Skip to main content

Neurochemical Organization of the Medial Geniculate Body and Auditory Cortex

  • Chapter
  • First Online:
The Auditory Cortex

Abstract

The auditory, visual, and somatic sensory systems each have a topographic receptor epithelium, multiple central representations of the peripheral mosaic, parallel neural streams serving epicritic processing, vast networks of central connectivity, and a web of intrinsic circuits at all levels of processing. Marked neurochemical differences distinguish the central auditory system from its visual and somatic sensory counterparts, which each largely conserves the parallel contribution from specific classes of retinal, cutaneous, or neuromuscular receptors; moreover, sight and touch have, relative to audition, fewer synapses in the ascending pathways to neocortex (Dykes 1983; Stone 1983). Perhaps the auditory system has more opportunities for inhibitory and other local interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAF:

anterior auditory field

AI:

primary auditory cortex

AII:

second auditory cortex area

APt:

anterior pretectum

Aq:

cerebral aqueduct

BIC:

brachium of the inferior colliculus

BSC:

brachium of the superior colliculus

C:

caudal

c:

contralateral

CG:

central gray

CN:

central nucleus of the inferior colliculus

CP:

cerebral peduncle

D:

dorsal nucleus of the medial geniculate body or dorsal

DD:

deep dorsal nucleus of the medial geniculate body

DC:

dorsal cortex of the inferior colliculus

DS:

dorsal superficial nucleus of the medial geniculate body

DZ:

dorsal auditory zone

ED:

posterior ectosylvian gyrus, intermediate area

EP:

posterior ectosylvian gyrus

EPSP:

excitatory postsynaptic potential

EV:

posterior ectosylvian gyrus, ventral part

EW:

Edinger-Westphal nucleus

FSU:

fast-spiking unit

GABA:

gamma aminobutyric acid

GAD:

glutamic acid decarboxylase

ICc:

central nucleus of the inferior colliculus

ICp:

caudal cortex of the inferior colliculus

I:

Golgi type I cell

II:

Golgi type II cell

III:

oculomotor nucleus

In:

insular cortex

LC:

lateral cortex of the inferior colliculus

LD:

lateral dorsal nucleus

LGB:

lateral geniculate body

LMN:

lateral mesencephalic nucleus

LP:

lateral posterior nucleus

M:

medial division of the medial geniculate body or medial

ML:

medial lemniscus

MRF:

mesencephalic reticular formation

MZ:

marginal zone of medial geniculate body

NBIC:

nucleus of the brachium of the inferior colliculus

NMDA:

N-methyl-D-aspartate

OR:

optic radiation

OT:

optic tract

Ov:

pars ovoidea of the ventral division of the medial geniculate body

PKC:

protein kinase c

PLSS:

posterior lateral suprasylvian area

Pol:

rostral pole of the medial geniculate body

Pom:

medial part of the posterior group

Pt:

pretectum

Pul:

pulvinar nucleus

Pv:

parvalbumin

Re:

thalamic reticular nucleus

RF:

reticular formation

RN:

red nucleus

RP:

rostral pole nucleus of the inferior colliculus

RSU:

regular-spiking unit

SC:

superior colliculus

SCi:

intermediate gray layer of superior colliculus

SCp:

deep layer of superior colliculus

SCs:

superficial gray layer of superior colliculus

Sl:

suprageniculate nucleus, lateral part

Sm:

suprageniculate nucleus, medial part

SN:

substantia nigra

SNR, SNr:

substantia nigra, pars reticulata

Spf:

subparafascicular nucleus

SpN:

suprapeduncular nucleus

Te:

temporal cortex

V:

pars lateralis of the ventral division or ventral

Vb:

ventrobasal complex

Vl,vl:

ventrolateral nucleus of the medial geniculate body

VP:

ventral posterior area

VTA:

ventral tegmental area

WAHG:

wheatgerm apo-horseradish gold

wm:

white matter

ZI:

zona incerta

I–VI,1–6:

layers of cerebral cortex

References

  • Agmon A and Connors BW (1992) Correlation between intrinsic firing patterns and thalamocortical synaptic responses of neurons in mouse barrel cortex. Journal of Neuroscience 12:319–329.

    Google Scholar 

  • Aitkin LM and Dunlop CW (1968) Interplay of excitation and inhibition in the cat medial geniculate body. Journal of Neurophysiology 31:44–61.

    Google Scholar 

  • Aitkin LM and Phillips SC (1984) Is the inferior colliculus an obligatory relay in the cat auditory system? Neuroscience Letters 44:259–264.

    Article  Google Scholar 

  • Anderson LA, Malmierca MS, Wallace MN, and Palmer AR (2007) Evidence for a direct, short latency projection from the dorsal cochlear nucleus to the auditory thalamus in the guinea pig. European Journal of Neuroscience 24:491–498.

    Article  Google Scholar 

  • Apergis-Schoute AM, Debiec J, Doyère V, LeDoux JE, and Schafe GE (2005) Auditory fear conditioning and long-term potentiation in the lateral amygdala require ERK/MAP kinase signaling in the auditory thalamus: a role for presynaptic plasticity in the fear system. Journal of Neuroscience 25:5730–5739.

    Article  CAS  PubMed  Google Scholar 

  • Arcelli P, Frassoni C, Regondi MC, De Biasi S, and Spreafico R (1997) GABAergic neurons in mammalian thalamus: a marker of thalamic complexity? Brain Research Bulletin 42:27–37.

    Article  CAS  PubMed  Google Scholar 

  • Atencio CA and Schreiner CE (2008) Spectrotemporal processing differences between auditory cortical fast-spiking and regular-spiking neurons. Journal of Neuroscience 28:3897–3910.

    Article  CAS  PubMed  Google Scholar 

  • Bandrowski AE, Moore SL, and Ashe JH (2001) Cholinergic synaptic potentials in the supragranular layers of auditory cortex. Synapse 41:118–130.

    Article  CAS  PubMed  Google Scholar 

  • Bao S, Chan VT, and Merzenich MM (2001) Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature 412:79–83.

    Article  CAS  PubMed  Google Scholar 

  • Bartlett EL and Smith PH (2002) Effects of paired-pulse and repetitive stimulation on neurons in the rat medial geniculate body. Neuroscience 113:957–974.

    Article  CAS  PubMed  Google Scholar 

  • Baughman RW and Gilbert CD (1981) Aspartate and glutamate as possible neurotransmitters in the visual cortex. Journal of Neuroscience 1:427–438.

    CAS  PubMed  Google Scholar 

  • Brandner S and Redies H (1990) The projection of the medial geniculate body to field AI: organization in the isofrequency dimension. Journal of Neuroscience 10:50–61.

    CAS  PubMed  Google Scholar 

  • Bright DP, Aller MI, and Brickley SG (2007) Synaptic release generates a tonic GABAA receptor-mediated conductance that modulates burst precision in thalamic relay neurons. Journal of Neuroscience 27:2560–2569.

    Article  CAS  PubMed  Google Scholar 

  • Calford MB and Aitkin LM (1983) Ascending projections to the medial geniculate body of the cat: evidence for multiple, parallel auditory pathways through the thalamus. Journal of Neuroscience 3:2365–2380.

    CAS  PubMed  Google Scholar 

  • Callaway EM (1998) Local circuits in primary visual cortex of the macaque monkey. Annual Review of Neuroscience 21:47–74.

    Article  CAS  PubMed  Google Scholar 

  • Cant NB (2005) Projections from the cochlear nuclear complex to the inferior colliculus. In: Winer JA and Schreiner CE (eds.). The Inferior Colliculus. Springer-Verlag, New York, pp. 115–131.

    Chapter  Google Scholar 

  • Chu Z, Galaretta M, and Hestrin S (2003) Synaptic interactions of late-spiking neocortical neurons in layer 1. Journal of Neuroscience 23:96–102.

    CAS  PubMed  Google Scholar 

  • Clarey JC, Barone P, and Imig TJ (1992) Physiology of thalamus and cortex. In: Popper AN and Fay RR (eds.). Springer Handbook of Auditory Research, volume 2, The Mammalian Auditory Pathway: Neurophysiology. Springer-Verlag, New York, pp. 232–334.

    Google Scholar 

  • Clarke S, de Ribaupierre F, Rouiller EM, and de Ribaupierre Y (1993) Several neuronal and axonal types form long intrinsic connections in the cat primary auditory cortical field (AI). Anatomy and Embryology 188:117–138.

    Article  CAS  PubMed  Google Scholar 

  • Clascá F, Llamas A, and Reinoso-Suárez F (1997) Insular cortex and neighboring fields in the cat: a redefinition based on cortical microarchitecture and connections with the thalamus. Journal of Comparative Neurology 384:456–482.

    Article  PubMed  Google Scholar 

  • Clemo HR, Keniston L, and Meredith MA (2003) A comparison of the distribution of GABA-ergic neurons in cortices representing different sensory modalities. Journal of Chemical Neuroanatomy 26:51–63.

    Article  CAS  PubMed  Google Scholar 

  • Code RA and Winer JA (1985) Commissural neurons in layer III of cat primary auditory cortex (AI): pyramidal and non-pyramidal cell input. Journal of Comparative Neurology 242:485–510.

    Article  CAS  PubMed  Google Scholar 

  • Conti F and Hicks TP (eds.) (1996) Excitatory Amino Acids and the Cerebral Cortex, MIT Press, Cambridge.

    Google Scholar 

  • Conti F and Manzoni T (1994) The neurotransmitters and postsynaptic actions of callosally projecting neurons. Behavioural Brain Research 64:37–53.

    Article  CAS  PubMed  Google Scholar 

  • Conti F and Minelli A (1996) The anatomy of glutamatergic transmission in the cerebral cortex. In: Conti F and Hicks TP (eds). Excitatory Amino Acids and the Cerebral Cortex. MIT Press, Cambridge, pp. 81–98.

    Google Scholar 

  • Conway B, Boyd JD, Stewart TH, and Matsubara JA (2000) The projection from V1 to extrastriate area 21a: a second patchy efferent pathway that colocalizes with the CO blob columns in cat visual cortex. Cerebral Cortex 10:149–159.

    Article  CAS  PubMed  Google Scholar 

  • Coomes DL, Bickford ME, and Schofield BR (2002) GABAergic circuitry in the dorsal division of the cat medial geniculate nucleus. Journal of Comparative Neurology 453:45–56.

    Article  CAS  PubMed  Google Scholar 

  • Coveñas R, Romo R, Cheramy A, Cesselin F, and Conrath M (1986) Immunocytochemical study of enkephalin-like cell bodies in the thalamus of the cat. Brain Research 377:355–361.

    Article  PubMed  Google Scholar 

  • Crabtree JW (1998) Organization in the auditory sector of the cat’s thalamic reticular nucleus. Journal of Comparative Neurology 390:167–182.

    Article  CAS  PubMed  Google Scholar 

  • Cransac H, Cottet-Emard JM, Hellstrom S, and Peyrin L (1998) Specific sound-induced noradrenergic and serotonergic activation in central auditory structures. Hearing Research 118:151–156.

    Article  CAS  PubMed  Google Scholar 

  • Crick F (1984) Function of the thalamic reticular nucleus: the searchlight hypothesis. Proceedings of the National Academy of Sciences of the United States of America 81:4586–4590.

    Article  CAS  PubMed  Google Scholar 

  • Cruikshank SJ, Killackey HP, and Metherate R (2001) Parvalbumin and calbindin are differentially distributed within primary and secondary subregions of the mouse auditory forebrain. Neuroscience 105:553–569.

    Article  CAS  PubMed  Google Scholar 

  • Cruikshank SJ, Rose HJ, and Metherate R (2002) Auditory thalamocortical synaptic transmission in vitro. Journal of Neurophysiology 87:361–384.

    PubMed  Google Scholar 

  • Cucchiaro JB, Uhlrich DJ, and Sherman SM (1993) Ultrastructure of synapses from the pretectum in the A-laminae of the cat’s lateral geniculate nucleus. Journal of Comparative Neurology 334:618–630.

    Article  CAS  PubMed  Google Scholar 

  • de Venecia RK, Smelser CB, Lossman SD, and McMullen NT (1995) Complementary expression of parvalbumin and calbindin D-28 k delineate subdivisions of the rabbit medial geniculate body. Journal of Comparative Neurology 359:595–612.

    Article  PubMed  Google Scholar 

  • de Venecia RK, Smelser CB, and McMullen NT (1998) Parvalbumin is expressed in a reciprocal circuit linking the medial geniculate body and auditory neocortex in the rabbit. Journal of Comparative Neurology 400:349–362.

    Article  PubMed  Google Scholar 

  • DeFelipe J, Hendry SH, Hashikawa T, and Jones EG (1991) Synaptic relationships of serotonin-immunoreactive terminal baskets on GABA neurons in the cat auditory cortex. Cerebral Cortex 1:117–133.

    Article  CAS  PubMed  Google Scholar 

  • Descarries L, Watkins KC, and Lapierre Y (1977) Noradrenergic axon terminals in the cerebral cortex of rat: topometric ultrastructural analysis. Brain Research 133:197–222.

    Article  CAS  PubMed  Google Scholar 

  • Destexhe A and Sejnowski TJ (2001) Thalamocortical Assemblies. How Ion Channels, Single Neurons and Large-Scale Networks Organize Sleep Oscillations. Monographs of the Physiological Society, volume 49. Oxford University Press, New York.

    Google Scholar 

  • Doucet JR, Molavi DL, and Ryugo DK (2003) The source of corticocollicular and corticobulbar projections in area Te1 of the rat. Experimental Brain Research 153:477–485.

    Article  Google Scholar 

  • Douglas RJ and Martin KAC (2004) Neuronal circuits of the neocortex. Annual Review of Neuroscience 29:419–451.

    Article  CAS  Google Scholar 

  • Dykes RW (1983) Parallel processing of somatosensory information: a theory. Brain Research Reviews 6:47–115.

    Article  Google Scholar 

  • Edeline J-M (1995) The α2-antagonist idazoxan enhances the frequency selectivity and increases the threshold of auditory cortex neurons. Experimental Brain Research 107:221–240.

    Article  CAS  Google Scholar 

  • Ehret G (1997) The auditory cortex. Journal of Comparative Physiology A 181:547–557.

    Article  CAS  Google Scholar 

  • Emson PC (ed.) (1983) Chemical Neuroanatomy, Raven Press, New York.

    Google Scholar 

  • Fabri M and Manzoni T (1996) Glutamate decarboxylase immunoreactivity in corticocortical projecting neurons of rat somatic sensory cortex. Neuroscience 72:435–448.

    Article  CAS  PubMed  Google Scholar 

  • Fabri M and Manzoni T (2004) Glutamic acid decarboxylase immunoreactivity in callosal projecting neurons of cat and rat somatic sensory areas. Neuroscience 123:557–566.

    Article  CAS  PubMed  Google Scholar 

  • Fariñas I and DeFelipe J (1991) Patterns of synaptic input on corticocortical and corticothalamic cells in the cat visual cortex. II. The axon initial segment. Journal of Comparative Neurology 304:70–77.

    Article  PubMed  Google Scholar 

  • Feliciano M and Potashner SJ (1995) Evidence for a glutamatergic pathway from the guinea pig auditory cortex to the inferior colliculus. Journal of Neurochemistry 65:1348–1357.

    Article  CAS  PubMed  Google Scholar 

  • Felleman DJ and Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1:1–47.

    Article  CAS  PubMed  Google Scholar 

  • Fisken RA, Garey LJ, and Powell TPS (1975) The intrinsic, association and commissural connections of area 17 of the visual cortex. Philosophical Transactions of the Royal Society of London, series B, Biological Sciences 272:487–536.

    Article  CAS  Google Scholar 

  • Fitzpatrick D, Diamond IT, and Raczkowski D (1989) Cholinergic and monoaminergic innervation of the cat’s thalamus: comparison of the lateral geniculate nucleus with other principal sensory nuclei. Journal of Comparative Neurology 288:647–675.

    Article  CAS  PubMed  Google Scholar 

  • Foote SL, Bloom FE, and Aston-Jones G (1983) Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiological Reviews 63:844–914.

    CAS  PubMed  Google Scholar 

  • Froemke RC, Merzenich MM, and Schreiner CE (2007) A synaptic memory trace in auditory cortex. Nature 450:425–429.

    Article  CAS  PubMed  Google Scholar 

  • Galarreta M and Hestrin S (2001) Spike transmission and synchrony detection in networks of GABAergic interneurons. Science 292:2295–2299.

    Article  CAS  PubMed  Google Scholar 

  • Garcia MM and Harlan RE (1997) Protein kinase C in central auditory pathways of the rat. Journal of Comparative Neurology 385:1–25.

    Article  CAS  PubMed  Google Scholar 

  • Gerren RA and Weinberger NM (1983) Long term potentiation in the magnocellular medial geniculate nucleus of the anesthetized cat. Brain Research 265:138–142.

    Article  CAS  PubMed  Google Scholar 

  • Gonchar Y, Turney S, Price JL, and Burkhalter A (2002) Axo-axonic synapses formed by somatostatin-expressing GABAergic neurons in rat and monkey visual cortex. Journal of Comparative Neurology 443:1–14.

    Article  CAS  PubMed  Google Scholar 

  • Groh JM, Trause AS, Underhill AM, Clark KR, and Inati S (2001) Eye position influences auditory responses in primate inferior colliculus. Neuron 29:509–518.

    Article  CAS  PubMed  Google Scholar 

  • Grove EA (1988a) Efferent connections of the substantia innominata in the rat. Journal of Comparative Neurology 277:347–364.

    Article  CAS  PubMed  Google Scholar 

  • Grove EA (1988b) Neural associations of the substantia innominata in the rat: afferent connections. Journal of Comparative Neurology 277:315–346.

    Article  CAS  PubMed  Google Scholar 

  • Hall DA (2005) Sensitivity to spectral and temporal properties of sound in human non-primary auditory cortex. In: König R, Heil P, Budinger E, and Scheich H (eds). The Auditory Cortex. A Synthesis of Human and Animal Research. Lawrence Erlbaum Associates, Mahwah, pp. 51–76.

    Google Scholar 

  • Hefti BJ and Smith PH (2000) Anatomy, physiology, and synaptic responses of rat layer V auditory cortical cells and effects of intracellular GABAA blockade. Journal of Neurophysiology 83:2626–2638.

    CAS  PubMed  Google Scholar 

  • Hefti BJ and Smith PH (2003) Distribution and kinetic properties of GABAergic inputs to layer V pyramidal cells. Journal of the Association for Research in Otolaryngology 4:106–121.

    Article  PubMed  Google Scholar 

  • Hendry SHC and Jones EG (1991) GABA neuronal subpopulations in cat primary auditory cortex—co-localization with calcium binding proteins. Brain Research 543:45–55.

    Article  CAS  PubMed  Google Scholar 

  • Higo S, Udaka N, and Tamamaki N (2007) Long-range GABAergic projection neurons in the cat neocortex. Journal of Comparative Neurology 503:421–431.

    Article  PubMed  Google Scholar 

  • Houser CR, Vaughn JE, Barber RP, and Roberts E (1980) GABA neurons are the major cell type in the nucleus reticularis thalami. Brain Research 200:341–354.

    Article  CAS  PubMed  Google Scholar 

  • Howard A, Tamas G, and Soltesz I (2005) Lighting the chandelier: new vistas for axo-axonic cells. Trends in Neurosciences 28:310–316.

    Article  CAS  PubMed  Google Scholar 

  • Hsieh CY, Cruikshank SJ, and Metherate R (2000) Differential modulation of auditory thalamocortical and intracortical synaptic transmission by cholinergic agonist. Brain Research 880:51–64.

    Article  CAS  PubMed  Google Scholar 

  • Hu B (1995) Cellular basis of temporal synaptic signalling: an in vitro electrophysiological study in rat auditory thalamus. Journal of Physiology (London) 483:167–182.

    CAS  Google Scholar 

  • Hu B, Senatorov V, and Mooney D (1994) Lemniscal and non-lemniscal synaptic transmission in rat auditory thalamus. Journal of Physiology (London) 479:217–231.

    Google Scholar 

  • Huang CL, Larue DT, and Winer JA (1999) GABAergic organization of the cat medial geniculate body. Journal of Comparative Neurology 415:368–392.

    Article  CAS  PubMed  Google Scholar 

  • Huang CL and Winer JA (2000) Auditory thalamocortical projections in the cat: laminar and areal patterns of input. Journal of Comparative Neurology 427:302–331.

    Article  CAS  PubMed  Google Scholar 

  • Imig TJ and Morel A (1985) Tonotopic organization in ventral nucleus of medial geniculate body in the cat. Journal of Neurophysiology 53:309–340.

    CAS  PubMed  Google Scholar 

  • Inda MC, DeFelipe J, and Muñoz A (2005) Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells. Proceedings of the National Academy of Sciences of the United States of America 103:2920–2925.

    Article  CAS  Google Scholar 

  • Ji W and Suga N (2007) Serotoninergic modulation of plasticity of the auditory cortex elicited by fear conditioning. Journal of Neuroscience 27:4910–4918.

    Article  CAS  PubMed  Google Scholar 

  • Johnson RR and Burkhalter A (1992) Evidence for excitatory amino acid neurotransmitters in the geniculo-cortical pathway and local projections within rat primary visual cortex. Experimental Brain Research 89:20–30.

    Article  CAS  Google Scholar 

  • Johnson RR and Burkhalter A (1994) Evidence for excitatory amino acid neurotransmitters in forward and feedback corticocortical connections within rat visual cortex. European Journal of Neuroscience 6:272–286.

    Article  CAS  PubMed  Google Scholar 

  • Jones EG (1985) The Thalamus. Plenum Press, New York.

    Google Scholar 

  • Jones EG (2003) Chemically defined parallel pathways in the monkey auditory system. Annals of the New York Academy of Sciences 999:218–233.

    Article  CAS  PubMed  Google Scholar 

  • Jones EG (2007) The Thalamus. Cambridge University Press, New York.

    Google Scholar 

  • Jones EG, Dell’Anna ME, Molinari M, Rausell E, and Hashikawa T (1995) Subdivisions of macaque monkey auditory cortex revealed by calcium-binding protein immunoreactivity. Journal of Comparative Neurology 362:153–170.

    Article  CAS  PubMed  Google Scholar 

  • Kamke MR, Brown M, and Irvine DRF (2005) Origin and immunolesioning of cholinergic basal forebrain innervation of cat primary auditory cortex. Hearing Research 206:89–106.

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Lazar R, and Metherate R (2004) Intracortical pathways determine breadth of subthreshold frequency receptive fields in primary auditory cortex. Journal of Neurophysiology 91:2551–2567.

    Article  PubMed  Google Scholar 

  • Kaur S, Rose HJ, Lazar R, Liang K, and Metherate R (2005) Spectral integration in primary auditory cortex: laminar processing of afferent input, in vivo and in vitro. Neuroscience 134:1033–1045.

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi Y and Kubota Y (1998) Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex. Neuroscience 85:677–701.

    Article  CAS  PubMed  Google Scholar 

  • Kawai H, Lazar R, and Metherate R (2007) Nicotinic control of axon excitability regulates thalamocortical transmission. Nature Neuroscience 10:1168–1175.

    Article  CAS  PubMed  Google Scholar 

  • Kharazia VN, Phend KD, Weinberg RJ, and Rustioni A (1996) Excitatory amino acids in corticofugal projections: microscopic evidence. In: Conti F and Hicks TP (eds). Excitatory Amino Acids and the Cerebral Cortex. MIT Press, Cambridge, pp. 127–136.

    Google Scholar 

  • Kharazia VN and Weinberg RJ (1994) Glutamate in thalamic fibers terminating in layer IV of primary sensory cortex. Journal of Neuroscience 14:6021–6032.

    CAS  PubMed  Google Scholar 

  • Kilgard MP and Merzenich MM (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714–1718.

    Article  CAS  PubMed  Google Scholar 

  • King AJ (1997) Signal selection by cortical feedback. Current Biology 7:R85-R88.

    Article  CAS  PubMed  Google Scholar 

  • Kishan AU, Lee CC, and Winer JA (2008) Branched projections in the auditory thalamocortical and corticocortical systems. Neuroscience 154:283–293.

    Article  CAS  PubMed  Google Scholar 

  • Kisvárday Z, Beaulieu C, and Eysel U (1993) Network of GABAergic large basket cells in cat visual cortex (area 18): implication for lateral disinhibition. Journal of Comparative Neurology 327:398–415.

    Article  PubMed  Google Scholar 

  • Kisvárday ZF and Eysel UT (1993) Functional and structural topography of horizontal inhibitory connections in cat visual cortex. European Journal of Neuroscience 5:1558–1572.

    Article  PubMed  Google Scholar 

  • Koch U and Grothe B (2000) Interdependence of spatial and temporal coding in the auditory midbrain. Journal of Neurophysiology 83:2300–2314.

    CAS  PubMed  Google Scholar 

  • Kuwabara N, DiCaprio RA, and Zook JM (1991) Afferents to the medial nucleus of the trapezoid body and their collateral projections. Journal of Comparative Neurology 314:684–706.

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara N and Zook JM (2000) Geniculo-collicular descending projections in the gerbil. Brain Research 878:79–87.

    Article  CAS  PubMed  Google Scholar 

  • Lee CC, Imaizumi K, Schreiner CE, and Winer JA (2004a) Concurrent tonotopic processing streams in auditory cortex. Cerebral Cortex 14:441–451.

    Article  PubMed  Google Scholar 

  • Lee CC, Schreiner CE, Imaizumi K, and Winer JA (2004b) Tonotopic and heterotopic projection systems in physiologically defined auditory cortex. Neuroscience 128:871–887.

    Article  CAS  PubMed  Google Scholar 

  • Lee CC and Winer JA (2008a) Connections of cat auditory cortex: II. Commissural system. Journal of Comparative Neurology 507:1901–1919.

    Article  PubMed  Google Scholar 

  • Lee CC and Winer JA (2008b) Connections of cat auditory cortex: III. Corticocortical system. Journal of Comparative Neurology 507:1920–1943.

    Article  PubMed  Google Scholar 

  • Lee SM, Friedberg MH, and Ebner FF (1994) The role of GABA-mediated inhibition in the rat ventral posterior medial thalamus. II. Differential effects of GABAA and GABAB receptor antagonists on responses of VPM neurons. Journal of Neurophysiology 71:1716–1726.

    CAS  PubMed  Google Scholar 

  • Li XF, Armony JL, and LeDoux JE (1996) GABAA and GABAB receptors differentially regulate synaptic transmission in the auditory thalamo-amygdala pathway: an in vitro microiontophoretic study and a model. Synapse 24:115–124.

    Article  CAS  PubMed  Google Scholar 

  • Linke R, Braune G, and Schwegler H (2000) Differential projection of the posterior paralaminar thalamic nuclei to the amygdaloid complex in the rat. Experiment Brain Research 134:520–532.

    Article  CAS  Google Scholar 

  • Liu S, Liu Y-J, and Li B (2007) Spatiotemporal structure of complex cell receptive fields and influence of GABAergic inhibition. NeuroReport 18:1577–1581.

    Article  CAS  PubMed  Google Scholar 

  • Loftus WC and Sutter ML (2001) Spectrotemporal organization of excitatory and inhibitory receptive fields of cat posterior auditory field neurons. Journal of Neurophysiology 86:475–491.

    CAS  PubMed  Google Scholar 

  • Lübke J, Egger V, Sakmann B, and Feldmeyer D (2000) Columnar organization of dendrites and axons of single and synaptically coupled excitatory spiny neurons in layer 4 of the rat barrel cortex. Journal of Neuroscience 20:5300–5311.

    PubMed  Google Scholar 

  • Lübke J, Markram H, Frotscher M, and Sakmann B (1996) Frequency and dendritic distribution of autapses established by layer 5 pyramidal neurons in the developing rat neocortex: comparison with synaptic innervation of adjacent neurons of the same class. Journal of Neuroscience 16:3209–3218.

    PubMed  Google Scholar 

  • Lund JS, Henry GH, MacQueen CL, and Harvey AR (1979) Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 of the monkey. Journal of Comparative Neurology 184:599–618.

    Article  CAS  PubMed  Google Scholar 

  • Lund JS and Yoshioka T (1991) Local circuit neurons of macaque monkeys striate cortex: III Neurons of laminae 4B, 4A, and 3B. Journal of Comparative Neurology 311:234–258.

    Article  CAS  PubMed  Google Scholar 

  • Lund-Karlsen R and Fonnum F (1978) Evidence for glutamate as a neurotransmitter in the corticofugal fibres to the dorsal lateral geniculate body and the superior colliculus in rats. Brain Research 151:457–468.

    Article  Google Scholar 

  • Lysakowski A, Wainer BH, Bruce G, and Hersh LB (1989) An atlas of the regional and laminar distribution of choline acetyltransferase immunoreactivity in rat cerebral cortex. Neuroscience 28:291–336.

    Article  CAS  PubMed  Google Scholar 

  • Manunta Y and Edeline J-M (1999) Effects of noradrenaline on frequency tuning of auditory cortex neurons during wakefulness and slow-wave sleep. European Journal of Neuroscience 11:2134–2150.

    Article  CAS  PubMed  Google Scholar 

  • Manunta Y and Edeline JM (2000) Noradrenaline does not change the mode of discharge of auditory cortex neurons. NeuroReport 11:23–26.

    Article  CAS  PubMed  Google Scholar 

  • Marc RE and Cameron D (2001) A molecular phenotype atlas of the zebrafish retina. Journal of Neurocytology 30:593–674.

    Article  CAS  PubMed  Google Scholar 

  • McInvale AC, Staudinger J, Harlan RE, and Garcia MM (2002) Immunolocalization of PICK1 in the ascending auditory pathways of the adult rat. Journal of Comparative Neurology 450:382–394.

    Article  CAS  PubMed  Google Scholar 

  • McMullen NT, Smelser CB, and de Venecia RK (1994) A quantitative analysis of parvalbumin neurons in rabbit auditory neocortex. Journal of Comparative Neurology 349:493–511.

    Article  CAS  PubMed  Google Scholar 

  • McMullen NT, Velenovsky DS, and Holmes MG (2005) Auditory thalamic organization: cellular slabs, dendritic arbors and tectothalamic axons underlying the frequency map. Neuroscience 136:927–943.

    Article  CAS  PubMed  Google Scholar 

  • Merchán MA, Aguilar LA, Lopez-Poveda EA, and Malmierca MS (2005) The inferior colliculus of the rat: quantitative immunocytochemical study of GABA and glycine. Neuroscience 136:907–925.

    Article  PubMed  CAS  Google Scholar 

  • Metherate R, Kaur S, Kawai H, Lazar R, Liang K, and Rose HJ (2005) Spectral integration in auditory cortex: mechanisms and modulation. Hearing Research 206:146–158.

    Article  PubMed  Google Scholar 

  • Miller LM, Escabí MA, Read HL, and Schreiner CE (2001) Functional convergence of response properties in the auditory thalamocortical system. Neuron 32:151–160.

    Article  CAS  PubMed  Google Scholar 

  • Mitani A, Itoh K, Nomura S, Kudo M, Kaneko T, and Mizuno N (1984) Thalamocortical projections to layer I of the primary auditory cortex in the cat: a horseradish peroxidase study. Brain Research 310:347–350.

    Article  CAS  PubMed  Google Scholar 

  • Mitani A and Shimokouchi M (1985) Neuronal connections in the primary auditory cortex: an electrophysiological study in the cat. Journal of Comparative Neurology 235:417–429.

    Article  CAS  PubMed  Google Scholar 

  • Mitani A, Shimokouchi M, Itoh K, Nomura S, Kudo M, and Mizuno N (1985) Morphology and laminar organization of electrophysiologically identified neurons in primary auditory cortex in the cat. Journal of Comparative Neurology 235:430–447.

    Article  CAS  PubMed  Google Scholar 

  • Molinari M, Dell’Anna ME, Rausell E, Leggio MG, Hashikawa T, and Jones EG (1995) Auditory thalamocortical pathways defined in monkeys by calcium-binding protein immunoreactivity. Journal of Comparative Neurology 362:171–194.

    Article  CAS  PubMed  Google Scholar 

  • Molnár Z and Cheung AFP (2006) Towards the classification of subpopulations of layer V pyramidal neurons. Neuroscience Research 55:105–115.

    Article  PubMed  CAS  Google Scholar 

  • Morest DK (1965) The laminar structure of the medial geniculate body of the cat. Journal of Anatomy (London) 99:143–160.

    CAS  Google Scholar 

  • Morest DK (1971) Dendrodendritic synapses of cells that have axons: the fine structure of the Golgi type II cell in the medial geniculate body of the cat. Zeitschrift für Anatomie und Entwicklungsgeschichte 133:216–246.

    Article  CAS  PubMed  Google Scholar 

  • Morest DK (1974) LCN’s in the medial geniculate body of the cat. Neurosciences Research Program Bulletin 13:367–377.

    Google Scholar 

  • Morest DK (1975) Synaptic relationships of Golgi type II cells in the medial geniculate body of the cat. Journal of Comparative Neurology 162:157–194.

    Article  CAS  PubMed  Google Scholar 

  • Morino-Wannier P, Fujita SC, and Jones EG (1992) GABAergic neuronal populations in monkey primary auditory cortex defined by co-localized calcium binding proteins and surface antigens. Experimental Brain Research 88:422–432.

    Article  CAS  Google Scholar 

  • Mugnaini E and Oertel WH (1985) An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunocytochemistry. In: Björklund A and Hökfelt T (eds). Handbook of Chemical Neuroanatomy, volume 4: GABA and Neuropeptides in the CNS, part 1. Elsevier Scientific Publishers BV, Amsterdam, pp. 436–608.

    Google Scholar 

  • Mulligan KA and Törk I (1988) Serotoninergic innervation of the cat cerebral cortex. Journal of Comparative Neurology 270:86–110.

    Article  CAS  PubMed  Google Scholar 

  • Ojima H (1994) Terminal morphology and distribution of corticothalamic fibers originating from layers 5 and 6 of cat primary auditory cortex. Cerebral Cortex 6:646–663.

    Article  Google Scholar 

  • Ojima H, Murakami K, and Kishi K (1996) Dual termination modes of corticothalamic fibers originating from pyramids of layers 5 and 6 in cat visual cortical area 17. Neuroscience Letters 208:57–60.

    Article  CAS  PubMed  Google Scholar 

  • Oliver DL, Kuwada S, Yin TCT, Haberly LB, and Henkel CK (1991) Dendritic and axonal morphology of HRP-injected neurons in the inferior colliculus of the cat. Journal of Comparative Neurology 303:75–100.

    Article  CAS  PubMed  Google Scholar 

  • Oliver DL, Winer JA, Beckius GE, and Saint Marie RL (1994) Morphology of GABAergic cells and axon terminals in the cat inferior colliculus. Journal of Comparative Neurology 340:27–42.

    Article  CAS  PubMed  Google Scholar 

  • Olucha-Bordonau FE, Pérez-Villalba A, Teruel-Martí V, and Ruiz-Torner A (2004) Chemical divisions in the medial geniculate body and surrounding paralaminar nuclei of the rat: quantitative comparison of cell density, NADPH diaphorase, acetyl cholin esterase and basal expression of c-fos. Journal of Chemical Neuroanatomy 28:147–162.

    Article  CAS  PubMed  Google Scholar 

  • Osen KK, Ottersen OP, and Storm-Mathisen J (1990) Colocalization of glycine-like and GABA-like immunoreactivities: a semiquantitative study in the dorsal cochlear nucleus of the cat. In: Ottersen OP and Storm-Mathisen J (eds). Glycine Neurotransmission. John Wiley & Sons, Chichester, pp. 417–451.

    Google Scholar 

  • Ottersen OP and Storm-Mathisen J (eds) (1990) Glycine Neurotransmission, John Wiley & Sons, Chichester.

    Google Scholar 

  • Pape HC and McCormick DA (1989) Norepinephrine and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarization-activated cation current. Nature 340:715–718.

    Article  CAS  PubMed  Google Scholar 

  • Paré D, Curró Dossi R, and Steriade M (1991) Three types of inhibitory postsynaptic potentials generated by interneurons in the anterior thalamic complex of cat. Journal of Neurophysiology 66:1190–1204.

    PubMed  Google Scholar 

  • Perales M, Winer JA, and Prieto JJ (2006) Focal projections of cat auditory cortex to the pontine nuclei. Journal of Comparative Neurology 497:959–980.

    Article  PubMed  Google Scholar 

  • Peruzzi D, Bartlett E, Smith PH, and Oliver DL (1997) A monosynaptic GABAergic input from the inferior colliculus to the medial geniculate body in rat. Journal of Neuroscience 17:3766–3777.

    CAS  PubMed  Google Scholar 

  • Peters A (1985) Neuronal composition and circuitry of rat visual cortex. In: Rose D and Dobson V (eds). Models of the Visual Cortex. John Wiley & Sons, Chichester, pp. 492–503.

    Google Scholar 

  • Peters A, Payne BR, and Josephson K (1990) Transcallosal non-pyramidal cell projections from visual cortex in the cat. Journal of Comparative Neurology 302:124–142.

    Article  CAS  PubMed  Google Scholar 

  • Prieto JJ, Peterson BA, and Winer JA (1994a) Laminar distribution and neuronal targets of GABAergic axon terminals in cat primary auditory cortex (AI). Journal of Comparative Neurology 344:383–402.

    Article  CAS  PubMed  Google Scholar 

  • Prieto JJ, Peterson BA, and Winer JA (1994b) Morphology and spatial distribution of GABAergic neurons in cat primary auditory cortex (AI). Journal of Comparative Neurology 344:349–382.

    Article  CAS  PubMed  Google Scholar 

  • Prieto JJ and Winer JA (1999) Layer VI in cat primary auditory cortex (AI): Golgi study and sublaminar origins of projection neurons. Journal of Comparative Neurology 404:332–358.

    Article  CAS  PubMed  Google Scholar 

  • Radley JJ, Farb CR, He Y, Janssen WG, Rodrigues SM, Hof PR, LeDoux JE, and Morrison JH (2007) Distribution of NMDA and AMPA receptor subunits at thalamo-amygdaloid dendritic spines. Brain Research 1134:87–94.

    Article  CAS  PubMed  Google Scholar 

  • Read HL, Miller LM, Schreiner CE, and Winer JA (2008) Two thalamic pathways to primary auditory cortex. Neuroscience 152:151–159.

    Article  CAS  PubMed  Google Scholar 

  • Reale RA and Imig TJ (1980) Tonotopic organization in auditory cortex of the cat. Journal of Comparative Neurology 192:265–291.

    Article  CAS  PubMed  Google Scholar 

  • Rodgers KM, Benison AM, Klein A, and Barth DS (2008) Auditory, somatosensory, and multisensory insular cortex in the rat. Cerebral Cortex 18:2941–2951.

    Article  PubMed  Google Scholar 

  • Romanski LM, Clugnet M, Bordi F, and LeDoux JE (1993) Somatosensory and auditory convergence in the lateral nucleus of the amygdala. Behavioral Neuroscience 107:444–450.

    Article  CAS  PubMed  Google Scholar 

  • Rouiller EM, Capt M, Hornung JP, and Streit P (1990) Correlation between regional changes in the distributions of GABA-containing neurons and unit response properties in the medial geniculate body of the cat. Hearing Research 49:249–258.

    Article  CAS  PubMed  Google Scholar 

  • Rouiller EM, Colomb E, Capt M, and de Ribaupierre F (1985) Projections of the reticular complex of the thalamus onto physiologically characterized regions of the medial geniculate body. Neuroscience Letters 53:227–232.

    Article  CAS  PubMed  Google Scholar 

  • Saint Marie RL, Morest DK, and Brandon CJ (1989) The form and distribution of GABAergic synapses on the principal cell types of the ventral cochlear nucleus of the cat. Hearing Research 42:97–112.

    Article  CAS  PubMed  Google Scholar 

  • Saint Marie RL, Stanforth DA, and Jubelier EM (1997) Substrate for rapid feedforward inhibition of the auditory forebrain. Brain Research 765:173–176.

    Article  CAS  PubMed  Google Scholar 

  • Saint-Marie RL and Peters A (1985) The morphology and synaptic connections of the spiny stellate neurons in monkey visual cortex (area 17). Journal of Comparative Neurology 223:213–235.

    Article  Google Scholar 

  • Sato H, Shimanuki Y, Saito M, Toyoda H, Nokubi T, Maeda Y, Yamamoto T, and Kang Y (2008) Differential columnar processing in local circuits of barrel and insular cortices. Journal of Neuroscience 28:3076–3089.

    Article  CAS  PubMed  Google Scholar 

  • Schofield BR (2005) Superior olivary complex and lateral lemniscal connections of the auditory midbrain. In: Winer JA and Schreiner CE (eds). The Inferior Colliculus. Springer-Verlag, New York, pp. 132–154.

    Chapter  Google Scholar 

  • Schreiner CE and Winer JA (2007) Auditory cortex mapmaking: principles, projections, and plasticity. Neuron 56:356–365.

    Article  CAS  PubMed  Google Scholar 

  • Sefton AJ and Dreher B (1995) Visual system. In: Paxinos G (ed). The Rat Nervous System. Academic Press, San Diego, pp. 833–898.

    Google Scholar 

  • Senatorov VV and Hu B (2002) Extracortical descending projections to the rat inferior colliculus. Neuroscience 115:243–250.

    Article  CAS  PubMed  Google Scholar 

  • Sherman SM (2004) Interneurons and triadic circuitry of the thalamus. Trends in Neurosciences 27:670–675.

    Article  CAS  PubMed  Google Scholar 

  • Sherman SM and Guillery RW (1998) On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators”. Proceedings of the National Academy of Sciences of the United States of America 95:7121–7126.

    Article  CAS  PubMed  Google Scholar 

  • Sherman SM and Guillery RW (2006) Exploring the Thalamus and Its Role in Cortical Function. MIT Press, Cambridge.

    Google Scholar 

  • Shinonaga Y, Takada M, and Mizuno N (1994) Direct projections from the non-laminated divisions of the medial geniculate nucleus to the temporal polar cortex and amygdala in the cat. Journal of Comparative Neurology 340:405–426.

    Article  CAS  PubMed  Google Scholar 

  • Smith DE and Moskowitz N (1979) Ultrastructure of layer IV of the primary auditory cortex of the squirrel monkey. Neuroscience 4:349–359.

    Article  PubMed  Google Scholar 

  • Smith PH and Populin LC (2001) Fundamental differences between the thalamocortical recipient layers of the cat auditory and visual cortices. Journal of Comparative Neurology 436:508–519.

    Article  CAS  PubMed  Google Scholar 

  • Somogyi P (1977) A specific “axo-axonal” interneuron in the visual cortex of the rat. Brain Research 136:345–350.

    Article  CAS  PubMed  Google Scholar 

  • Somogyi P, Freund TF, and Cowey A (1982) The axo-axonic interneuron in the cerebral cortex of the rat, cat and monkey. Neuroscience 7:2577–2607.

    Article  CAS  PubMed  Google Scholar 

  • Somogyi P, Hodgson AJ, and Smith AD (1979) An approach to tracing neuron networks in the cerebral cortex and basal ganglia: combination of Golgi staining, retrograde transport of horseradish peroxidase and anterograde degeneration of synaptic boutons in the same material. Neuroscience 4:1805–1852.

    Article  CAS  PubMed  Google Scholar 

  • Song W-J, Kawaguchi H, Totoki S, Inoue Y, Katura T, Maeda S, Inagaki S, Shirasawa H, and Nishimura M (2006) Cortical intrinsic circuits can support activity propagation through an isofrequency strip of the guinea pig primary auditory cortex. Cerebral Cortex 16:718–729.

    Article  PubMed  Google Scholar 

  • Sousa-Pinto A (1973) The structure of the first auditory cortex (A I) in the cat. I. — Light microscopic observations on its structure. Archives Italiennes de Biologie 111:112–137.

    CAS  PubMed  Google Scholar 

  • Spreafico R, Frassoni C, Arcelli P, and De Biasi S (1994) GABAergic interneurons in the somatosensory thalamus of the guinea-pig: a light and ultrastructural immunocytochemical investigation. Neuroscience 59:961–973.

    Article  CAS  PubMed  Google Scholar 

  • Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nature Reviews Neuroscience 9:206–221.

    Article  CAS  PubMed  Google Scholar 

  • Steriade M, Jones EG, and McCormick DA (1997) Thalamus, volume I, Organisation and Function. Elsevier Science, Amsterdam.

    Google Scholar 

  • Stone J (1983) Parallel Processing in the Visual System. The Classification of Retinal Ganglion Cells and Its Impact on the Neurobiology of Vision. Plenum Press, New York and London.

    Google Scholar 

  • Sutter ML and Loftus WC (2003) Excitatory and inhibitory intensity tuning in auditory cortex: evidence for multiple inhibitory mechanisms. Journal of Neurophysiology 90:2629–2647.

    Article  CAS  PubMed  Google Scholar 

  • Sutter ML, Schreiner CE, McLean M, O’Connor KN, and Loftus WC (1999) Organization of inhibitory frequency receptive fields in cat primary auditory cortex. Journal of Neurophysiology 82:2358–2371.

    CAS  PubMed  Google Scholar 

  • Swadlow HA (2002) Thalamocortical control of feed-forward inhibition in awake somatosensory ‘barrel’ cortex. Proceedings of the Royal Society of London 375:1717–1727.

    Google Scholar 

  • Swadlow HA (2003) Fast-spike interneurons and feedforward inhibition in awake sensory neocortex. Cerebral Cortex 13:25–32.

    Article  PubMed  Google Scholar 

  • Szabadics J, Varga C, Molnár G, Oláh S, Barzó P, and Tamás G (2006) Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science 311:233–235.

    Article  CAS  PubMed  Google Scholar 

  • Szentágothai J (1979) Local neuron circuits of the neocortex. In: Schmitt FO and Worden FG (eds). The Neurosciences: Fourth Study Program. MIT Press, Cambridge, pp. 399–415.

    Google Scholar 

  • Tamás G, Buhl E, and Somogyi P (1997) Massive autaptic self-innervation of GABAergic neurons in cat visual cortex. Journal of Neuroscience 17:6352–6364.

    PubMed  Google Scholar 

  • Tan AYY, Atencio CA, Polley DB, Merzenich MM, and Schreiner CE (2007) Unbalanced synaptic inhibition can create intensity-tuned auditory cortex neurons. Neuroscience 146:449–462.

    Article  CAS  PubMed  Google Scholar 

  • Thomson AM and Bannister AP (2003) Intralaminar connections in the neocortex. Cerebral Cortex 13:5–14.

    Article  PubMed  Google Scholar 

  • Tomioka R and Rockland KS (2007) Long-distance corticocortical GABAergic neurons in the adult monkey white and gray matter. Journal of Comparative Neurology 505:526–538.

    Article  PubMed  Google Scholar 

  • Velenovsky DS, Cetas JS, Price RO, Sinex DG, and McMullen NT (2003) Functional subregions in primary auditory cortex defined by thalamocortical terminal arbors: an electrophysiological and anterograde labeling study. Journal of Neuroscience 23:308–316.

    CAS  PubMed  Google Scholar 

  • Verbny YL, Erdélyi F, Szabó G, and Banks MI (2006) Properties of a population of GABAergic cells in murine auditory cortex weakly excited by thalamic stimulation. Journal of Neurophysiology 96:3194–3208.

    Article  CAS  PubMed  Google Scholar 

  • Warren RA, Agmon A, and Jones EG (1994) Oscillatory synaptic interactions between ventroposterior and reticular neurons in mouse thalamus in vitro. Journal of Neurophysiology 72:1993–2003.

    CAS  PubMed  Google Scholar 

  • Warren RA and Jones EG (1994) Glutamate activation of cat thalamic reticular nucleus: effects on response properties of ventroposterior neurons. Experimental Brain Research 100:215–226.

    Article  CAS  Google Scholar 

  • Webber TJ, Green EJ, Winters RW, Schneiderman N, and McCabe PM (1999) Contribution of NMDA and non-NMDA receptors to synaptic transmission from the brachium of the inferior colliculus to the medial subdivision of the medial geniculate nucleus in the rabbit. Experimental Brain Research 124:295–303.

    Article  CAS  Google Scholar 

  • Weinberg RJ and Kharazia VN (1996) Excitatory amino acids in thalamocortical transmission. In: Conti F and Hicks TP (eds.). Excitatory Amino Acids and the Cerebral Cortex. MIT Press, Cambridge, pp. 109–117.

    Google Scholar 

  • Weinberger NM (2004) Specific long-term memory traces in primary auditory cortex. Nature Reviews Neuroscience 5:279–290.

    Article  CAS  PubMed  Google Scholar 

  • Wenk GL (1997) The nucleus basalis magnocellularis cholinergic system: one hundred years of progress. Neurobiology of Learning and Memory 67:85–95.

    Article  CAS  PubMed  Google Scholar 

  • Wenstrup JJ (2005) The tectothalamic system. In: Winer JA and Schreiner CE (eds). The Inferior Colliculus. Springer-Verlag, New York, pp. 200–230.

    Chapter  Google Scholar 

  • Wenstrup JJ, Larue DT, and Winer JA (1994) Projections of physiologically defined subdivisions of the inferior colliculus in the mustached bat: targets in the medial geniculate body and extrathalamic nuclei. Journal of Comparative Neurology 346:207–236.

    Article  CAS  PubMed  Google Scholar 

  • White EL and Hersch SM (1982) A quantitative study of thalamocortical and other synapses involving the apical dendrites of corticothalamic projection cells in mouse SmI cortex. Journal of Neurocytology 11:137–158.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA (1984a) Anatomy of layer IV in cat primary auditory cortex (AI). Journal of Comparative Neurology 224:535–567.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA (1984b) The pyramidal cells in layer III of cat primary auditory cortex (AI). Journal of Comparative Neurology 229:476–496.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA (1985) Structure of layer II in cat primary auditory cortex (AI). Journal of Comparative Neurology 238:10–37.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA (1992) The functional architecture of the medial geniculate body and the primary auditory cortex. In: Webster DB, Popper AN, and Fay RR (eds). Springer Handbook of Auditory Research, volume 1, The Mammalian Auditory Pathway: Neuroanatomy. Springer-Verlag, New York, pp. 222–409.

    Google Scholar 

  • Winer JA (2006) Decoding the auditory corticofugal systems. Hearing Research 212:1–8.

    Article  PubMed  Google Scholar 

  • Winer JA, Chernock ML, Larue DT, and Cheung SW (2002) Descending projections to the inferior colliculus from the posterior thalamus and the auditory cortex in rat, cat, and monkey. Hearing Research 168:181–195.

    Article  PubMed  Google Scholar 

  • Winer JA, Diehl JJ, and Larue DT (2001) Projections of auditory cortex to the medial geniculate body of the cat. Journal of Comparative Neurology 430:27–55.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA and Larue DT (1987) Patterns of reciprocity in auditory thalamocortical and corticothalamic connections: study with horseradish peroxidase and autoradiographic methods in the rat medial geniculate body. Journal of Comparative Neurology 257:282–315.

    Article  Google Scholar 

  • Winer JA and Larue DT (1988) Anatomy of glutamic acid decarboxylase (GAD) immunoreactive neurons and axons in the rat medial geniculate body. Journal of Comparative Neurology 278:47–68.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA and Larue DT (1989) Populations of GABAergic neurons and axons in layer I of rat auditory cortex. Neuroscience 33:499–515.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA and Larue DT (1996) Evolution of GABAergic circuitry in the mammalian medial geniculate body. Proceedings of the National Academy of Sciences of the United States of America 93:3083–3087.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA, Larue DT, Diehl JJ, and Hefti BJ (1998) Auditory cortical projections to the cat inferior colliculus. Journal of Comparative Neurology 400:147–174.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA, Larue DT, and Huang CL (1999) Two systems of giant axon terminals in the cat medial geniculate body: convergence of cortical and GABAergic inputs. Journal of Comparative Neurology 413:181–197.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA, Larue DT, and Pollak GD (1995) GABA and glycine in the central auditory system of the mustache bat: structural substrates for inhibitory neuronal organization. Journal of Comparative Neurology 355:317–353.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA and Prieto JJ (2001) Layer V in cat primary auditory cortex (AI): cellular architecture and identification of projection neurons. Journal of Comparative Neurology 434:379–412.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA, Saint Marie RL, Larue DT, and Oliver DL (1996) GABAergic feedforward projections from the inferior colliculus to the medial geniculate body. Proceedings of the National Academy of Sciences of the United States of America 93:8005–8010.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA, Wenstrup JJ, and Larue DT (1992) Patterns of GABAergic immunoreactivity define subdivisions of the mustached bat’s medial geniculate body. Journal of Comparative Neurology 319:172–190.

    Article  CAS  PubMed  Google Scholar 

  • Winguth SD and Winer JA (1986) Corticocortical connections of cat primary auditory cortex (AI): laminar organization and identification of supragranular neurons projecting to area AII. Journal of Comparative Neurology 248:36–56.

    Article  CAS  PubMed  Google Scholar 

  • Witter MP and Groenewegen HJ (1986) Connections of the parahippocampal cortex in the cat. III. Cortical and thalamic efferents. Journal of Comparative Neurology 252:1–31.

    Article  CAS  PubMed  Google Scholar 

  • Woodson W, Farb CR, and LeDoux JE (2000) Afferents from the auditory thalamus synapse on inhibitory interneurons in the lateral nucleus of the amygdala. Synapse 38:124–137.

    Article  CAS  PubMed  Google Scholar 

  • Xiang Z and Prince DA (2003) Heterogeneous actions of serotonin on interneurons in rat visual cortex. Journal of Neurophysiology 89:1278–1287.

    Article  CAS  PubMed  Google Scholar 

  • Yuan K, Fink KL, Schreiner CE, and Winer JA (2008) Local connection patterns of parvalbumin-positive inhibitory interneurons in rat primary auditory cortex. Hearing Research doi:10.1016

    Google Scholar 

  • Zhu Y, Stornetta RL, and Zhu JJ (2004) Chandelier cells control excessive cortical excitation: characteristics of whisker-evoked synaptic responses of layer 2/3 nonpyramidal and pyramidal neurons. Journal of Neuroscience 24:5101–5108.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Ms. Katie D. Dorsch for conscientious preparation of the figures. This work was supported by United States Public Health Service grant R01 DC02319-28.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffery A. Winer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Winer, J.A. (2011). Neurochemical Organization of the Medial Geniculate Body and Auditory Cortex. In: Winer, J., Schreiner, C. (eds) The Auditory Cortex. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0074-6_10

Download citation

Publish with us

Policies and ethics