Skip to main content

Current Concepts on the Molecular Biology of Osteosarcoma

  • Chapter
  • First Online:
Pediatric and Adolescent Osteosarcoma

Part of the book series: Cancer Treatment and Research ((CTAR,volume 152))

Abstract

Despite the knowledge of many of the genetic alterations present in osteosarcoma, its complexity precludes placing its biology into a simple conceptual framework. In contrast to many other malignancies, multiple genetic and environmental factors can all lead to the development of osteosarcoma which is defined phenotypically rather than molecularly. Despite the many factors capable of leading to its development, osteosarcoma is a rare malignancy that is relatively homogeneous in its clinical behavior and chemotherapy response. It remains unknown whether the clinical features of osteosarcoma are defined by the cell of origin, the genetic events leading to transformation, the timing of those events or factors related to differentiation into an osteoblastic phenotype. Identifying new treatment approaches has generally been through empiric and screening approaches. In this presentation the genetic alterations present in osteosarcoma, issues related to the cell of origin and bone differentiation will be reviewed along with the recent results of preclinical drug screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dorfman HD, Czerniak B. Bone cancers. Cancer. 1995;75:203-210.

    Article  CAS  PubMed  Google Scholar 

  2. Huvos A. Bone Tumors: Diagnosis, Treatment and Prognosis. 2nd ed. WB Saunders: Philadelphia; 1991.

    Google Scholar 

  3. Gorlick R, Bernstein ML, Toretsky JA, et al. Bone Tumours. In: Holland J, Frei E, eds. Cancer Medicine. 7th ed. Hamilton, ON: BC Decker; 2006:2019-2027.

    Google Scholar 

  4. Meyers PA, Gorlick R. Osteosarcoma. Pediatr Clin N Am. 1997;44:973-989.

    Article  CAS  Google Scholar 

  5. Ladanyi M, Gorlick R. The molecular pathology and pharmacology of osteosarcoma. Pediatr Pathol Mol Med. 2000;19:391-413.

    Article  CAS  Google Scholar 

  6. Man T-K, Lu X-Y, Jaeweon K, et al. Genome-wide array comparative genomic hybridization reveals distinct amplifications in osteosarcoma. BMC Cancer. 2004;4:45.

    Article  PubMed  Google Scholar 

  7. Lau CC, Harris CP, Lu X-Y, et al. Frequent amplification and rearrangement of chromosomal bands 6p12-p21 and 17p11.2 in osteosarcomas. Genes Chromosomes Cancer. 2004;39:11-21.

    Article  PubMed  Google Scholar 

  8. Bayani J, Zielenska M, Pandita A, et al. Spectral karyotyping identifies recurrent complex rearrangements of chromosomes 8, 17, and 20 in osteosarcomas. Genes Chromosomes Cancer. 2003;36:7-16.

    Article  CAS  PubMed  Google Scholar 

  9. Nellissery MJ, Padalecki SS, Brkanac Z, et al. Evidence for a novel osteosarcoma tumor-suppressor gene in the chromosome 18 region genetically linked with Paget disease of bone. Am J Hum Genet. 1998;63:817-824.

    Article  CAS  PubMed  Google Scholar 

  10. Wong FL, Boice JD, Abramson DH, et al. Cancer incidence after retinoblastoma: radiation dose and sarcoma risk. JAMA. 1997;278:1262-1267.

    Article  CAS  PubMed  Google Scholar 

  11. Draper GJ, Sanders BM, Kingston JE. Second primary neoplasms in patients with retinoblastoma. Br J Cancer. 1986;53:661-671.

    Article  CAS  PubMed  Google Scholar 

  12. Wadayama B, Toguchida J, Shimizu T, et al. Mutation spectrum of the retinoblastoma gene in osteosarcomas. Cancer Res. 1994;54:3042-3048.

    CAS  PubMed  Google Scholar 

  13. Benassi MS, Molendini L, Gamberi G, et al. Alteration of pRb/p16/cdk4 regulation in human osteosarcoma. Int J Cancer. 1999;84:489-493.

    Article  CAS  PubMed  Google Scholar 

  14. Hansen MF, Koufos A, Gallie BL, et al. Osteosarcoma and retinoblastoma: a shared chromosomal mechanism revealing recessive predisposition. Proc Natl Acad Sci U S A. 1985;82:6216-6220.

    Article  CAS  PubMed  Google Scholar 

  15. Harbour JW. Molecular basis of low-penetrance retinoblastoma. Arch Ophthalmol. 2001;119:1699-1704.

    CAS  PubMed  Google Scholar 

  16. Li FP, Fraumeni JF Jr, Mulvihill JJ, et al. A cancer family syndrome in twenty-four kindreds. Cancer Res. 1988;48:5358-5362.

    CAS  PubMed  Google Scholar 

  17. Malkin D, Li FP, Strong LC, et al. Germline p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250:1233-1238.

    Article  CAS  PubMed  Google Scholar 

  18. Lonardo F, Ueda T, Huvos AG, Healey J, Ladanyi M. p53 and MDM2 alterations in osteosarcomas: Correlation with clinicopathologic features and proliferative rate. Cancer. 1997;79:1541-1547.

    Article  CAS  PubMed  Google Scholar 

  19. McIntyre JF, Smith-Sorensen B, Friend SH, et al. Germline mutations of the p53 tumor suppressor gene in children with osteosarcoma. J Clin Oncol. 1994;12:925-930.

    CAS  PubMed  Google Scholar 

  20. Wang LL, Gannavarapu A, Kozinetz CA, et al. Association between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund–Thomson syndrome. J Natl Cancer Inst. 2003;95:669-674.

    Article  CAS  PubMed  Google Scholar 

  21. Nishijo K, Nakayama T, Aoyama T, et al. Mutation analysis of the RECQL4 gene in sporadic osteosarcomas. Int J Cancer. 2004;111:367-372.

    Article  CAS  PubMed  Google Scholar 

  22. Goto M, Miller RW, Ishikawa Y, Sugano H. Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol Biomarkers Prev. 1996;5:239-246.

    CAS  PubMed  Google Scholar 

  23. Jacks T, Remington L, Williams BO, et al. Tumor spectrum analysis in p53-mutant mice. Curr Biol. 1994;4:1-7.

    Article  CAS  PubMed  Google Scholar 

  24. Grigoriadis AE, Schellander K, Wang ZW, Wagner ER. Osteoblasts are target cells for transformation in c-fos transgenic mice. J Cell Biol. 1993;122:685-701.

    Article  CAS  PubMed  Google Scholar 

  25. Jain M, Arvanitis C, Chu K, et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science. 2002;297:102-104.

    Article  CAS  PubMed  Google Scholar 

  26. Yan T, Wunder JS, Gokgoz N, et al. COPS3 amplification and clinical outcome in osteosarcoma. Cancer. 2007;109:1870-1876.

    Article  CAS  PubMed  Google Scholar 

  27. Knowles BB, McCarrick J, Fox N, Solter D, Damjanov I. Osteosarcomas in transgenic mice expressing an alpha-amylase-SV40 T-antigen hybrid gene. Am J Pathol. 1990;137:259-262.

    CAS  PubMed  Google Scholar 

  28. Vahle JL, Sato M, Long GG, et al. Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1-34) for 2 years and relevance to human safety. Toxicol Pathol. 2002;30:312-321.

    Article  CAS  PubMed  Google Scholar 

  29. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA. Creation of human tumour cells with defined genetic elements. Nature. 1999;400:464-468.

    Article  CAS  PubMed  Google Scholar 

  30. Baserga R, Peruzzi F, Reiss K. The IGF-1 receptor in cancer biology. Int J Cancer. 2003;107:873-877.

    Article  CAS  PubMed  Google Scholar 

  31. Benini S, Baldini N, Manara MC, et al. Redundancy of autocrine loops in human osteosarcoma cells. Int J Cancer. 1999;80:581-588.

    Article  CAS  PubMed  Google Scholar 

  32. Burrow S, Andrulis IL, Pollak M, Bell RS. Expression of insulin-like growth factor receptor, IGF-1, and IGF-2 in primary and metastatic osteosarcoma. J Surg Oncol. 1998;69:21-27.

    Article  CAS  PubMed  Google Scholar 

  33. Ferracini R, Renzo MFD, Scotlandi K, et al. The Met/HGF receptor is overexpressed in human osteosarcomas and is activated by either a paracrine or autocrine circuit. Oncogene. 1995;10:739-749.

    CAS  PubMed  Google Scholar 

  34. Gorlick R, Huvos AG, Heller G, et al. Expression of HER2/erbB-2 correlates with survival in osteosarcoma. J Clin Oncol. 1999;17:2781-2788.

    CAS  PubMed  Google Scholar 

  35. Kaya M, Wada T, Akatsuka T, et al. Vascular endothelial growth factor expression in untreated osteosarcoma is predictive of pulmonary metastasis and poor prognosis. Clin Cancer Res. 2000;6:572-577.

    CAS  PubMed  Google Scholar 

  36. Hughes DP, Thomas DG, Giordano TJ, Baker LH, McDonagh KT. Cell surface expression of epidermal growth factor receptor and her-2 with nuclear expression of her-4 in primary osteosarcoma. Cancer Res. 2004;64:2047-2053.

    Article  CAS  PubMed  Google Scholar 

  37. Jung ST, Moon ES, Seo HY, Kim JS, Kim GJ, Kim YK. Expression and significance of TGF-beta isoform and VEGF in osteosarcoma. Orthopedics. 2005;28:755-760.

    PubMed  Google Scholar 

  38. Yang R, Hoang BH, Kubo T, et al. Over-expression of parathyroid hormone Type 1 receptor confers an aggressive phenotype in osteosarcoma. Int J Cancer. 2007;121:943-954.

    Article  CAS  PubMed  Google Scholar 

  39. Kubo T, Piperdi S, Rosenblum J, et al. Platelet-derived growth factor receptor as a prognostic marker and a therapeutic target for imatinib mesylate therapy in osteosarcoma. Cancer. 2008;112(10):2119-2129.

    Article  CAS  PubMed  Google Scholar 

  40. Baldini N, Scotlandi K, Barbanti-Brodano G, et al. Expression of p-glycoprotein in high-grade osteosarcomas in relation to clinical outcome. N Engl J Med. 1995;333:380-1385.

    Article  Google Scholar 

  41. Schwartz CL, Gorlick R, Teot L, et al. Multiple Drug Resistance in Osteogenic Sarcoma (INT0133). J Clin Oncol. 2007;25:2057-2062.

    Article  PubMed  Google Scholar 

  42. Guo W, Healey JH, Meyers PA, et al. Mechanisms of methotrexate resistance in osteosarcoma. Clin Cancer Res. 1999;5:621-627.

    CAS  PubMed  Google Scholar 

  43. Yang R, Sowers R, Mazza B, et al. Sequence alterations in the reduced folate carrier are observed in osteosarcoma tumor samples. Clin Cancer Res. 2003;9:837-844.

    CAS  PubMed  Google Scholar 

  44. Mintz MB, Sowers R, Brown KM, et al. An expression signature classifies chemotherapy-resistant pediatric osteosarcoma. Cancer Res. 2005;65:1748-1754.

    Article  CAS  PubMed  Google Scholar 

  45. Houghton PJ, Morton CL, Tucker C, et al. The pediatric preclinical testing program: Description of models and early testing results. Pediatr Blood Cancer. 2007;49:928-940.

    Article  PubMed  Google Scholar 

  46. Whiteford CC, Bilke S, Greer BT, et al. Credentialing preclinical pediatric xenograft models using gene expression and tissue microarray analysis. Cancer Res. 2007;67:32-40.

    Article  CAS  PubMed  Google Scholar 

  47. Maris JM, Courtright J, Houghton PJ, et al. Initial Testing (Stage 1) of the VEGFR Inhibitor AZD2171 by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer. 2008;50:581-587.

    Article  PubMed  Google Scholar 

  48. Tajbakhsh M, Houghton PJ, Morton CL, et al. Initial testing of cisplatin by the pediatric preclinical testing program. Pediatr Blood Cancer. 2008;50:992-1000.

    Article  PubMed  Google Scholar 

  49. Houghton PJ, Morton CL, Kolb EA, et al. Initial testing (stage 1) of the mTOR inhibitor rapamycin by the pediatric preclinical testing program. Pediatr Blood Cancer. 2008;50:799-805.

    Article  PubMed  Google Scholar 

  50. Kolb EA, Gorlick R, Houghton PJ, et al. Initial testing of dasatinib by the pediatric preclinical testing program. Pediatr Blood Cancer. 2000;50:1198-1206.

    Article  Google Scholar 

  51. Lock R, Carol H, Houghton PJ, et al. Initial testing (stage 1) of the BH3 mimetic ABT-263 by the pediatric preclinical testing program. Pediatr Blood Cancer. 2008;50:1181-1189.

    Article  PubMed  Google Scholar 

  52. Kolb EA, Gorlick R, Houghton PJ, et al. Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGF-1 receptor by the pediatric preclinical testing program. Pediatr Blood Cancer. 2008;50(6):1190-1197.

    Article  PubMed  Google Scholar 

  53. Hernan C, Morton CL, Houghton PJ, et al. Pediatric Preclinical Testing Program (PPTP) evaluation of the topoisopmerase I inhibitor topotecan. Proc AACR. 2008;710:710. [abstract].

    Google Scholar 

  54. Houghton PJ, Morton CL, Maris JM, et al. Pediatric Preclinical Testing Program (PPTP) evaluation of the Aurora A kinase inhibitor MLN8237. Proc AACR. 2008;49:710. [abstract].

    Google Scholar 

  55. Smith MA, Morton CL, Maris JM, et al. Pediatric Preclinical Testing Program (PPTP) evaluation of the MEK 1/2 inhibitor AZD6244 (ARRY-142886). Proc AACR. 2008;49:710. [abstract].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Gorlick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gorlick, R. (2009). Current Concepts on the Molecular Biology of Osteosarcoma. In: Jaffe, N., Bruland, O., Bielack, S. (eds) Pediatric and Adolescent Osteosarcoma. Cancer Treatment and Research, vol 152. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0284-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0284-9_27

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0283-2

  • Online ISBN: 978-1-4419-0284-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics