Skip to main content

A Spiking Neuron Model of the Basal Ganglia Circuitry that Can Generate Behavioral Variability

  • Conference paper
  • First Online:
The Basal Ganglia IX

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 58))

Abstract

The cortical-basal ganglia circuitry has been implicated in action selection, action initiation, and generation of behavioral variability. However, underlying mechanisms for these functions still remain unresolved. In this paper, we propose a new spiking neuron model for the basal ganglia circuitry that includes different functions for the direct and indirect pathways: the indirect pathway selects an action to be executed and then the direct pathway determines the timing of the selected action. Computer simulations demonstrate that the basal ganglia circuitry supports action selection and self-timed initiation of actions. The circuitry can also generate trial-by-trial variations in the selection and timing of actions for exploration. Finally, these variations can optimally and independently be tuned by the strength of corticostriatal synapses for exploitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arkadir D, Morris G, Vaadia E and Bergman H (2004) Independent coding of movement direction and reward prediction by single pallidal neurons. J Neurosci 24: 10047–10056.

    Article  CAS  PubMed  Google Scholar 

  • Barnes TD, Kubota Y, Hu D, Jin DZ and Graybiel AM (2005) Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories. Nature 437: 1158–1161.

    Article  CAS  PubMed  Google Scholar 

  • Bevan MD, Booth PAC, Eaton SA and Bolam JP (1998) Selective innervation of neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat. J Neurosci 18: 9438–9452.

    CAS  PubMed  Google Scholar 

  • Doya K and Sejnowski TJ (1995) A novel reinforcement model of birdsong vocalization learning. In: Tesauro G, Touretzky DS and Leen TK (eds.) Advances in Neural Information Processing Systems, Vol. 7, MIT, Cambridge, MA, pp. 101–108.

    Google Scholar 

  • Hallworth NE and Bevan MD (2005) Globus pallidus neurons dynamically regulate the activity pattern of subthalamic nucleus neurons through the frequency-dependent activation of postsynaptic GABAA and GABAB receptors. J Neurosci 25: 6304–6315.

    Article  CAS  PubMed  Google Scholar 

  • Hikosaka O, Takikawa Y and Kawagoe R (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80: 953–978.

    CAS  PubMed  Google Scholar 

  • Hollerman JR, Tremblay L and Schultz W (1998) Influence of reward expectation on behavior-related neuronal activity in primate striatum. J Neurophysiol 80: 947–963.

    CAS  PubMed  Google Scholar 

  • Kao MH, Brainard MS (2006) Lesions of an avian basal ganglia circuit prevent context-dependent changes to song variability. J europhysiol 96: 1441–1455.

    Article  Google Scholar 

  • Kao MH, Doupe AJ and Brainard MS (2005) Contributions of an avian basal ganglia-forebrain circuit to real-time modulation of song. Nature 433: 638–643.

    Article  CAS  PubMed  Google Scholar 

  • Kita H and Kitai ST (1994) The morphology of globus pallidus projection neurons in the rat: An intracellular staining study. Brain Res 636: 308–319.

    Article  CAS  PubMed  Google Scholar 

  • Lee IH and Assad JA (2003) Putaminal activity for simple reactions or self-timed movements. J Neurophysiol 89:2528–2537.

    Article  PubMed  Google Scholar 

  • Maimon G and Assad JA (2006) A cognitive signal for the proactive timing of action in macaque LIP. Nat Neurosci 9:948–955.

    Article  CAS  PubMed  Google Scholar 

  • Olveczky BP, Andalman AS and Fee MS (2005) Vocal experimentation in the juvenile songbird requires a basal ganglia circuit. PLoS Biol 3: e153.

    Article  PubMed  Google Scholar 

  • Pasquereau B, Nadjar A, Arkadir D, Bezard E, Goillandeau M, Bioulac B, Gross CE and Boraud T (2007) Shaping of motor responses by incentive values through the basal ganglia. J Neurosci 27: 1176–1183.

    Article  CAS  PubMed  Google Scholar 

  • Pasupathy A and Miller EK (2005) Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature 433: 873–876.

    Article  CAS  PubMed  Google Scholar 

  • Plenz D and Kitai S (1999) A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature 400: 677–682.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JN, Hyland BI and Wickens JR (2001) A cellular mechanism of reward-related learning. Nature 413: 67–70.

    Article  CAS  PubMed  Google Scholar 

  • Samejima K, Ueda Y, Doya K and Kimura M (2005) Representation of action-specific reward values in the striatum. Science 310: 1337–1340.

    Article  CAS  PubMed  Google Scholar 

  • Sato F, Lavallée P, Lévesque M and Parent A (2000) Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. J Comp Neurol 417: 17–31.

    Article  CAS  PubMed  Google Scholar 

  • Terman D, Rubin JE, Yew AC and Wilson CJ (2002) Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J Neurosci 22: 2963–2976.

    CAS  PubMed  Google Scholar 

  • Tremblay L, Hollerman JR and Schultz W (1998) Modifications of reward expectation-related neuronal activity during learning in primate striatum. J Neurophysiol 80: 964–977.

    CAS  PubMed  Google Scholar 

  • Tumer EC and Brainard MS (2007) Performance variability enables adaptive plasticity of ‘crystallized’ adult birdsong. Nature 450: 1240–1244.

    Article  CAS  PubMed  Google Scholar 

  • Turner RS and Anderson ME (2005) Context-dependent modulation of movement-related discharge in the primate globus pallidus. J Neurosci 25: 2965–2976.

    Article  CAS  PubMed  Google Scholar 

  • Wilson CJ (1998) Basal ganglia. In: Shepherd GM (ed.) The Synaptic Organization of the Brain, fourth edition. Oxford University Press, New York, NY, pp. 329–375.

    Google Scholar 

Download references

Acknowledgments

We thank Drs. Marc-Oliver Gewaltig, Ursula Koerner, and Prof. Edgar Koerner for advice and encouragement, and Profs. Kenji Doya and Tomoki Fukai for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Shouno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Shouno, O., Takeuchi, J., Tsujino, H. (2009). A Spiking Neuron Model of the Basal Ganglia Circuitry that Can Generate Behavioral Variability. In: Groenewegen, H., Voorn, P., Berendse, H., Mulder, A., Cools, A. (eds) The Basal Ganglia IX. Advances in Behavioral Biology, vol 58. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0340-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0340-2_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0339-6

  • Online ISBN: 978-1-4419-0340-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics