Skip to main content

Temporal Coding in Auditory Cortex

  • Chapter
  • First Online:
The Auditory Cortex

Abstract

Sounds in general, and human speech and animal vocalizations in particular, are characterized by their intricate temporal structure and, often, strong harmonic content. These characteristics have been named information bearing elements (IBEs) and include steady-state harmonically related frequencies, frequency modulations, and noise bursts. The interrelationship between these IBEs is reflected in information bearing parameters (IBPs) such as onsets, slow amplitude modulations, and silent gaps (Suga 1989, 1992). The IBEs are part of the sound’s texture (fine structure) and the IBPs reflect the sound contours or envelopes (Eggermont 1998, 2001). The representation of these temporal IBPs in cortical neural activity is the main topic of this Chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAF:

Tanterior auditory field

AI:

primary auditory cortex

AII:

second auditory field

AL:

anterior lateral field

AM:

amplitude modulation

BMF:

best modulation frequency

CF:

characteristic frequency

CL:

caudo-lateral field

EEG:

electroencephalography

ERBP:

event-related band power

FFR:

frequency following response

FM:

frequency modulation

fMRI:

functional magnetic resonance imaging

FM:

frequency modulation

HG:

Heschl’s gyrus

IBE:

information bearing elements

IBP:

information bearing parameters

ICEP:

intracortical evoked potential

ICI:

inter-click interval

ISI:

inter-spike interval

LFP:

local field potential

m:

depth of modulation

MEG:

magnetoencephalography

MF:

modulation frequency

MGB:

medial geniculate body

ML:

middle lateral field

MU:

multi-unit

PAF:

posterior auditory field

PP:

planum polare

PST/PSTH:

post-stimulus time histogram

PT:

planum temporale

R:

rostral field

RL:

rostrolateral field

RT:

rostrotemporal field

rMTF:

rate modulation transfer function

tMTF:

temporal modulation transfer function

SAM:

sinusoidal amplitude modulation

STG:

supra temporal gyrus

STS:

supra temporal sulcus

SU:

single unit

VOT:

voice onset time

VPAF:

ventro-posterior auditory field

VS:

vector strength

References

  • Ahissar E and Arieli A (2001) Figuring space by time. Neuron 32:185–201.

    Article  CAS  PubMed  Google Scholar 

  • Akeroyd MA and Patterson RD (1995) Discrimination of wideband noises modulated by a temporally asymmetric function. Journal of the Acoustical Society of America 98:2466–2474.

    Article  Google Scholar 

  • Atzori M, Lei S, Evans DI, Kanold PO, Phillips-Tansey E, McIntyre O, and McBain CJ (2001) Differential synaptic processing separates stationary from transient inputs to the auditory cortex. Nature Neuroscience 4:1230–1237.

    Article  CAS  PubMed  Google Scholar 

  • Ball GF and Hulse SH (1998) Birdsong. American Psychologist 53:37–58

    Article  CAS  PubMed  Google Scholar 

  • Bartlett E L and Wang X (2005) Long-lasting modulation by stimulus context in primate auditory cortex. Journal of Neurophysiology 94:83–104.

    Article  Google Scholar 

  • Bartlett EL and Wang X (2007) Neural representations of temporally-modulated signals in the auditory thalamus of awake primates. Journal of Neurophysiology 97:1005–1017.

    Article  PubMed  Google Scholar 

  • Belin P, Zatorre RJ, Lafaille P, Ahad P, and Pike B (2000) Voice-selective areas in human auditory cortex. Nature 403:309–312.

    Article  CAS  PubMed  Google Scholar 

  • Bendor D and Wang X (2005) The neuronal representation of pitch in primate auditory cortex. Nature 436:1161–1165.

    Article  CAS  PubMed  Google Scholar 

  • Bendor D and Wang X (2006) Cortical representations of pitch in monkeys and humans. Current Opinion in Neurobiology 16:391–399.

    Article  CAS  PubMed  Google Scholar 

  • Bendor DA and Wang X (2007) Differential neural coding of acoustic flutter within primate auditory cortex. Nature Neuroscience 10:763–771.

    Article  CAS  PubMed  Google Scholar 

  • Bendor D and Wang X (2008) Neural response properties of primary, rostral, and rostrotemporal core fields in the auditory cortex of marmoset monkeys. Journal of Neurophysiology 100:888–906.

    Article  PubMed  Google Scholar 

  • Bendor D and Wang X (2010) Neural coding of periodicity in marmoset auditory cortex. Journal of Neurophysiology 103:1809–1822.

    Article  PubMed  Google Scholar 

  • Besser GM (1967) Some physiological characteristics of auditory flutter fusion in man. Nature 214:17–19.

    Article  CAS  PubMed  Google Scholar 

  • Bieser A (1998) Processing of twitter-call fundamental frequencies in insula and auditory cortex of squirrel monkeys. Experimental Brain Research 122:139–148.

    Article  CAS  Google Scholar 

  • Bieser A and Mueller-Preuss P (1996) Auditory responsive cortex in the squirrel monkey: neural responses to amplitude-modulated sounds. Experimental Brain Research 108:273–284.

    Article  CAS  Google Scholar 

  • Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Springer JA, Kaufman JN, and Possing ET (2000) Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex 10:512–528.

    Article  CAS  PubMed  Google Scholar 

  • Borst A and Theunissen FE (1999) Information theory and neural coding. Nature Neuroscience 2:947–957.

    Article  CAS  PubMed  Google Scholar 

  • Brosch M and Schreiner CE (1999) Correlations between neural discharges are related to receptive field properties in cat primary auditory cortex. European Journal of Neuroscience 11:3517–3530.

    Article  CAS  PubMed  Google Scholar 

  • Brosch M and Schreiner CE (1997) Time course of forward masking tuning curves in cat primary auditory cortex. Journal of Neurophysiology 77:923–943.

    CAS  Google Scholar 

  • Brosch M and Schreiner CE (2000) Sequence sensitivity of neurons in cat primary auditory cortex. Cerebral Cortex 10:1155–1167.

    Article  CAS  PubMed  Google Scholar 

  • Brosch M, Schulz A, and Scheich H (1999) Processing of sound sequences in macaque auditory cortex: response enhancement. Journal of Neurophysiology 82:1542–1559.

    CAS  PubMed  Google Scholar 

  • Brown KA, Buchwald JS, Johnson JR, and Mikolich DJ (1978) Vocalization in the cat and kitten. Developmental Psychobiology 11:559–570.

    Article  CAS  PubMed  Google Scholar 

  • Brugge JF, Nourski KV, Oya H, Reale RA, Kawasaki H, Steinschneider M, and Howard MA 3rd (2009) Coding of repetitive transients by auditory cortex on Heschl’s gyrus. Journal of Neurophysiology 102:2358–2374

    Article  PubMed  Google Scholar 

  • Buchhfellner E, Leppelsack H-J, Klum GM, and Häusler U (1989) Gap detection in the starling (Sturnus vulgaris). Journal of Comparative Physiology A 164:539–549.

    Article  Google Scholar 

  • Carandini M, Mechler F, Leonard CS, and Movshon JA (1996) Spike train encoding by regular-spiking cells of the visual cortex. Journal of Neurophysiology 76:3425–3441.

    CAS  PubMed  Google Scholar 

  • Cariani PA and Delgutte B (1996) Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. Journal of Neurophysiology76:1698–1716.

    CAS  PubMed  Google Scholar 

  • DiMattina C and Wang X (2006) Virtual vocalization stimuli for investigating neural representations of species-specific vocalizations. Journal of Neurophysiology 95:1244–1262.

    Article  PubMed  Google Scholar 

  • Doupe AJ and Kuhl PK (1999) Birdsong and human speech: common themes and mechanisms. Annual Reviews of Neuroscience 122:567–631.

    Article  Google Scholar 

  • Eggermont JJ (1975) Cochlear adaptation: A theoretical description. Biological Cybernetics 19:181–190.

    Article  CAS  PubMed  Google Scholar 

  • Eggermont JJ (1985) Peripheral auditory adaptation and fatigue: a model oriented review. Hearing Research 18:57–71

    Article  CAS  PubMed  Google Scholar 

  • Eggermont JJ (1991) Rate and synchronization measures of periodicity coding in cat primary auditory cortex. Hearing Research 56:153–167.

    Article  CAS  PubMed  Google Scholar 

  • Eggermont JJ (1992) Neural interaction in cat primary auditory cortex. Dependence on recording depth, electrode separation and age. Journal of Neurophysiology 68:1216–1228.

    CAS  PubMed  Google Scholar 

  • Eggermont JJ (1994a) Neural interaction in cat primary auditory cortex II. Effects of sound stimulation. Journal of Neurophysiology 71:246–270.

    CAS  PubMed  Google Scholar 

  • Eggermont JJ (1994b) Temporal modulation transfer functions for AM and FM stiumuli in cat auditory cortex. Effects of carrier type, modulating waveform and intensity. Hearing Research 74:51–66.

    Article  Google Scholar 

  • Eggermont JJ (1995) Representation of a voice onset time continuum in primary auditory cortex of the cat. Journal of the Acoustical Society of America 98:911–920.

    Article  CAS  PubMed  Google Scholar 

  • Eggermont JJ (1996) How homogeneous is cat primary auditory cortex? Evidence from simultaneous single-unit recordings. Auditory Neuroscience 2:76–96.

    Google Scholar 

  • Eggermont JJ (1998) Representation of spectral and temporal sound features in three cortical fields of the cat. Similarities outweigh differences. Journal of Neurophysiology 80:2743–2764.

    CAS  PubMed  Google Scholar 

  • Eggermont JJ (1999a) The magnitude and phase of temporal modulation transfer functions in cat auditory cortex. Journal of Neuroscience 19:2780–2788.

    CAS  PubMed  Google Scholar 

  • Eggermont JJ (1999b) Neural correlates of gap detection in three auditory cortical fields in the cat. Journal of Neurophysiology 81:2570–2581.

    CAS  PubMed  Google Scholar 

  • Eggermont JJ (2000) Neural responses in primary auditory cortex mimic psychophysical, across frequency-channel, gap-detection thresholds. Journal of Neurophysiology 84:1453–1463.

    CAS  PubMed  Google Scholar 

  • Eggermont JJ (2001) Between sound and perception: reviewing the search for a neural code. Hearing Research 157:1–42.

    Article  CAS  PubMed  Google Scholar 

  • Eggermont JJ (2002) Temporal modulation transfer functions in cat primary auditory cortex: separating stimulus effects from neural mechanisms. Journal of Neurophysiology 87:305–321.

    PubMed  Google Scholar 

  • Eggermont JJ and Smith GM (1995) Synchrony between single-unit activity and local field potentials in relation to periodicity coding in primary auditory cortex. Journal of Neurophysiology 73:227–245.

    CAS  PubMed  Google Scholar 

  • Ehret G (1987) Left hemisphere advantage in the mouse brain for recognizing ultrasonic communication calls. Nature 325:249–251.

    Article  CAS  PubMed  Google Scholar 

  • Epping WJM and Eggermont JJ (1986a) Sensitivity of neurons in the auditory midbrain of the grassfrog to temporal characteristics of sound. I. Stimulation with acoustic clicks. Hearing Research 24:37–54.

    Article  CAS  PubMed  Google Scholar 

  • Epping WJM and Eggermont JJ (1986b) Sensitivity of neurons in the auditory midbrain of the grassfrog to temporal characteristics of sound. II. Stimulation with amplitude modulated sound. Hearing Research 24:55–72.

    Article  CAS  PubMed  Google Scholar 

  • Fastl H, Hesse A, Schorer E, Urbas J, and Mueller-Preuss P (1986) Searching for neural correlates of the hearing sensation fluctuation strength in the auditory cortex of squirrel monkeys. Hearing Research 23:199–203.

    Article  CAS  PubMed  Google Scholar 

  • Fishman YI, Reser DH, Arewzzo JC, and Steinschneider M (1998) Pitch vs. spectral encoding of harmonic complexes in primary auditory cortex of the awake monkey. Brain Research 786:18–30.

    Article  CAS  PubMed  Google Scholar 

  • Fishman YI, Reser DH, Arezzo JC, and Steinschneider M (2000a) Complex tone processing in primary auditory cortex of the awake monkey. I. Neural ensemble correlates of roughness. Journal of the Acoustical Society of America 108:235–246.

    Article  CAS  PubMed  Google Scholar 

  • Fishman YI, Reser DH, Arezzo JC, and Steinschneider M (2000b) Complex tone processing in primary auditory cortex of the awake monkey. II. Pitch versus critical band representation. Journal of the Acoustical Society of America 108:247–262.

    Article  CAS  PubMed  Google Scholar 

  • Fisher NI (1993) Statistical analysis of circular data. Cambridge University Press, Cambridge.

    Google Scholar 

  • Fitch RH, Brown CP, O’Connor K, and Tallal P (1993) Functional lateralization for auditory temporal processing in male and female rats. Behavoral Neuroscience 107:844–850.

    Article  CAS  Google Scholar 

  • Gehr DD, Komiya H, and Eggermont JJ (2000) Neuronal responses of cat primary auditory cortex to natural and altered species-specific calls. Hearing Research 150: 27–42.

    Article  CAS  PubMed  Google Scholar 

  • Glass I and Wollberg Z (1979) Lability in the responses of cells in the auditory cortex of squirrel monkeys to species-specific vocalizations. Experimental Brain Research 34:489–498.

    Article  CAS  Google Scholar 

  • Giraud AL, Lorenzi C, Ashburner J, Wable J, Johnsrude I, Frackowiak R, and Kleinschmidt A (2000) Representation of the temporal envelope of sounds in the human brain. Journal of Neurophysiology 84:1588–1598.

    CAS  PubMed  Google Scholar 

  • Goldberg JM and Brown PB (1968) Functional organization of the dog superior olivary complex: an anatomical and electrophysiological study. Journal of Neurophysiology 31:639–656.

    CAS  PubMed  Google Scholar 

  • Goldman SA and Nottebohm F (1983) Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proceedings of the National Academy of Sciences of the United States of America 80:2390–2394.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein MH, Kiang NYS, and Brown RM (1959) Responses of the auditory cortex to repetitive acoustic stimuli. Journal of the Acoustical Society of America 31:356–364.

    Article  Google Scholar 

  • Gouzoules S, Gouzoules H, and Marler P (1984) Rhesus monkey (Macaca mulatta) screams: representational signaling in the recruitment of agonistic aid. Animal Behaviour 32:182–193.

    Article  Google Scholar 

  • Griffiths TD, Büchel C, Frackowiak RS, and Patterson RD (1998) Analysis of temporal structure in sound by the human brain. Nature Neuroscience 1:422–427.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths R, Johnsrude I, Dean J, and Green G (1999) A common neural substrate for the analysis of pitch and duration pattern in segmented sound? NeuroReport 10:3825–3830.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths TD, Uppenkamp S, Johnsrude I, Josephs O, and Patterson RD (2001) Encoding of the temporal regularity of sound in the human brainstem. Nature Neuroscience 4:633–637.

    Article  CAS  PubMed  Google Scholar 

  • Hall DA, Johnsrude IS, Haggard MP, Palmer AR, Akeroyd MA, and Summerfield AQ (2002) Spectral and temporal processing in human auditory cortex. Cerebral Cortex 12:140–149.

    Article  PubMed  Google Scholar 

  • Hall DA and Plack CJ (2009) Pitch processing sites in the human auditory brain. Cerebral Cortex 19:576–85

    Article  PubMed  Google Scholar 

  • Harms MP and Melcher JR (2002) Sound repetition rate in the human auditory pathway: representations in the waveshape and amplitude of fMRI activation. Journal of Neurophysiology 88:1433–1450.

    PubMed  Google Scholar 

  • Hart HC, Palmer AR, and Hall DA (2003) Amplitude and frequency-modulated stimuli activate common regions of human auditory cortex. Cerebral Cortex 13:773–81.

    Article  PubMed  Google Scholar 

  • Hauser MD (1996) The Evolution of Communication, MIT Press, Cambridge.

    Google Scholar 

  • Heil P and Irvine DR (1998a) Functional specialization in auditory cortex: responses to frequency-modulated stimuli in the cat’s posterior auditory field. Journal of Neurophysiology 79:3041–3059.

    CAS  PubMed  Google Scholar 

  • Heil P and Irvine DR (1998b) The posterior field P of cat auditory cortex: coding of envelope transients. Cerebral Cortex 8:125–141.

    Article  CAS  PubMed  Google Scholar 

  • Heil P, Rajan R, and Irvine D (1992). Sensitivity of neurons in cat primary auditory cortex to tones and frequency-modulated stimuli. II: organization of response properties along the ‘isofrequency’ dimension. Hearing Research 63:135–156.

    Article  CAS  PubMed  Google Scholar 

  • Holy TE, Guo Z (2005) Ultrasonic songs of male mice. PLoS Biology 3:e386.

    Article  PubMed  CAS  Google Scholar 

  • Horikawa J, Tanahashi A, and Suga N (1994) After-discharges in the auditory cortex of the mustached bat: no oscillatory discharges for binding auditory information. Hearing Research 76:45–52.

    Article  CAS  PubMed  Google Scholar 

  • Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. Journal of the Acoustical Society of America 68:1115–1122.

    Article  CAS  PubMed  Google Scholar 

  • Johnsrude IS, Penhune VB, and Zatorre RJ (2000) Functional specificity in the right human auditory cortex for perceiving pitch direction. Brain 123:155–163.

    Article  PubMed  Google Scholar 

  • Johnsrude IS, Zatorre RJ, Milner BA, and Evans AC (1997) Left-hemisphere specialization for the processing of acoustic transients. NeuroReport 8:1761–1765

    Article  CAS  PubMed  Google Scholar 

  • Joris PX, Schreiner CE, and Rees A (2004) Neural processing of amplitude-modulated sounds. Physiological Reviews 84:541–577.

    Article  CAS  PubMed  Google Scholar 

  • Joris PX and Yin T (1998) Envelope coding in the lateral superior olive. III. Comparison with afferent pathways. Journal of Neurophysiology 79:253–269.

    CAS  PubMed  Google Scholar 

  • Kanwal JS, Matsumura S, Ohlemiller K, and Suga N (1994). Analysis of acoustic elements and syntax in communication sounds emitted by mustached bats. Journal of the Acoustical Society of America 96:1229–1254.

    Article  CAS  PubMed  Google Scholar 

  • Kenmochi M and Eggermont JJ (1997) Autonomous cortical rhythms affect temporal modulation transfer functions. NeuroReport 8:1589–1593.

    Article  CAS  PubMed  Google Scholar 

  • Kaernbach C and Demany L (1998) Psychophysical evidence against the autocorrelation theory of auditory temporal processing. Journal of the Acoustical Society of America 104: 2298–2306.

    Article  CAS  PubMed  Google Scholar 

  • Kilgard MP, Pandya PK, Vazquez J, Gehi A, Schreiner CE, and Merzenich MM (2001) Sensory input directs spatial and temporal plasticity in primary auditory cortex. Journal of Neurophysiology 86:326–338.

    CAS  PubMed  Google Scholar 

  • Krumbholz K, Patterson RD, Seither-Preisler A, Lammertmann C and Lütkenhöner B (2003) Neuromagnetic evidence for a pitch processing center in Heschl’s gyrus. Cerebral Cortex 13:765–772.

    Article  CAS  PubMed  Google Scholar 

  • Krumbholz K, Patterson RD, and Pressnitzer D (2000) The lower limit of pitch as determined by rate discrimination. Journal of the Acoustical Society of America 108:1170–1180.

    Article  CAS  PubMed  Google Scholar 

  • Kuhl PK and Miller JD (1975) Speech perception by the chinchilla: voiced-voiceless distinction in alveolar plosive consonants. Science 190:69–72.

    Article  CAS  PubMed  Google Scholar 

  • Moelk M (1944) Vocalization in the house cat; a phonetic and functional study. Journal of Psychology 57:184–205.

    Article  Google Scholar 

  • Langner G (1992) Periodicity coding in the auditory system. Hearing Research 60:115–142.

    Article  CAS  PubMed  Google Scholar 

  • Langner G, Sams M, Heil P, and Schulze H (1997) Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: evidence from magnetoencephalography. Journal of Comparative Physiology A 181:665–676.

    Article  CAS  Google Scholar 

  • Langner G and Schreiner CE (1988) Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. Journal of Neurophysiology 60:1799–1822.

    CAS  PubMed  Google Scholar 

  • Liang L, Lu T, and Wang X (2002) Neural representations of sinusoidal amplitude and frequency modulations in the primary auditory cortex of awake primates. Journal of Neurophysiology 87:2237–2261.

    PubMed  Google Scholar 

  • Liegeois-Chauvel C, de Graaf JB, Laguitton V, and Chauvel P (1999) Specialization of left auditory cortex for speech perception in man depends on temporal coding. Cerebral Cortex 9:484–496.

    Article  CAS  PubMed  Google Scholar 

  • Liegeois-Chauvel C, Lorenzi C, Trebuchon A, Regis J, and Chauvel P (2004) Temporal envelope processing in the human left and right auditory cortices. Cerebral Cortex 14:731–740.

    Article  PubMed  Google Scholar 

  • Liegeois-Chauvel C, Peretz I, Babai M, Laguitton V, and Chauvel P (1998) Contribution of different cortical areas in the temporal lobes to music processing. Brain 121:1853–1867.

    Article  PubMed  Google Scholar 

  • Liu RC, Miller KD, Merzenich MM, and Schreiner CE (2003) Acoustic variability and distinguishability among mouse ultrasound vocalizations. Journal of the Acoustical Society of America 114:3412–322.

    Article  PubMed  Google Scholar 

  • Lu T and Wang X (2000) Temporal discharge patterns evoked by rapid sequences of wide- and narrowband clicks in the primary auditory cortex of cat. Journal of Neurophysiology 84:236–246.

    CAS  PubMed  Google Scholar 

  • Lu T and Wang X (2004) Information content of auditory cortical responses to time-varying acoustic stimuli. Journal of Neurophysiology 91:301–313.

    Article  PubMed  Google Scholar 

  • Lu T, Liang L, and Wang X (2001a) Neural representations of temporally asymmetric stimuli in the auditory cortex of awake primates. Journal of Neurophysiology 85:2364–2380.

    CAS  PubMed  Google Scholar 

  • Lu T, Liang L, and Wang X (2001b) Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nature Neuroscience 4:1131–1138.

    Article  CAS  PubMed  Google Scholar 

  • Luetkenhoner B, Krumbholz K, and Seither-Preisler A (2003) Studies of tonotopy based on wave N100 of the auditory evoked field are problematic. Neuroimage 19:935–49.

    Article  Google Scholar 

  • Makela JP, Hari R, and Linnankivi A (1987). Different analysis of frequency and amplitude modulations of a continuous tone in the human auditory cortex: a neuromagnetic study. Hearing Research 27:257–264.

    Article  CAS  PubMed  Google Scholar 

  • Malone BJ, Scott BH, and Semple MN (2007) Dynamic amplitude coding in the auditory cortex of awake rhesus macaques. Journal of Neurophysiology 98:1451–1474.

    Article  PubMed  Google Scholar 

  • Mardia KV (1972) Statistics of directional data. Academic Press, London.

    Google Scholar 

  • Menon V, Levitin DJ, Smith BK, Lembke A, Krasnow BD, Glazer D, Glover GH, and McAdams S (2002) Neural correlates of timbre change in harmonic sounds. Neuroimage 17:1742–1754.

    Article  CAS  PubMed  Google Scholar 

  • Miller GA and Taylor WG (1948) The perception of repeated bursts of noise. Journal of the Acoustical Society of America 20:171–182.

    Article  Google Scholar 

  • Miller LM, Escabi MA, Read HL, and Schreiner CE (2001) Functional convergence of response properties in the auditory thalamocortical system. Neuron 32:151–160.

    Article  CAS  PubMed  Google Scholar 

  • Møller AR (1972). Coding of amplitude and frequency modulated sounds in the cochlear nucleus of the rat. Acta Physiologica Scandinavica 86:223–238.

    Article  PubMed  Google Scholar 

  • Møller AR (1973) Statistical evaluation of the dynamic properties of cochlear nucleus units using stimuli modulated with pseudorandom noise. Brain Research 57:443–456.

    Article  PubMed  Google Scholar 

  • Moody MI and Menzel EW Jr (1976) Vocalizations and their behavioral contexts in the tamarin Saguinus fuscicollis. Folia Primatologica 25:73–94.

    Article  CAS  Google Scholar 

  • Mueller-Preuss P, Flachskamm C, and Bieser A (1994) Neural encoding of amplitude modulation within the auditory midbrain of squirrel monkeys. Hearing Research 80:197–208.

    Article  Google Scholar 

  • Nagarajan SS, Cheung SW, Bedenbaugh P, Beitel RE, Schreiner CE, and Merzenich MM (2002) Representation of spectral and temporal envelope of twitter vocalizations in common marmoset primary auditory cortex. Journal of Neurophysiology 87:1723–1737.

    PubMed  Google Scholar 

  • Nakahara H, Zhang LI, and Merzenich MM (2004) Specialization of primary auditory cortex processing by sound exposure in the “critical period”. Proceedings of the National Academy of Sciences of the United States of America 101:7170–7174.

    Article  CAS  PubMed  Google Scholar 

  • Noreña A and Eggermont JJ (2002) Comparison between local field potentials and unit cluster activity in primary auditory cortex and anterior auditory field in the cat. Hearing Research 166:202–213.

    Article  PubMed  Google Scholar 

  • Nourski KV, Reale RA, Oya H, Kawasaki H, Kovach CK, Chen H, Howard MA 3rd, and Brugge JF (2009) Temporal envelope of time-compressed speech represented in the human auditory cortex. Journal of Neuroscience 29:15564–15574.

    Article  CAS  PubMed  Google Scholar 

  • Patterson RD, Uppenkamp S, Johnsrude IS, and Griffiths TD (2002) The processing of temporal pitch and melody information in auditory cortex. Neuron 36:767–776.

    Article  CAS  PubMed  Google Scholar 

  • Pantev C, Hoke M, Luetkenhohner B, and Lehnertz K (1989) Tonotopic organization and the representation of virtual pitch in the human auditory cortex. Science 246:486–488.

    Article  CAS  PubMed  Google Scholar 

  • Penagos H, Melcher JR, and Oxenham AJ (2004) A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging. Journal of Neuroscience 24:6810–6815.

    Article  CAS  PubMed  Google Scholar 

  • Peretz I, Ayotte J, Zatorre RJ, Mehler J, Ahad P, Penhune VB, and Jutras B (2002) Congenital amusia: a disorder of fine-grained pitch discrimination. Neuron 33:185–191.

    Article  CAS  PubMed  Google Scholar 

  • Peretz I and Zatorre RJ (2005) Brain Organization for Music Processing. Annual Reviews of Psychology 56:89–114.

    Article  Google Scholar 

  • Phillips DP (1993) Representation of acoustic events in the primary auditory cortex. Journal of Experimental Psychology: Human Perception and Performance 19:203–216.

    Article  CAS  PubMed  Google Scholar 

  • Phillips DP, Taylor TL, Hall SE, Carr MM, and Mossop JE (1997) Detection of silent intervals between noises activating different perceptual channels: some properties of “central” auditory gap detection. Journal of the Acoustical Society of America 101:3694–3705.

    Article  CAS  PubMed  Google Scholar 

  • Pienkowski M, Shaw G, and Eggermont JJ (2009) Wiener-Volterra Characterization of Neurons in Primary Auditory Cortex Using Poisson-Distributed Impulse Train Inputs. Journal of Neurophysiology 101:3031–3041.

    Article  PubMed  Google Scholar 

  • Pistorio AL, Vintch B, and Wang X (2006) Acoustical analysis of vocal development in a New World primate, the common marmoset (Callithrix jacchus). Journal of the Acoustical Society of America 120:1655–1670.

    Article  PubMed  Google Scholar 

  • Puschmann S, Uppenkamp S, Kollmeier B, and Thiel CM (2010) Dichotic pitch activates pitch processing centre in Heschl’s gyrus. Neuroimage 49:1641–1649.

    Article  PubMed  Google Scholar 

  • Ribaupierre F de, Goldstein MH Jr, and Yeni-Komshian G (1972) Cortical coding of repetitive acoustic pulses. Brain Research 48:205–225.

    Article  PubMed  Google Scholar 

  • Romo R, Hernández A, Zainos A, and Salinas E (2003) Correlated neuronal discharges that increase coding efficiency during perceptual discrimination. Neuron 38:649–657.

    Article  CAS  PubMed  Google Scholar 

  • Sadagopan S and Wang X (2010) Contribution of inhibition to stimulus selectivity in primary auditory cortex of awake primates. Journal of Neuroscience 30:7314–7325.

    Google Scholar 

  • Schneider P, Sluming V, Roberts N, Scherg M, Goebel R, Specht HJ, Dosch HG, Bleeck S, Stippich C, and Rupp A (2005) Structural and functional asymmetry of lateral Heschl’s gyrus reflects pitch perception preference. Nature Neuroscience 8:1241–1247.

    Article  CAS  PubMed  Google Scholar 

  • Schreiner CE and Langner G (1988) Periodicity coding in the inferior colliculus of the cat. II. Topographical organization. Journal of Neurophysiology 60:1823–1840.

    CAS  PubMed  Google Scholar 

  • Schreiner CE and Langner G (1997) Laminar fine structure of frequency organization in auditory midbrain. Nature 388:383–386.

    Article  CAS  PubMed  Google Scholar 

  • Schreiner CE and Raggio MW (1996) Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. II. Repetition rate coding. Journal of Neurophysiology 75:1283–1300.

    CAS  PubMed  Google Scholar 

  • Schreiner CE and Urbas JV (1988) Representation of amplitude modulation in the auditory cortex of the cat. II. Comparison between cortical fields. Hearing Research 32:49–63.

    Article  CAS  PubMed  Google Scholar 

  • Schulze H and Langner G (1997a) Representation of periodicity pitch in the primary auditory cortex of the Mongolian gerbil. Acta Otolaryngologica Supplement 532:89–95.

    Article  CAS  Google Scholar 

  • Schulze H and Langner G (1997b) Periodicity coding in the primary auditory cortex of the Mongolian gerbil (Meriones unguiculatus): two different coding strategies for pitch and rhythm? Journal of Comparative Physiology A 181:651–663.

    Article  CAS  Google Scholar 

  • Schulze H and Langner G (1999) Auditory cortical responses to amplitude modulations with spectra above frequency receptive fields: evidence for wide spectral integration. Journal of Comparative Physiology A 185:493–508.

    Article  CAS  Google Scholar 

  • Schulze H, Hess A, Ohl FW, and Scheich H (2002) Superposition of horseshoe-like periodicity and linear tonotopic maps in auditory cortex of the Mongolian gerbil. European Journal of Neuroscience 15:1077–1084.

    Article  PubMed  Google Scholar 

  • Scott SK and Johnsrude IS (2003) The neuroanatomical and functional organization of speech perception. Trends in Neurosciences 26:100–107.

    Article  CAS  PubMed  Google Scholar 

  • Sharma A and Dorman MF (1999) Cortical auditory evoked potential correlates of categorical perception of voice-onset time. Journal of the Acoustical Society of America 106:1078–1083.

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Marsh CM, and Dorman MF (2000). Relationship between N1 evoked potential morphology and the perception of voicing. Journal of the Acoustical Society of America 108:3030–3035.

    Article  CAS  PubMed  Google Scholar 

  • Singh NC and Theunissen FE (2003) Modulation spectra of natural sounds and ethological theories of auditory processing. Journal of the Acoustical Society of America 114:3394–3411.

    Article  PubMed  Google Scholar 

  • Sovijärvi ARA (1975) Detection of natural complex sounds by cells in the primary auditory cortex of the cat. Acta Physiologica Scandinavica 93:318–335.

    Article  PubMed  Google Scholar 

  • Steinschneider M, Arezzo J, and Vaughan HG Jr (1980) Phase-locked cortical responses to a human speech sound and low-frequency tones in the monkey. Brain Research 198:75–84.

    Article  CAS  PubMed  Google Scholar 

  • Steinschneider M, Arezzo JC, and Vaughan HG (1982) Speech evoked activity in the auditory radiations and cortex of awake monkey. Brain Research 252:353–365.

    Article  CAS  PubMed  Google Scholar 

  • Steinschneider M, Arezzo JC, and Vaughan HG (1990) Tonotopic features of speech-evoked activity in primate auditory cortex. Brain Research 519:158–168.

    Article  CAS  PubMed  Google Scholar 

  • Steinschneider M, Arezzo JC, Schroeder CE, and Vaughan HG (1994) Speech-evoked activity in primary auditory cortex: effects of voice-onset time. Electroencephalography and Clinical Neurophysiology 92:30–43.

    Article  CAS  PubMed  Google Scholar 

  • Steinschneider M, Fishman YI, and Arezzo JC (2003) Representation of the voice onset time (VOT) speech parameter in population responses within primary auditory cortex of the awake monkey. Journal of the Acoustical Society of America 114:307–321.

    Article  PubMed  Google Scholar 

  • Steinschneider M, Schroeder CE, Arezzo JC, and Vaughan HG Jr (1994) Speech-evoked activity in primary auditory cortex: effects of voice onset time. Electroencephalography and Clinical Neurophysiology 92:30–43.

    Article  CAS  PubMed  Google Scholar 

  • Steinschneider M, Reser DH, Fishman YI, Schroeder CE, and Arezzo JC (1998) Click train encoding in primary auditory cortex of the awake monkey: evidence for two mechanisms subserving pitch perception. Journal of the Acoustical Society of America 104:2935–2955.

    Article  CAS  PubMed  Google Scholar 

  • Steinschneider M, Volkov, IO, Noh MD, Garell PC, and Howard MA 3rd (1999) Temporal encoding of voice onset time phonetic parameter by field potentials recorded directly from human auditory cortex. Journal of Neurophysiology 82:2346–2357.

    CAS  PubMed  Google Scholar 

  • Steinschneider M, Volkov IO, Fishman YI, Oya H, Arezzo JC, and Howard MA 3rd (2005) Intracortical Responses in Human and Monkey Primary Auditory Cortex Support a Temporal Processing Mechanism for Encoding of the Voice Onset Time Phonetic Parameter. Cerebral Cortex 15:170–186.

    Article  PubMed  Google Scholar 

  • Suga N (1989) Principles of auditory information-processing derived from neuroethology. Journal of Experimental Biology 146:277–286.

    CAS  PubMed  Google Scholar 

  • Suga N (1992) Philosophy and stimulus design for neuroethology of complex-sound processing. Philosophical Transactions of the Royal Society London B: Biological Sciences 336:423–428.

    Article  CAS  Google Scholar 

  • Tervaniemi M, Kujala A, Alho K, Virtanen J, Ilmoniemi RJ, and Naatanen R (1999). Functional specialization of the human auditory cortex in processing phonetic and musical sounds: a magnetoencephalographic (MEG) study. Neuroimage 9:330–336.

    Article  CAS  PubMed  Google Scholar 

  • Tervaniemi M, Medvedev SV, Alho K, Pakhomov SV, Roudas MS, Van Zuijen TL, and Naatanen R (2000) Lateralized automatic auditory processing of phonetic versus musical information: a PET study. Human Brain Mapping 10:74–79.

    Article  CAS  PubMed  Google Scholar 

  • Theunissen FE and Doupe AJ (1998) Temporal and spectral sensitivity of complex auditory neurons in the nucleus HVc of male zebra finches. Journal of Neuroscience 18:3786–3802.

    CAS  PubMed  Google Scholar 

  • Tian B and Rauschecker JP (1994) Processing of frequency-modulated sounds in the cat’s anterior auditory field. Journal of Neurophysiology 71:1959–1975.

    CAS  PubMed  Google Scholar 

  • Tian B and Rauschecker JP (1998) Processing of frequency-modulated sounds in the cat’s posterior auditory field. Journal of Neurophysiology 79:2629–2642.

    CAS  PubMed  Google Scholar 

  • Tian B and Rauschecker JP (2004) Processing of frequency-modulated sounds in the lateral auditory belt cortex of the rhesus monkey. Journal of Neurophysiology 92:2993–3013.

    Article  PubMed  Google Scholar 

  • Tomita M and Eggermont JJ. (2005) Cross-correlation and joint spectro-temporal receptive field properties in auditory cortex. Journal of Neurophysiology 93:378–392.

    Article  PubMed  Google Scholar 

  • Tsodyks MV and Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proceedings of the National Academy of Sciences of the United States of America 94:719–723.

    Article  CAS  PubMed  Google Scholar 

  • VanRullen R, Guyonneau R, and Thorpe SJ (2005) Spike times make sense. Trends in Neuroscience 28:1–4.

    Article  CAS  Google Scholar 

  • Wallace MN, Kitzes LM, and Jones EG (1991) Intrinsic inter- and intralaminar connections and their relationship to the tonotopic map in cat primary auditory cortex. Experimental Brain Research 86:527–44.

    CAS  Google Scholar 

  • Wallace MN, Rutkowski RG, and Shackleton TM, Palmer AR (2000) Phase-locked responses to pure tones in guinea pig auditory cortex. NeuroReport 11:3989–3993.

    Article  CAS  PubMed  Google Scholar 

  • Wallace MN, Shackleton TM, and Palmer AR (2002) Phase-locked responses to pure tones in the primary auditory cortex. Hearing Research 172:160–171.

    Article  PubMed  Google Scholar 

  • Wang LY and Kaczmarek LK (1998) High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Nature 394:384–388.

    Article  CAS  PubMed  Google Scholar 

  • Wang X (2000) On cortical coding of vocal communication sounds in primates. Proceedings of the National Academy of Sciences of the United States of America 97:11843–11849.

    Article  CAS  PubMed  Google Scholar 

  • Wang X and Kadia SC (2001) Differential representation of species-specific primate vocalizations in the auditory cortices of marmoset and cat. Journal of Neurophysiology 86:2616–2620.

    CAS  PubMed  Google Scholar 

  • Wang X, Lu T, and Liang L (2003) Cortical Processing of Temporal Modulations. Speech Communication 41:107–121.

    Article  CAS  Google Scholar 

  • Wang X, T Lu, Snider RK, and Liang L (2005) Sustained firing in auditory cortex evoked by preferred stimuli. Nature 435:341–346.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Lu T, Bendor D and Bartlett EL (2008) Neural Coding of Temporal Information in Auditory Thalamus and Cortex. Neuroscience 157: 484–493.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Merzenich MM, Beitel R, and Schreiner CE (1995) Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics. Journal of Neurophysiology 74:2685–2706.

    CAS  PubMed  Google Scholar 

  • Weiss TF and Rose C (1988) A comparison of synchronization filters in different auditory receptor organs. Hearing Research 33:175–179.

    Article  CAS  PubMed  Google Scholar 

  • Winter P (1969) The variability of peep and twit calls in captive squirrel monkeys (Saimiri sciureus). Folia Primatologica 10:204–215.

    Article  CAS  Google Scholar 

  • Young ED and Sachs MB (1979) Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. Journal of the Acoustical Society of America 66:1381–1403.

    Article  CAS  PubMed  Google Scholar 

  • Zwicker E and Fastl H (1990) Psychoacoustics: Facts and Models. Springer, Berlin.

    Google Scholar 

  • Zatorre RJ and Belin P (2001) Spectral and temporal processing in human auditory cortex. Cerebral Cortex 11:946–953.

    Article  CAS  PubMed  Google Scholar 

  • Zatorre RJ, Belin P, and Penhune VB (2002) Structure and function of auditory cortex: music and speech. Trends in Cognitive Sciences 6:37–46.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jos J. Eggermont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Eggermont, J.J., Wang, X. (2011). Temporal Coding in Auditory Cortex. In: Winer, J., Schreiner, C. (eds) The Auditory Cortex. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0074-6_14

Download citation

Publish with us

Policies and ethics