Skip to main content

Chemometric Methods and Theoretical Molecular Descriptors in Predictive QSAR Modeling of the Environmental Behavior of Organic Pollutants

  • Chapter
  • First Online:
Recent Advances in QSAR Studies

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 8))

Abstract

This chapter surveys the QSAR modeling approaches (developed by the author’s research group) for the validated prediction of environmental properties of organic pollutants. Various chemometric methods, based on different theoretical molecular descriptors, have been applied: explorative techniques (such as PCA for ranking, SOM for similarity analysis), modeling approaches by multiple-linear regression (MLR, in particular OLS), and classification methods (mainly k-NN, CART, CP-ANN). The focus of this review is on the main topics of environmental chemistry and ecotoxicology, related to the physico-chemical properties, the reactivity, and biological activity of chemicals of high environmental concern. Thus, the review deals with atmospheric degradation reactions of VOCs by tropospheric oxidants, persistence and long-range transport of POPs, sorption behavior of pesticides (Koc and leaching), bioconcentration, toxicity (acute aquatic toxicity, mutagenicity of PAHs, estrogen binding activity for endocrine disruptors compounds (EDCs)), and finally persistent bioaccumulative and toxic (PBT) behavior for the screening and prioritization of organic pollutants. Common to all the proposed models is the attention paid to model validation for predictive ability (not only internal, but also external for chemicals not participating in the model development) and checking of the chemical domain of applicability. Adherence to such a policy, requested also by the OECD principles, ensures the production of reliable predicted data, useful also in the new European regulation of chemicals, REACH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The symbol refers to the same property as log P (namely to the n-octanol/water partition coefficient). However, in many environmental studies this partition coefficient is abbreviated by “log Kow” to be consistent with the other environmentally relevant coefficients, e.g., n-octanol/air partition coefficient (Koa), air/water partition coefficient (Kaw).

References

  1. Hansch C, Fujita T (1964) p-s-p analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616–1626

    Article  CAS  Google Scholar 

  2. Hansch C, Leo A (1995) Exploring QSAR: Fundamentals and applications in chemistry and biology. American Chemical Society, Washington, DC 490–496

    Google Scholar 

  3. Schultz TW, Cronin MTD, Netzeva TI et al. (2002) Structure–toxicity relationships for aliphatic chemicals evaluated with Tetrahymena pyriformis. Chem Res Toxicol 15:1602–1609

    Article  CAS  Google Scholar 

  4. Veith GD, Mekenyan O (1993) A QSAR approach for estimating the aquatic toxicity of soft electrophiles (QSAR for soft electrophiles). Quant Struct -Act Relat 12:349–356

    Article  CAS  Google Scholar 

  5. Benigni R (2005) Structure–activity relationship studies of chemical mutagens and carcinogens: Mechanistic investigations and prediction approaches. Chem Rev 105:1767–1800

    Article  CAS  Google Scholar 

  6. Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22:69–77

    Article  CAS  Google Scholar 

  7. Gramatica P, Di Guardo A (2002) Screening of pesticides for environmental partitioning tendency. Chemosphere 47:947–956

    Article  CAS  Google Scholar 

  8. Gramatica P, Papa E (2003) QSAR modeling of bioconcentration factor by theoretical molecular descriptors. QSAR Comb Sci 22:374–385

    Article  CAS  Google Scholar 

  9. Gramatica P, Papa E (2005) An update of the BCF QSAR model based on theoretical molecular descriptors. QSAR Comb Sci 24:953–960

    Article  CAS  Google Scholar 

  10. Gramatica P, Papa E (2007) Screening and ranking of POPs for global half-life: QSAR approaches for prioritization based on molecular structure. Environ Sci Technol 41:2833–2839

    Article  CAS  Google Scholar 

  11. Gramatica P, Pilutti P, Papa E (2002) Ranking of volatile organic compounds for tropospheric degradability by oxidants: A QSPR approach. SAR QSAR Environ Res 13:743–753

    Article  CAS  Google Scholar 

  12. Gramatica P, Consonni V, Pavan M (2003) Prediction of aromatic amines mutagenicity from theoretical molecular descriptors. SAR QSAR Environ Res 14:237–250

    Article  CAS  Google Scholar 

  13. Gramatica P, Pilutti P, Papa E (2003) Predicting the NO3 radical tropospheric degradability of organic pollutants by theoretical molecular descriptors. Atmos Environ 37:3115–3124

    Article  CAS  Google Scholar 

  14. Gramatica P, Pilutti P, Papa E (2003) QSAR prediction of ozone tropospheric degradation. QSAR Comb Sci 22:364–373

    Article  CAS  Google Scholar 

  15. Gramatica P, Battaini F, Papa E (2004) QSAR prediction of physico-chemical properties of esters. Fresenius Environ Bull 13:1258–1262

    CAS  Google Scholar 

  16. Gramatica P, Papa E, Pozzi S (2004) Prediction of POP environmental persistence and long range transport by QSAR and chemometric approaches. Fresenius Environ Bull 13:1204–1209

    CAS  Google Scholar 

  17. Gramatica P, Pilutti P, Papa E (2004) A tool for the assessment of VOC degradability by tropospheric oxidants starting from chemical structure. Atmos Environ 38:6167–6175

    Article  CAS  Google Scholar 

  18. Gramatica P, Pilutti P, Papa E (2004) Validated QSAR prediction of OH tropospheric degradation of VOCs: Splitting into training-test sets and consensus modeling. J Chem Inf Comput Sci 44:1794–1802

    CAS  Google Scholar 

  19. Gramatica P, Giani E, Papa E (2007) Statistical external validation and consensus modeling: A QSPR case study for Koc prediction. J Mol Graph Model 25:755–766

    Article  CAS  Google Scholar 

  20. Gramatica P, Pilutti P, Papa E (2007) Approaches for externally validated QSAR modelling of nitrated polycyclic aromatic hydrocarbon mutagenicity. SAR QSAR Environ Res 18:169–178

    Article  CAS  Google Scholar 

  21. Liu H, Papa E, Gramatica P (2006) QSAR prediction of estrogen activity for a large set of diverse chemicals under the guidance of OECD principles. Chem Res Toxicol 19:1540–1548

    Article  CAS  Google Scholar 

  22. Liu H, Papa E, Gramatica P (2008) Evaluation and QSAR modeling on multiple endpoints of estrogen activity based on different bioassays. Chemosphere 70:1889–1897

    Article  CAS  Google Scholar 

  23. Papa E, Gramatica P (2008) Externally validated QSPR modelling of VOC tropospheric oxidation by NO3 radicals. SAR QSAR Environ Res 19:655–668

    Article  CAS  Google Scholar 

  24. Papa E, Gramatica P (2009) QSPR as a support to the EU REACH legislation: PBTs identification by molecular structure. Environ Sci Technol (in press)

    Google Scholar 

  25. Papa E, Battaini F, Gramatica P (2005) Ranking of aquatic toxicity of esters modelled by QSAR. Chemosphere 58:559–570

    Article  CAS  Google Scholar 

  26. Papa E, Villa F, Gramatica P (2005) Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (Fathead Minnow). J Chem Inf Model 45:1256–1266

    Article  CAS  Google Scholar 

  27. Papa E, Dearden JC, Gramatica P (2007) Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical molecular descriptors. Chemosphere 67:351–358

    Article  CAS  Google Scholar 

  28. Papa E, Kovarich S, Gramatica P (2009) Development, validation and inspection of the applicability domain of QSPR models for physico-chemical properties of polybrominated diphenyl ethers. QSAR Comb Sci. doi: 10.1002/qsar.200860183

    Google Scholar 

  29. Todeschini R, Maiocchi A, Consonni V (1999) The K correlation index: Theory development and its application in chemometrics. Chemom Int Lab Syst 46:13–29

    Article  CAS  Google Scholar 

  30. Hawkins DM (2004) The problem of overfitting. J Chem Inf Comput Sci 44:1–12

    CAS  Google Scholar 

  31. Gramatica P, Pozzi S, Consonni V et al. (2002) Classification of environmental pollutants for global mobility potential. SAR QSAR Environ Res 13:205–217

    Article  CAS  Google Scholar 

  32. Gramatica P, Papa E, Battaini F (2004) Ranking and classification of non-ionic organic pesticides for environmental distribution: A QSAR approach. Int J Environ Anal Chem 84:65–74

    Article  CAS  Google Scholar 

  33. Liu H, Papa E, Walker JD et al. (2007) In silico screening of estrogen-like chemicals based on different nonlinear classification models. J Mol Graph Model 26:135–144

    Article  CAS  Google Scholar 

  34. Papa E, Gramatica P (2008) Screening of persistent organic pollutants by QSPR classification models: A comparative study. J Mol Graph Model 27:59–65

    Article  CAS  Google Scholar 

  35. Papa E, Pilutti P, Gramatica P (2008) Prediction of PAH mutagenicity in human cells by QSAR classification. SAR QSAR Environ Res 19:115–127

    Article  CAS  Google Scholar 

  36. Breiman L, Friedman JH, Olshen RA et al. (1998) Classification and regression trees. Chapman & Hall/CRC, Boca Raton, FL

    Google Scholar 

  37. Frank JE, Friedman JH (1989) Classification: Oldtimers and newcomers. J Chemom 3:463–475

    Article  CAS  Google Scholar 

  38. Sharaf MA, Illman DL, Kowalski BR (1986) Chemometrics. Wiley, New York

    Google Scholar 

  39. Gasteiger J, Zupan J (1993) Neural networks in chemistry. Angew Chem Int Ed Engl 32:503–527

    Article  Google Scholar 

  40. Hecht-Nielsen R (1988) Applications of counter-propagation networks. Neural Netw 1:131–139

    Article  Google Scholar 

  41. Zupan J, Novic M, Ruisanchez I (1997) Kohonen and counter-propagation artificial neural networks in analytical chemistry. Chemom Int Lab Syst 38:1–23

    Article  CAS  Google Scholar 

  42. Livingstone DJ (2000) The characterization of chemical structures using molecular properties. A survey. J Chem Inf Comput Sci 40:195–209

    CAS  Google Scholar 

  43. Stuper AJ, Jurs PC (1976) ADAPT: A computer system for automated data analysis using pattern recognition techniques. J Chem Inf Comput Sci 16:99–105

    CAS  Google Scholar 

  44. Mekenyan O, Bonchev D (1986) OASIS method for predicting biological activity of chemical compounds. Acta Pharm Jugosl 36:225–237

    CAS  Google Scholar 

  45. Katritzky AR, Lobanov VS (1994) CODESSA. Ver. 5.3, University of Florida, Gainesville

    Google Scholar 

  46. Todeschini R, Consonni V, Mauri A et al. (2006) DRAGON – software for the calculation of molecular descriptors. Ver. 5.4 for Windows, Talete srl, Milan, Italy

    Google Scholar 

  47. MollConnZ (2003) Ver. 4.05. Hall Ass. Consult., Quincy, MA

    Google Scholar 

  48. Devillers J, Balaban AT (1999) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach Science Publishers, Amsterdam

    Google Scholar 

  49. Karelson M (2000) Molecular descriptors in QSAR/QSPR. Wiley-InterScience, New York

    Google Scholar 

  50. Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley-VCH, Weinheim, Germany

    Book  Google Scholar 

  51. Todeschini R, Lasagni M (1994) New molecular descriptors for 2D and 3D structures. J Chemom 8:263–272

    Article  CAS  Google Scholar 

  52. Todeschini R, Gramatica P (1997) 3D-modelling and prediction by WHIM descriptors.5. Theory development and chemical meaning of WHIM descriptors. Quant Struct Act Relat 16:113–119

    Article  CAS  Google Scholar 

  53. Todeschini R, Gramatica P (1997) 3D-modelling and prediction by WHIM descriptors.6. Application of WHIM descriptors in QSAR studies. Quant Struct Act Relat 16:120–125

    Article  CAS  Google Scholar 

  54. Consonni V, Todeschini R, Pavan M et al. (2002) Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3D molecular descriptors. J Chem Inf Comput Sci 42:682–692.

    CAS  Google Scholar 

  55. Consonni V, Todeschini R, Pavan M et al. (2002) Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 2. Application of the novel 3D molecular descriptors to QSAR/QSPR studies. J Chem Inf Comput Sci 42:693–705

    CAS  Google Scholar 

  56. Xu L, Zhang WJ (2001) Comparison of different methods for variable selection. Anal Chim Acta 446:477–483

    Article  CAS  Google Scholar 

  57. Davis L (1991) Handbook of genetic algorithms. Van Nostrand Reinhold, New York

    Google Scholar 

  58. Hibbert DB (1993) Genetic algorithms in chemistry. Chemom Int Lab Syst 19:277–293

    Article  CAS  Google Scholar 

  59. Wehrens R, Buydens LMC (1998) Evolutionary optimisation: A tutorial. TRAC 17:193–203

    CAS  Google Scholar 

  60. Leardi R, Boggia R, Terrile M (1992) Genetic algorithms as a strategy for feature-selection. J Chemom 6:267–281

    Article  CAS  Google Scholar 

  61. Rogers D, Hopfinger AJ (1994) Application of genetic function approximation to quantitative structure–activity relationships and quantitative structure–property relationships. J Chem Inf Comput Sci 34:854–866

    CAS  Google Scholar 

  62. Devillers J (1996) Genetic algorithms in computer-aided molecular design. In: Devillers J (ed) Genetic algorithms in molecular modeling. Academic Press Ltd, London

    Google Scholar 

  63. Leardi R (1994) Application of a genetic algorithm to feature-selection under full validation conditions and to outlier detection. J Chemom 8:65–79

    Article  CAS  Google Scholar 

  64. Kubinyi H (1994) Variable selection in QSAR studies. 1. An evolutionary algorithm. Quant Struct Act Relat 13:285–294

    CAS  Google Scholar 

  65. Kubinyi H (1994) Variable selection in QSAR studies. 2. A highly efficient combination of systematic search and evolution. Quant Struct Act Relat 13:393–401

    CAS  Google Scholar 

  66. Todeschini R, Consonni V, Pavan M et al. (2002) MOBY DIGS. Ver. 1.2 for Windows, Talete srl, Milan, Italy

    Google Scholar 

  67. Kubinyi H (1996) Evolutionary variable selection in regression and PLS analyses. J Chemom 10:119–133

    Article  CAS  Google Scholar 

  68. Guha R, Serra JR, Jurs PC (2004) Generation of QSAR sets with a self-organizing map. J Mol Graph Model 23:1–14

    Article  CAS  Google Scholar 

  69. Netzeva TI, Worth AP, Aldenberg T et al. (2005) Current status of methods for defining the applicability domain of (quantitative) structure–activity relationships – the report and recommendations of ECVAM Workshop 52. ATLA 33:155–173

    CAS  Google Scholar 

  70. Tunkel J, Mayo K, Austin C et al. (2005) Practical considerations on the use of predictive models for regulatory purposes. Environ Sci Technol 39:2188–2199

    Article  CAS  Google Scholar 

  71. Atkinson AC (1985) Plots, transformations and regression. Clarendon Press, Oxford

    Google Scholar 

  72. Hulzebos EM, Posthumus R (2003) (Q)SARs: Gatekeepers against risk on chemicals? SAR QSAR Environ Res 14:285–316

    Article  CAS  Google Scholar 

  73. Jouan-Rimbaud D, Massart DL, deNoord OE (1996) Random correlation in variable selection for multivariate calibration with a genetic algorithm. Chemom Int Lab Syst 35:213–220

    Article  CAS  Google Scholar 

  74. Efron B, Gong G (1983) A leisurely look at the bootstrap, the jackknife, and cross-validation. Am Stat 37:36–48

    Article  Google Scholar 

  75. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman & Hall, London

    Google Scholar 

  76. Shao J (1993) Linear-model selection by cross-validation. J Am Stat Assoc 88:486–494

    Article  Google Scholar 

  77. Golbraikh A, Tropsha A (2002) Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J Comput Aid Mol Des 16:357–369

    Article  CAS  Google Scholar 

  78. Zefirov NS, Palyulin VA (2001) QSAR for boiling points of “small” sulfides. Are the “high-quality structure-property-activity regressions” the real high quality QSAR models? J Chem Inf Comput Sci 41:1022–1027

    CAS  Google Scholar 

  79. Golbraikh A, Shen M, Xiao ZY et al. (2003) Rational selection of training and test sets for the development of validated QSAR models. J Comput Aid Mol Des 17:241–253

    Article  CAS  Google Scholar 

  80. Leonard JT, Roy K (2006) On selection of training and test sets for the development of predictive QSAR models. QSAR Comb Sci 25:235–251

    Article  CAS  Google Scholar 

  81. Sjostrom M, Eriksson L (1995) Chemometric methods in molecular design. van de Waterbeend H (ed) Vol. 2. VCH, New York, p 63

    Google Scholar 

  82. Marengo E, Todeschini R (1992) A new algorithm for optimal, distance-based experimental-design. Chemom Int Lab Syst 16:37–44

    Article  CAS  Google Scholar 

  83. Gramatica P (2004) Evaluation of different statistical approaches to the validation of quantitative structure-activity relationships. http://ecb.jrc.it/DOCUMENTS/QSAR/Report_on_QSAR_validation_methods.pdf Accessed April 2008

  84. Gramatica P (2007) Principles of QSAR models validation: Internal and external. QSAR Comb Sci 26:694–701

    Article  CAS  Google Scholar 

  85. Kahn I, Fara D, Karelson M et al. (2005) QSPR treatment of the soil sorption coefficients of organic pollutants. J Chem Inf Model 45:94–105

    Article  CAS  Google Scholar 

  86. Todeschini R, Gramatica P, Provenzani R et al. (1995) Weighted holistic invariant molecular descriptors. 2. Theory development and applications on modeling physicochemical properties of polyaromatic hydrocarbons. Chemom Int Lab Syst 27:221–229

    Article  CAS  Google Scholar 

  87. Chiorboli C, Gramatica P, Piazza R et al. (1997) 3D-modelling and prediction by WHIM descriptors. Part 7. Physico-chemical properties of haloaromatics: Comparison between WHIM and topological descriptors. SAR QSAR Environ Res 7:133–150

    Article  CAS  Google Scholar 

  88. Gramatica P, Navas N, Todeschini R (1998) 3D-modelling and prediction by WHIM descriptors. Part 9. Chromatographic relative retention time and physico-chemical properties of polychlorinated biphenyls (PCBs). Chemom Int Lab Syst 40:53–63

    Article  CAS  Google Scholar 

  89. Todeschini R, Vighi M, Finizio A et al. (1997) 3D-modelling and prediction by WHIM descriptors. Part 8. Toxicity and physico-chemical properties of environmental priority chemicals by 2D-TI and 3D-WHIM descriptors. SAR QSAR Environ Res 7:173–193

    Article  CAS  Google Scholar 

  90. Todeschini R, Gramatica P (1997) The WHIM theory: New 3D-molecular descriptors for QSAR in environmental modelling. SAR QSAR Environ Res 7:89–115

    Article  CAS  Google Scholar 

  91. Todeschini R, Gramatica P (1998) 3D-QSAR in drug design. Kubiny H, Folkers G, Martin YC (eds) vol. 2. KLUWER/ESCOM, Dordrecht, p 355

    Google Scholar 

  92. Gramatica P (2006) WHIM descriptors of shape. QSAR Comb Sci 25:327–332

    Article  CAS  Google Scholar 

  93. Patel H, Cronin MTD (2001) A novel index for the description of molecular linearity. J Chem Inf Comput Sci 41:1228–1236

    CAS  Google Scholar 

  94. Nikolova N, Jaworska J (2003) Approaches to measure chemical similarity – a review. QSAR Comb Sci 22:1006–1026

    Article  CAS  Google Scholar 

  95. Gramatica P, Navas N, Todeschini R (1999) Classification of organic solvents and modelling of their physico-chemical properties by chemometric methods using different sets of molecular descriptors. TRAC 18:461–471

    CAS  Google Scholar 

  96. Gramatica P, Corradi M, Consonni V (2000) Modelling and prediction of soil sorption coefficients of non-ionic organic pesticides by molecular descriptors. Chemosphere 41:763–777

    Article  CAS  Google Scholar 

  97. Sabljic A, Gusten H, Verhaar H et al. (1995) QSAR modeling of soil sorption – improvements and systematics of Log Koc vs Log Kow correlations. Chemosphere 31:4489–4514

    Article  CAS  Google Scholar 

  98. Gawlik BM, Sotiriou N, Feicht EA et al. (1997) Alternatives for the determination of the soil adsorption coefficient, Koc, of non-ionicorganic compounds – a review. Chemosphere 34:2525–2551

    Article  CAS  Google Scholar 

  99. Doucette WJ (2003) Quantitative structure–activity relationships for predicting soil-sediment sorption coefficients for organic chemicals. Environ Toxicol Chem 22:1771–1788

    Article  CAS  Google Scholar 

  100. Tao S, Piao HS, Dawson R et al. (1999) Estimation of organic carbon normalized sorption coefficient (Koc) for soils using the fragment constant method. Environ Sci Technol 33:2719–2725

    Article  CAS  Google Scholar 

  101. Huuskonen J (2003) Prediction of soil sorption coefficient of a diverse set of organic chemicals from molecular structure. J Chem Inf Comput Sci 43:1457–1462

    CAS  Google Scholar 

  102. Huuskonen J (2003) Prediction of soil sorption coefficient of organic pesticides from the atom-type electrotopological state indices. Environ Toxicol Chem 22:816–820

    Article  CAS  Google Scholar 

  103. Andersson PL, Maran U, Fara D et al. (2002) General and class specific models for prediction of soil sorption using various physicochemical descriptors. J Chem Inf Comput Sci 42:1450–1459

    CAS  Google Scholar 

  104. Delgrado EJ, Alderete JB, Gonzalo AJ (2003) A simple QSPR model for predicting soil sorption coefficients of polar and nonpolar organic compounds from molecular formula. J Chem Inf Comput Sci 43:1928–1932

    Google Scholar 

  105. EPI Suite. Ver. 3.12 (2000) Environmental Protection Agency, USA http://www.epa.gov/opptintr/exposure/docs/EPISuitedl.htm. Accessed 9 February 2007

  106. Gramatica P, Consonni V, Todeschini R (1999) QSAR study on the tropospheric degradation of organic compounds. Chemosphere 38:1371–1378

    Article  CAS  Google Scholar 

  107. Atkinson R (1987) A structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals with organic compounds. Int J Chem Kinet 19:799–828

    Article  CAS  Google Scholar 

  108. Sabljic A, Gusten H (1990) Predicting the nighttime NO3 radical reactivity in the troposphere. Atmos Environ A-General Topics 24:73–78

    Article  Google Scholar 

  109. Müller M, Klein W (1991) Estimating atmospheric degradation processes by SARS. Sci Total Environ 109:261–273

    Article  Google Scholar 

  110. Medven Z, Gusten H, Sabljic A (1996) Comparative QSAR study on hydroxyl radical reactivity with unsaturated hydrocarbons: PLS versus MLR. J Chemom 10:135–147

    Article  CAS  Google Scholar 

  111. Klamt A (1996) Estimation of gas-phase hydroxyl radical rate constants of oxygenated compounds based on molecular orbital calculations. Chemosphere 32:717–726

    Article  CAS  Google Scholar 

  112. Bakken G, Jurs PC (1999) Prediction of hydroxyl radical rate constants from molecular structure. J Chem Inf Comput Sci 39:1064–1075

    CAS  Google Scholar 

  113. Güsten H (1999) Predicting the abiotic degradability of organic pollutants in the troposphere. Chemosphere 38:1361–1370

    Article  Google Scholar 

  114. Pompe M, Veber M (2001) Prediction of rate constants for the reaction of O-3 with different organic compounds. Atmos Environ 35:3781–3788

    Article  CAS  Google Scholar 

  115. Meylan WM, Howard PH (2003) A review of quantitative structure–activity relationship methods for the prediction of atmospheric oxidation of organic chemicals. Environ Toxicol Chem 22:1724–1732

    Article  CAS  Google Scholar 

  116. Pompe M, Veber M, Randic M et al. (2004) Using variable and fixed topological indices for the prediction of reaction rate constants of volatile unsaturated hydrocarbons with OH radicals. Molecules 9:1160–1176

    Article  Google Scholar 

  117. Oberg T (2005) A QSAR for the hydroxyl radical reaction rate constant: Validation, domain of application, and prediction. Atmos Environ 39:2189–2200

    Article  CAS  Google Scholar 

  118. AOPWIN. Ver. 1.90 (2000) Environmental Protection Agency, USA

    Google Scholar 

  119. Devillers J, Bintein S, Domine D (1996) Comparison of BCF models based on log P. Chemosphere 33:1047–1065

    Article  CAS  Google Scholar 

  120. Meylan WM, Howard PH, Boethling RS et al. (1999) Improved method for estimating bioconcentration/bioaccumulation factor from octanol/water partition coefficient. Environ Toxicol Chem 18:664–672

    Article  CAS  Google Scholar 

  121. Lu XX, Tao S, Hu HY et al. (2000) Estimation of bioconcentration factors of nonionic organic compounds in fish by molecular connectivity indices and polarity correction factors. Chemosphere 41:1675–1688

    Article  CAS  Google Scholar 

  122. Dearden JC, Shinnawei NM (2004) Improved prediction of fish bioconcentration factor of hydrophobic chemicals. SAR QSAR Environ Res 15:449–455

    Article  CAS  Google Scholar 

  123. Dimitrov S, Dimitrova N, Parkerton T et al. (2005) Base-line model for identifying the bioaccumulation potential of chemicals. SAR QSAR Environ Res 16:531–554

    Article  CAS  Google Scholar 

  124. Zhao CY, Boriani E, Chana A et al. (2008) A new hybrid system of QSAR models for predicting bioconcentration factors (BCF). Chemosphere 73:1701–1707

    Article  CAS  Google Scholar 

  125. Todeschini R, Vighi M, Provenzani R et al. (1996) Modeling and prediction by using WHIM descriptors in QSAR studies: Toxicity of heterogeneous chemicals on Daphnia magna. Chemosphere 32:1527–1545

    Article  CAS  Google Scholar 

  126. Gramatica P, Vighi M, Consolaro F et al. (2001) QSAR approach for the selection of congeneric compounds with a similar toxicological mode of action. Chemosphere 42:873–883

    Article  CAS  Google Scholar 

  127. Benigni R, Giuliani A, Franke R et al. (2000) Quantitative structure–activity relationships of mutagenic and carcinogenic aromatic amines. Chem Rev 100:3697–3714

    Article  CAS  Google Scholar 

  128. Gramatica P, Papa E, Marrocchi A et al. (2007) Quantitative structure–activity relationship modeling of polycyclic aromatic hydrocarbon mutagenicity by classification methods based on holistic theoretical molecular descriptors. Ecotoxicol Environ Saf 66:353–361

    Article  CAS  Google Scholar 

  129. Shi LM, Fang H, Tong W et al. (2001) QSAR models using a large diverse set of estrogens. J Chem Inf Comput Sci 41:186–195

    CAS  Google Scholar 

  130. Hong H, Tong W, Fang H et al. (2002) Prediction of estrogen receptor binding for 58,000 chemicals using an integrated system of a tree-based model with structural alerts. Environ Health Perspect 110:29–36

    Article  CAS  Google Scholar 

  131. Tong W, Fang H, Hong H et al. (2003) Regulatory application of SAR/QSAR for priority setting of endocrine disruptors: A perspective. Pure Appl Chem 75:2375–2388

    Article  CAS  Google Scholar 

  132. Tong W, Welsh WJ, Shi LM et al. (2003) Structure–activity relationship approaches and applications. Environ Toxicol Chem 22:1680–1695

    Article  CAS  Google Scholar 

  133. Fang H, Tong W, Sheehan DM (2003) QSAR models in receptor-mediated effects: the nuclear receptor superfamily. J Mol Struct (THEOCHEM) 622:113–125

    Article  CAS  Google Scholar 

  134. Saliner AG, Amat L, Carbo-Dorca R et al. (2003) Molecular quantum similarity analysis of estrogenic activity. J Chem Inf Comput Sci 43:1166–1176

    CAS  Google Scholar 

  135. Saliner AG, Netzeva TI, Worth AP (2006) Prediction of estrogenicity: Validation of a classification model. SAR QSAR Environ Res 17:195–223

    Article  CAS  Google Scholar 

  136. Coleman KP, Toscano WA, Wiese TE (2003) QSAR models of the in vitro estrogen activity of bisphenol A analogs. QSAR Comb Sci 22:78–88

    Article  CAS  Google Scholar 

  137. Roncaglioni A, Novic M, Vracko M et al. (2004) Classification of potential endocrine disrupters on the basis of molecular structure using a nonlinear modeling method. J Chem Inf Comput Sci 44:300–309

    CAS  Google Scholar 

  138. Asikainen A, Ruuskanen J, Tuppurainen K (2003) Spectroscopic QSAR methods and self-organizing molecular field analysis for relating molecular structure and estrogenic activity. J Chem Inf Comput Sci 43:1974–1981

    CAS  Google Scholar 

  139. Asikainen A, Kolehmainen M, Ruuskanen J et al. (2006) Structure-based classification of active and inactive estrogenic compounds by decision tree, LVQ and kNN methods. Chemosphere 62:658–673

    Article  CAS  Google Scholar 

  140. Devillers D, Marchand-Geneste N, Carpy A et al. (2006) SAR and QSAR modeling of endocrine disruptors. SAR QSAR Environ Res 17:393–412

    Article  CAS  Google Scholar 

  141. Roncaglioni A, Benfenati E (2008) In silico-aided prediction of biological properties of chemicals: Oestrogen receptor-mediated effects. Chem Soc Rev 37:441–450

    Article  CAS  Google Scholar 

  142. Roncaglioni A, Piclin N, Pintore M et al. (2008) Binary classification models for endocrine disrupter effects mediated through the estrogen receptor. SAR QSAR Environ Res 19:697–733

    Article  CAS  Google Scholar 

  143. Kuiper GG, Lemmen JG, Carlsson B et al. (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor ß. Endocrinology 139:4252–4263

    Article  CAS  Google Scholar 

  144. Liu H, Yao X, Gramatica P (2009) The applications of machine learning algorithms in the modeling of estrogen-like chemicals. Comb Chem High Throughput Screen (special issue on “Machine learning for virtual screening) 12(5) (in press)

    Google Scholar 

  145. Joliffe IT (1986) Principal component analysis. Springer-Verlag, New York 490–496

    Google Scholar 

  146. Jackson JE (1991) A user’s guide to principal components. John Wiley & Sons, New York

    Book  Google Scholar 

  147. Gramatica P, Consolaro F, Pozzi S (2001) QSAR approach to POPs screening for atmospheric persistence. Chemosphere 43:655–664

    Article  CAS  Google Scholar 

  148. Papa E, Gramatica P (2005) PBTs screening by multivariate analysis and QSAR modeling platform presented at 10th EuCheMS-DLE Intern. Conf., Rimini, Italy

    Google Scholar 

  149. Papa E, Gramatica P (2006) Structurally-based PBT profiler: The PBT index from molecular structure. Presented at 16th Annual Meeting SETAC-Europe, The Hague, Holland.

    Google Scholar 

  150. Vighi M, Gramatica P, Consolaro F et al. (2001) QSAR and chemometric approaches for setting water quality objectives for dangerous chemicals. Ecotoxicol Environ Saf 49:206–220

    Article  CAS  Google Scholar 

  151. Papa E, Castiglioni S, Gramatica P et al. (2004) Screening the leaching tendency of pesticides applied in the Amu Darya Basin (Uzbekistan). Water Res 38:3485–3494

    Article  CAS  Google Scholar 

  152. UNEP (2001) Stockholm convention on persistent organic pollutants. United Nations Environmental Program, Geneva, Switzerland. http://www.pops.int. Accessed 9 February 2007

Download references

Acknowledgement

Many thanks to my collaborators who participated in the research, reviewed here, carried out over the past 15 years, particularly Ester Papa and Pamela Pilutti. Thanks are also due to Roberto Todeschini who was my teacher of chemometric QSAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Gramatica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gramatica, P. (2010). Chemometric Methods and Theoretical Molecular Descriptors in Predictive QSAR Modeling of the Environmental Behavior of Organic Pollutants. In: Puzyn, T., Leszczynski, J., Cronin, M. (eds) Recent Advances in QSAR Studies. Challenges and Advances in Computational Chemistry and Physics, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9783-6_12

Download citation

Publish with us

Policies and ethics