and competition processes. Nutr. Health 18:127–132.

    PubMed  CAS  Google Scholar 

  • Wang Y., Botolin D., Christian B., Busik J., Xu J., and Jump D.B. (2005). Tissue-specific, nutritional, and developmental regulation of rat fatty acid elongases. J. Lipid Res. 46:706–715.

    PubMed  CAS  Google Scholar 

  • Washizaki K., Smith Q.R., Rapoport S.I., and Purdon A.D. (1994). Brain arachidonic acid incorporation and precursor pool specific activity during intravenous infusion of unesterified [3H]arachidonate in the anesthetized rat. J. Neurochem. 63:727–736.

    PubMed  CAS  Google Scholar 

  • Wassall S.R., Brzustowicz M.R., Shaikh S.R., Cherezov V., Caffrey M., and Stillwell W. (2004). Order from disorder, corralling cholesterol with chaotic lipids – The role of polyunsaturated lipids in membrane raft formation. Chem. Phys. Lipids 132:79–88.

    PubMed  CAS  Google Scholar 

  • Willumsen N., Hexeberg S., Skorve J., Lundquist M., and Berge R.K. (1993). Docosahexaenoic acid shows no triglyceride-lowering effects but increases the peroxisomal fatty acid oxidation in liver of rats. J. Lipid Res. 34:13–22.

    PubMed  CAS  Google Scholar 

  • Wolfgang M.J., Kurama T., Dai Y., Suwa A., Asaumi M., Matsumoto S., Cha S.H., Shimokawa T., and Lane M.D. (2006). The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis. Proc. Natl. Acad. Sci USA 103:7282–7287.

    PubMed  CAS  Google Scholar 

  • Wolfgang M.J., Cha S.H., Millington D.S., Cline G., Shulman G.I., Suwa A., Asaumi M., Kurama T., Shimokawa T., and Lane M.D. (2008). Brain-specific carnitine palmitoyl-transferase-1c: role in CNS fatty acid metabolism, food intake, and body weight. J. Neurochem. 105:1550–1559.

    PubMed  CAS  Google Scholar 

  • Yamashita A., Sugiura T., and Waku K. (1997). Acyltransferases and transacylases involved in fatty acid remodeling of phospholipids and metabolism of bioactive lipids in mammalian cells. J. Biochem. (Tokyo) 122:1–16.

    CAS  Google Scholar 

  • Yehuda S., Rabinovitz S., Carasso R.L., and Mostofsky D.I. (2002). The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol. Aging 23:843–853.

    PubMed  CAS  Google Scholar 

  • Young C., Gean P.W., Chiou L.C., and Shen Y.Z. (2000). Docosahexaenoic acid inhibits synaptic transmission and epileptiform activity in the rat hippocampus. Synapse 37:90–94.

    PubMed  CAS  Google Scholar 

  • Zhang Q., Yoshida S., Sakai K., Liu J., and Fukunaga K. (2000). Changes of free fatty acids and acyl-CoAs in rat brain hippocampal slice with tetraethylammonium-induced long-term potentiation. Biochem. Biophys. Res. Commun. 267:208–212.

    PubMed  CAS  Google Scholar 

  • Zhao Y., Chen Y.O., Bonacci T.M., Bredt D.S., Li S., Bensch W.R., Moller D.E., Kowala M., Konard R.J., and Cao G. (2008). Identification and characterization of a major liver lysophosphatidylcholine acyltransferase. J. Biol. Chem. 283:8258–8265.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhlaq A. Farooqui .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farooqui, A.A. (2009). Transport, Synthesis, and Incorporation of n–3 and n–6 Fatty Acids in Brain Glycerophospholipids. In: Beneficial Effects of Fish Oil on Human Brain. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0543-7_2

Download citation

Publish with us

Policies and ethics