Skip to main content

Abstract

HLA-B27 is a risk factor closely associated to spondyloarthropathies (SpA). One form of SpA is reactive arthritis (ReA), which develops as a complication after certain bacterial infections (e.g., Salmonellae, Yersiniae, Shigellae, Campylobacteriae. and Chlamydiae). The development of infection-triggered complication is a complex train of events between the triggering bacteria and the host. Since most of the patients suffering from ReA are HLA-B27 positive, it has been proposed that HLA-B27 may modulate the interaction between ReA-triggering bacteria and host cell. Besides antigen presenting function, HLA-B27 displays other unusual properties that might be of importance in the development of ReA. These properties (homodimer formation and misfolding of HLA-B27 heavy chain in the endoplasmic reticulum (ER) may trigger ER-strees signaling pathways in host cell, which in turn may modulate cell signaling in favor of ReA-triggering bacteria. Here we summarize the observations of HLA-B27 modulating the interaction between ReA-triggering bacteria and host cell and discuss potential mechanisms behind the interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho K, Ahvonen P, Lassus A et al. HL-A27 in reactive arthritis. A study of Yersinia arthritis and Reiter’s disease. Arthritis Rheum 1974; 17(5):521–6.

    Article  PubMed  CAS  Google Scholar 

  2. Brewerton DA, Hart FD, Nicholls A et al. Ankylosing spondylitis and HL-A 27. Lancet 1973; 1(7809):904–7.

    Article  PubMed  CAS  Google Scholar 

  3. Granfors K. Do bacterial antigens cause reactive arthritis? Rheum Dis Clin North Am 1992; 18(1):37–48.

    PubMed  CAS  Google Scholar 

  4. Penttinen MA, Ekman P, Granfors K. Non-antigen presenting effects of HLA-B27. Curr Mol Med 2004; 4(1):41–9.

    Article  PubMed  CAS  Google Scholar 

  5. Granfors K, Jalkanen S, Lindberg AA et al. Salmonella lipopolysaccharide in synovial cells from patients with reactive arthritis. Lancet 1990; 335(8691):685–8.

    Article  PubMed  CAS  Google Scholar 

  6. Granfors K, Jalkanen S, von Essen R et al. Yersinia antigens in synovial-fluid cells from patients with reactive arthritis. N Engl J Med 1989; 320(4):216–21.

    Article  PubMed  CAS  Google Scholar 

  7. Granfors K, Merilahti-Palo R, Luukkainen R et al. Persistence of Yersinia antigens in peripheral blood cells from patients with Yersinia enterocolitica O:3 infection with or without reactive arthritis. Arthritis Rheum 1998; 41 (5):855–62.

    Article  PubMed  CAS  Google Scholar 

  8. Gerard HC, Branigan PJ, Schumacher HR, Jr et al. Synovial Chlamydia trachomatis in patients with reactive arthritis/Reiter’s syndrome are viable but show aberrant gene expression. J Rheumatol 1998; 25(4):734–42.

    PubMed  CAS  Google Scholar 

  9. Gerard HC, Schumacher HR, El-Gabalawy H et al. Chlamydia pneumoniae present in the human synovium are viable and metabolically active. Microb Pathog 2000; 29(1):17–24.

    Article  PubMed  CAS  Google Scholar 

  10. Villareal C, Whittum-Hudson JA, Hudson AP. Persistent Chlamydiae and chronic arthritis. Arthritis Res 2002; 4(1):5–9.

    Article  PubMed  Google Scholar 

  11. Ekman P, Nikkari S, Putto-Laurila A et al. Detection of Salmonella infantis in synovial fluid cells of a patient with reactive arthritis. J Rheumatol 1999; 26(11):2485–8.

    PubMed  CAS  Google Scholar 

  12. Gaston JS, Cox C, Granfors K. Clinical and experimental evidence for persistent Yersinia infection in reactive arthritis. Arthritis Rheum 1999; 42(10):2239–42.

    Article  PubMed  CAS  Google Scholar 

  13. Gaston H. Mechanisms of Disease: The immunopathogenesis of spondyloarthropathies. Nat Clin Pract Rheumatol 2006; 2(7):383–92.

    Article  PubMed  CAS  Google Scholar 

  14. Hacquard-Bouder C, Chimenti M, Giquel B et al. Alteration of antigen-independent immunologic synapse formation between dendritic cells from HLA-B27-transgenic rats and CD4+ T-cells: Selective impairment of costimulatory molecule engagement by mature HLA-B27. Arthritis Rheum 2007; 56(5):1478–89.

    Article  PubMed  Google Scholar 

  15. Turner MJ, Delay ML, Bai S et al. HLA-B27 up-regulation causes accumulation of misfolded heavy chains and correlates with the magnitude of the unfolded protein response in transgenic rats: Implications for the pathogenesis of spondylarthritis-like disease. Arthritis Rheum 2007; 56(1):215–23.

    Article  PubMed  Google Scholar 

  16. Hacquard-Bouder C, Falgarone G, Bosquet A et al. Defective costimulatory function is a striking feature of antigen-presenting cells in an HLA-B27-transgenic rat model of spondylarthropathy. Arthritis Rheum 2004; 50(5):1624–35.

    Article  PubMed  CAS  Google Scholar 

  17. Cresswell P, Bangia N, Dick T et al. The nature of the MHC class I peptide loading complex. Immunol Rev 1999; 172:21–8.

    Article  PubMed  CAS  Google Scholar 

  18. Pamer E, Cresswell P. Mechanisms of MHC class I—Restricted antigen processing. Annu Rev Immunol 1998; 16:323–58.

    Article  PubMed  CAS  Google Scholar 

  19. Taurog JD. The mystery of HLA-B27: If it isn’t one thing, it’s another. Arthritis Rheum 2007; 56(8):2478–81.

    Article  PubMed  CAS  Google Scholar 

  20. Ramos M, Alvarez I, Sesma L et al. Molecular mimicry of an HLA-B27-derived ligand of arthritis-linked subtypes with chlamydial proteins. J Biol Chem 2002; 277(40):37573–81.

    Article  PubMed  CAS  Google Scholar 

  21. Ramos M, Paradela A, Vazquez M et al. Differential association of HLA-B*2705 and B*2709 to ankylosing spondylitis correlates with limited peptide subsets but not with altered cell surface stability. J Biol Chem 2002; 277(32):28749–56.

    Article  PubMed  CAS  Google Scholar 

  22. Sesma L, Montserrat V, Lamas JR et al. The peptide repertoires of HLA-B27 subtypes differentially associated to spondyloarthropathy (B*2704 and B*2706) differ by specific changes at three anchor positions. J Biol Chem 2002; 277(19):16744–9.

    Article  PubMed  CAS  Google Scholar 

  23. Fiorillo MT, Greco G, Sorrentino R. The Asp116-His116 substitution in a novel HLA-B27 subtype influences the acceptance of the peptide C-terminal anchor. Immunogenetics 1995; 41(1):38–9.

    Article  PubMed  CAS  Google Scholar 

  24. Smith J, Märker-Hermann E, Colbert R. Pathogenesis of ankylosing spondylitis: current concepts. Best Pract Res Clin Rheumatol 2006; 20:571–91.

    Article  PubMed  CAS  Google Scholar 

  25. Hermann E, Yu DT, Meyer zum Buschenfelde KH et al. HLA-B27-restricted CD8 T-cells derived from synovial fluids of patients with reactive arthritis and ankylosing spondylitis. Lancet 1993; 342(8872):646–50.

    Article  PubMed  CAS  Google Scholar 

  26. May E, Dulphy N, Frauendorf E et al. Conserved TCR beta chain usage in reactive arthritis; evidence for selection by a putative HLA-B27-associated autoantigen. Tissue Antigens 2002; 60(4):299–308.

    Article  PubMed  CAS  Google Scholar 

  27. Atagunduz P, Appel H, Kuon W et al. HLA-B27-restricted CD8+ T-cell response to cartilage-derived self peptides in ankylosing spondylitis. Arthritis Rheum 2005; 52(3):892–901.

    Article  PubMed  CAS  Google Scholar 

  28. Scofield RH, Kurien B, Gross T et al. HLA-B27 binding of peptide from its own sequence and similar peptides from bacteria: implications for spondyloarthropathies. Lancet 1995; 345(8964):1542–4.

    Article  PubMed  CAS  Google Scholar 

  29. Schwimmbeck PL, Yu DT, Oldstone MB. Autoantibodies to HLA B27 in the sera of HLA B27 patients with ankylosing spondylitis and Reiter’s syndrome. Molecular mimicry with Klebsiella pneumoniae as potential mechanism of autoimmune disease. J Exp Med 1987; 166(1):173–81.

    Article  PubMed  CAS  Google Scholar 

  30. Alvarez I, Sesma L, Marcilla M et al. Identification of novel HLA-B27 ligands derived from polymorphic regions of its own or other class I molecules based on direct generation by 20 S proteasome. J Biol Chem 2001; 276(35):32729–37.

    Article  PubMed  CAS  Google Scholar 

  31. Frauendorf E, von Goessel H, May E et al. HLA-B27-restricted T-cells from patients with ankylosing spondylitis recognize peptides from B*2705 that are similar to bacteria-derived peptides. Clin Exp Immunol 2003; 134(2):351–9.

    Article  PubMed  CAS  Google Scholar 

  32. Mear JP, Schreiber KL, Munz C et al. Misfolding of HLA-B27 as a result of its B pocket suggests a novel mechanism for its role in susceptibility to spondyloarthropathies. J Immunol 1999; 163(12):6665–70.

    PubMed  CAS  Google Scholar 

  33. Dangoria NS, DeLay ML, Kingsbury DJ et al. HLA-B27 misfolding is associated with aberrant intermolecular disulfide bond formation (dimerization) in the endoplasmic reticulum. J Biol Chem 2002; 277(26):23459–68.

    Article  PubMed  CAS  Google Scholar 

  34. Allen RL, O’Callaghan CA, McMichael AJ et al. Cutting edge: HLA-B27 can form a novel beta 2-microglobulin-free heavy chain homodimer structure. J Immunol 1999; 162(9):5045–8.

    PubMed  CAS  Google Scholar 

  35. Kollnberger S, Bird L, Sun M et al. Cell-surface expression and immune receptor recognition of HLA-B27 homodimers. Arthritis Rheum 2002; 46(11):2972–82.

    Article  PubMed  CAS  Google Scholar 

  36. Kollnberger S, Bird L, Roddis M et al. HLA-B27 heavy chain homodimers are expressed in HLA-B27 transgenic rodent models of spondyloarthritis and are ligands for paired Ig-like receptors. J Immunol 2004; 173(3):1699–710.

    PubMed  CAS  Google Scholar 

  37. May E, Dorris ML, Satumtira N et al. CD8 alpha beta T-cells are not essential to the pathogenesis of arthritis or colitis in HLA-B27 transgenic rats. J Immunol 2003; 170(2):1099–105.

    PubMed  CAS  Google Scholar 

  38. Luthra-Guptasarma M, Singh B. HLA-B27 lacking associated beta2-microglobulin rearranges to auto-display or cross-display residues 169–181: a novel molecular mechanism for spondyloarthropathies. FEBS Lett 2004; 575(1–3):1–8.

    Article  PubMed  CAS  Google Scholar 

  39. Galan JE, Wolf-Watz H. Protein delivery into eukaryotic cells by type III secretion machines. Nature 2006; 444(7119):567–73.

    Article  PubMed  CAS  Google Scholar 

  40. Stebbins CE, Galan JE. Structural mimicry in bacterial virulence. Nature 2001; 412(6848):701–5.

    Article  PubMed  CAS  Google Scholar 

  41. Rosenberger CM, Finlay BB. Phagocyte sabotage: Disruption of macrophage signalling by bacterial pathogens. Nat Rev Mol Cell Biol 2003; 4(5):385–96.

    Article  PubMed  CAS  Google Scholar 

  42. Patel JC, Galan JE. Differential activation and function of Rho GTPases during Salmonella-host cell interactions. J Cell Biol 2006; 175(3):453–63.

    Article  PubMed  CAS  Google Scholar 

  43. Bishop AL, Hall A. Rho GTPases and their effector proteins. Biochem J 2000; 348(Pt 2):241–55.

    Article  PubMed  CAS  Google Scholar 

  44. Chen L, Hobbie S, Galán J. Requirement of CDC42 for Salmonella-induced cytoskeletal and nuclear responses. Science 1996; 274(5295):2115–8.

    Article  PubMed  CAS  Google Scholar 

  45. Hobbie S, Chen L, Davis R et al. Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells. J Immunol 1997; 159(11):5550–9.

    PubMed  CAS  Google Scholar 

  46. Rihl M, Klos A, Kohler L et al. Infection and musculoskeletal conditions: Reactive arthritis. Best Pract Res Clin Rheumatol 2006; 20(6):1119–37.

    Article  PubMed  Google Scholar 

  47. Hoffmann R, van Erp K, Trulzsch K et al. Transcriptional responses of murine macrophages to infection with yersinia enterocolitica. Cell Microbiol 2004; 6(4):377–90.

    Article  PubMed  CAS  Google Scholar 

  48. Granfors K, Toivanen A. IgA-anti-yersinia antibodies in yersinia triggered reactive arthritis. Ann Rheum Dis 1986; 45(7).

    Google Scholar 

  49. Mäki-Ikola O, Leirisalo-Repo M, Kantele A et al. Salmonella-specific antibodies in reactive arthritis. J Infect Dis 1991; 164(6):1141–8.

    Article  PubMed  Google Scholar 

  50. Fields PI, Swanson RV, Haidaris CG et al. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci USA 1986; 83(14):5189–93.

    Article  PubMed  CAS  Google Scholar 

  51. Kapasi K, Inman RD. HLA-B27 expression modulates gram-negative bacterial invasion into transfected L Cells. J Immunol 1992; 148(11):3554–9.

    PubMed  CAS  Google Scholar 

  52. Kapasi K, Inman RD. ME1 epitope of HLA-B27 confers class I-mediated modulation of gram-negative bacterial invasion. J Immunol 1994; 153(2):833–40.

    PubMed  CAS  Google Scholar 

  53. Saarinen M, Ekman P, Ikeda M et al. Invasion of Salmonella into human intestinal epithelial cells is modulated by HLA-B27. Rheumatology (Oxford) 2002; 41(6):651–7.

    Article  CAS  Google Scholar 

  54. Huppertz HI, Heesemann J. Invasion and persistence of Salmonella in human fibroblasts positive or negative for endogenous HLA B27. Ann Rheum Dis 1997; 56(11):671–6.

    Article  PubMed  CAS  Google Scholar 

  55. Vähämiko S, Penttinen M, Granfors K. Aetiology and pathogenesis of reactive arthritis: role of non-antigen-presenting effects of HLA-B27. Arthritis Res Ther 2005; 7(4):136–41.

    Article  PubMed  Google Scholar 

  56. Granfors K. Host-microbe interaction in reactive arthritis: does HLA-B27 have a direct effect? J Rheumatol 1998; 25(9):1659–61.

    PubMed  CAS  Google Scholar 

  57. Laitio P, Virtala M, Salmi M et al. HLA-B27 modulates intracellular survival of Salmonella enteritidis in human monocytic cells. Eur J Immunol 1997; 27(6):1331–8.

    Article  PubMed  CAS  Google Scholar 

  58. Penttinen MA, Heiskanen KM, Mohapatra R et al. Enhanced intracellular replication of Salmonella enteritidis in HLA-B27-expressing human monocytic cells: dependency on glutamic acid at position 45 in the B pocket of HLA-B27. Arthritis Rheum 2004; 50(7):2255–63.

    Article  PubMed  CAS  Google Scholar 

  59. Sahlberg AS, Penttinen MA, Heiskanen KM et al. Evidence that the p38 MAP kinase pathway is dysregulated in HLA-B27-expressing human monocytic cells: correlation with HLA-B27 misfolding. Arthritis Rheum 2007; 56(8):2652–62.

    Article  PubMed  CAS  Google Scholar 

  60. Virtala M, Kirveskari J, Granfors K. HLA-B27 modulates the survival of Salmonella enteritidis in transfected L cells, possibly by impaired nitric oxide production. Infect Immun 1997; 65(10):4236–42.

    PubMed  CAS  Google Scholar 

  61. Huppertz HI, Heesemann J. The influence of HLA B27 and interferon-gamma on the invasion and persistence of yersinia in primary human fibroblasts. Med Microbiol Immunol 1996; 185(3):163–70.

    Article  PubMed  CAS  Google Scholar 

  62. Young JL, Smith L, Matyszak MK et al. HLA-B27 expression does not modulate intracellular Chlamydia trachomatis infection of cell lines. Infect Immun 2001; 69(11):6670–5.

    Article  PubMed  CAS  Google Scholar 

  63. Blander JM, Medzhitov R. Regulation of phagosome maturation by signals from toll-like receptors. Science 2004; 304(5673):1014–8.

    Article  PubMed  CAS  Google Scholar 

  64. Ikawa T, Ikeda M, Yamaguchi A et al. Expression of arthritis-causing HLA-B27 on Hela cells promotes induction of c-fos in response to in vitro invasion by Salmonella typhimurium. J Clin Invest 1998; 101(1):263–72.

    Article  PubMed  CAS  Google Scholar 

  65. Taurog JD, Maika SD, Satumtira N et al. Inflammatory disease in HLA-B27 transgenic rats. Immunol Rev 1999; 169:209–23.

    Article  PubMed  CAS  Google Scholar 

  66. Taurog JD, Richardson JA, Croft JT et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med 1994; 180(6):2359–64.

    Article  PubMed  CAS  Google Scholar 

  67. Warner TF, Madsen J, Starling J et al. Human HLA-B27 gene enhances susceptibility of rats to oral infection by Listeria monocytogenes. Am J Pathol 1996; 149(5):1737–43.

    PubMed  CAS  Google Scholar 

  68. Mori K. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 2000; 101(5):451–4.

    Article  PubMed  CAS  Google Scholar 

  69. Ron D. Translational control in the endoplasmic reticulum stress response. J Clin Invest 2002; 110(10):1383–8.

    PubMed  CAS  Google Scholar 

  70. Lee E, Yoon C, Kim Y et al. The double-strand RNA-dependent protein kinase PKR plays a significant role in a sustained ER stress-induced apoptosis. FEBS Lett 2007; 581(22):4325–32.

    Article  PubMed  CAS  Google Scholar 

  71. Hsu LC, Park JM, Zhang K et al. The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4. Nature 2004; 428(6980):341–5.

    Article  PubMed  CAS  Google Scholar 

  72. Silva AM, Whitmore M, Xu Z et al. Protein kinase R (PKR) interacts with and activates mitogen-activated protein kinase kinase 6 (MKK6) in response to double-stranded RNA stimulation. J Biol Chem 2004; 279(36):37670–6.

    Article  PubMed  CAS  Google Scholar 

  73. Turner MJ, Sowders DP, DeLay ML et al. HLA-B27 misfolding in transgenic rats is associated with activation of the unfolded protein response. J Immunol 2005; 175(4):2438–48.

    PubMed  CAS  Google Scholar 

  74. Unanue ER, Allen PM. The basis for the immunoregulatory role of macrophages and other accessory cells. Science 1987; 236(4801):551–7.

    Article  PubMed  CAS  Google Scholar 

  75. Baeten D, Kruithof E, Van den Bosch F et al. Immunomodulatory effects of anti-tumor necrosis factor alpha therapy on synovium in spondylarthropathy: histologic findings in eight patients from an open-label pilot study. Arthritis Rheum 2001; 44(1):186–95.

    Article  PubMed  CAS  Google Scholar 

  76. De Keyser F, Baeten D, Van den Bosch F et al. Infliximab in patients who have spondyloarthropathy: clinical efficacy, safety and biological immunomodulation. Rheum Dis Clin North Am 2003; 29(3):463–79.

    Article  PubMed  Google Scholar 

  77. Van den Berg WB. Anti-cytokine therapy in chronic destructive arthritis. Arthritis Res 2001; 3(1):18–26.

    Article  PubMed  Google Scholar 

  78. Repo H, Jaattela M, Leirisalo-Repo M et al. Production of tumour necrosis factor and interleukin 1 by monocytes of patients with previous Yersinia arthritis. Clin Exp Immunol 1988; 72(3):410–4.

    PubMed  CAS  Google Scholar 

  79. Miyake K. Innate recognition of lipopolysaccharide by Toll-like receptor 4-MD-2. Trends Microbiol 2004; 12(4):186–92.

    Article  PubMed  CAS  Google Scholar 

  80. Penttinen MA, Holmberg CI, Sistonen L et al. HLA-B27 modulates nuclear factor kappaB activation in human monocytic cells exposed to lipopolysaccharide. Arthritis Rheum 2002; 46(8):2172–80.

    Article  PubMed  CAS  Google Scholar 

  81. Goodall JC, Ellis L, Yeo GS et al. Does HLA-B27 influence the monocyte inflammatory response to lipopolysaccharide? Rheumatology (Oxford) 2007; 46(2):232–7.

    Article  CAS  Google Scholar 

  82. Colbert RA. The immunobiology of HLA-B27: variations on a theme. Curr Mol Med 2004; 4(1):21–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Sahlberg, A.S., Granfors, K., Penttinen, M.A. (2009). HLA-B27 and Host-Pathogen Interaction. In: López-Larrea, C., Díaz-Peña, R. (eds) Molecular Mechanisms of Spondyloarthropathies. Advances in Experimental Medicine and Biology, vol 649. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0298-6_17

Download citation

Publish with us

Policies and ethics