Skip to main content

Atmospheric Aerosol Monitoring from Satellite Observations: A History of Three Decades

  • Chapter
Atmospheric and Biological Environmental Monitoring

Abstract

More than three decades have passed since the launch of the first satellite instrument used for atmospheric aerosol detection. Since then, various powerful satellite remote sensing technologies have been developed for monitoring atmospheric aerosols. The application of these new technologies to different satellite data have led to the generation of multiple aerosol products, such as aerosol spatial distribution, temporal variation, fraction of fine and coarse modes, vertical distribution, light absorption, and some spectral characteristics. These can be used to infer sources of major aerosol emissions, the transportation of aerosols, interactions between aerosols and energy and water cycles, and the involvement of aerosols with the dynamic system. The synergetic use of data from different satellite sensors provides more comprehensive information to better quantify the direct and indirect effects of aerosols on the Earth’s climate. This paper reviews how satellite remote sensing has been used in aerosol monitoring from its earliest beginnings and highlights future satellite missions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdou WA, DJ Diner, JV Martonchik, CJ Bruegge, RA Kahn, BJ Gaitley, KA Crean, LA Remer, and B Holben (2005) Comparison of coincident MISR and MODIS aerosol optical depths over land and ocean scenes containing AERONET sites. J. Geophys. Res. doi:10.1029/2004JD004693.

    Google Scholar 

  • Al-Saadi J, J Szykman, B Pierce, C Kittaka, D Neil, DA Chu, L Remer, L Gumley, E Prins, L Weinstock, C McDonald, R Wayland, and F Dimmick (2005) Improving national air quality forecasts with satellite aerosol observations. Bull. Am. Met. Soc. 86(9): 1249–1261.

    Article  Google Scholar 

  • Barnaba F and GP Gobbi (2004) Aerosol seasonal variability over the Mediterranean region and relative impact of maritime, continental and Saharan dust particles over the basin from MODIS data in the year 2001. Atmos. Chem. Phys. 4: 2367–2391.

    Google Scholar 

  • Barnsley M, J Settle, M Cutter, D Lobb, and F Teston (2004) The PROBA/CHRIS mission: A low-cost smallsat for hyperspectral, multi-angle, observations of the earth surface and atmosphere. IEEE Trans. Geosci. Remote Sens. 42: 1512–1520.

    Article  Google Scholar 

  • Bates TS, BJ Huebert, JL Gras, FB Griffiths, and PA Durkee (1998) International Global Atmospheric Chemistry (IGAC) Project’s First Aerosol Characterization Experiment (ACE 1): Overview. J. Geophys. Res. 103(D13): 16297–16318.

    Article  Google Scholar 

  • Bauman JJ, PB Russell, MA Geller, and P Hamill (2003a) A stratospheric aerosol climatology from SAGE II and CLAES measurements: 1. Methodology. J. Geophys. Res. 108(D13), doi:10.1029/2002JD002992.

    Google Scholar 

  • Bauman JJ, PB Russell, MA Geller, and P Hamill (2003b) A stratospheric aerosol climatology from SAGE II and CLAES measurements: 2. Results and comparisons, 1984–1999. J. Geophys. Res. 108(D13): 4383, doi:10.1029/2002JD002993.

    Google Scholar 

  • Berthier S, P Chazette, P Couvert, J Pelon, F Dulac, F Thieuleux, C Moulin, and T Pain (2006) Desert dust aerosol columnar properties over ocean and continental Africa from Lidar in-Space Technology Experiment (LITE) and Meteosat synergy. J. Geophys. Res. 111(D21202), doi:10.1029/2005JD006999.

    Google Scholar 

  • Bourassa AE, DA Degenstein, RL Gattinger, and EJ Llewellyn (2007) Stratospheric aerosol retrieval with optical spectrograph and infrared imaging system limb scatter measurements. J. Geophys. Res. 112(D10217), doi:10.1029/2006JD008079.

    Google Scholar 

  • Breon FM, D Tanre, and S Generoso (2002) Aerosol effect on cloud droplet size monitored from satellite. Science. 295: 834–838.

    Article  Google Scholar 

  • Christopher SA and J Wang (2004) Intercomparison between multi-angle imaging spectroradiometer (MISR) and sunphotometer aerosol optical thickness in dust source regions over China: Implications for satellite aerosol retrievals and radiative forcing calculations. Tellus. B56(5): 451–456, doi:10.1111/j.1600-0889.2004.00120.

    Google Scholar 

  • Chu DA, YJ Kaufman, C Ichoku, LA Remer, D. TanrĂ©, and BN Holben (2002) Validation of MODIS aerosol optical depth retrieval overland. Geophys. Res. Lett. 29, doi:10.1029/2001GL013205.

    Google Scholar 

  • Chu WP and MP McCormick (1979) Inversion of stratospheric aerosol and gaseous constituents from spacecraft solar extinction data in the 0.38–1.0-Mum wavelength region. Appl. Opt. 18: 1404–1413.

    Article  Google Scholar 

  • Chu WP, MP McCormick, J Lenoble, C Brognoiz, and P Pruvost (1989) SAGE II inversion algorithm. J. Geophys. Res. 94: 8339–8351.

    Article  Google Scholar 

  • Costa MJ, BJ Sohn, V Levizzani, AM Silva (2006) Radiative forcing of Asian dust determined from the synergized GOME and GMS satellite data – A case study. J. Meteorol. Soc. Jpn. 84: 85–95.

    Article  Google Scholar 

  • Dave J (1973) Development of the programs for computing characteristics of ultraviolet radiation: Scalar case. NAS5-21680, NASA Goddard Space Flight Cent., Greenbelt, Md.

    Google Scholar 

  • Davidson CI, RF Phalen, PA Solomon (2005) Airborne particulate matter and human health: A review. Aerosol Sci. Technol. 39(8): 737–749.

    Google Scholar 

  • DeuzĂ© JL, M Herman, P Goloub, D TanrĂ©, and A Marchand (1999) Characterization of aerosols over ocean from POLDER/ADEOS-1. Geophys. Res. Lett. 26(10): 1421–1424.

    Article  Google Scholar 

  • Diner DJ, WA Abdou, TP Ackerman, K Crean, HR Gordon, RA Kahn, JV Martonchik, S McMuldroch, SR Paradise, B Pinty, MM Verstraete, M Wang, and RA West (2008) MISR level 2 aerosol retrieval algorithm theoretical basis. Jet Propul. Lab. Pasadena, CA, JPL-D 11400, Rev. G.

    Google Scholar 

  • Diner DJ, WA Abdou, CJ Bruegge, JE Conel, KA Crean, BJ Gaitley, MC Helmlinger, RA Kahn, JV Martonchik, SH Pilorz, and BN Holben (2001) MISR aerosol optical depth retrievals over southern Africa during the SAFARI-2000 dry season campaign. Geophys. Res. Lett. 28: 3127–3130.

    Article  Google Scholar 

  • Diner DJ, JC Beckert, TH Reilly, CJ Bruegge, JE Conel, RA Kahn, JV Martonchik, TP Ackerman, R Davies, SAW Gerstl, HR Gordon, JP Muller, RB Myneni, PJ Sellers, B Pinty, and MM Vertraete (1998) Multi-angle Imaging Spectro Radiometer (MISR) instrument description and experiment overview. IEEE Trans. Geosci. Remote Sens. 36: 1072–1087.

    Article  Google Scholar 

  • Dulac F, S TanrĂ©, G Bergametti, P Buat-MĂ©nard, M Desbois, and D Sutton (1992) Assessment of the African airborne dust mass over the western Mediterranean Sea using Meteosat data. J. Geophys. Res. 97: 2489–2506.

    Google Scholar 

  • Durkee PA, DR Jensen, EE Hindman, and TH Vonder Haar (1986) The relationship between marine aerosols and satellite detected radiance. J. Geophys. Res. 91: 4063–4072.

    Article  Google Scholar 

  • EPA (1999) Guideline for reporting of daily air quality – air quality index (AQI). EPA-454/R-99-010, 25 pp. [Available online at http://www.epa.gov/ttn/ oarpg/t1/memoranda/rg701.pdf.]

  • European Space Agency (ESA) (2004) Reports for mission selection, The six candidate earth explorer missions: EarthCARE. ESA SP-1279(1).

    Google Scholar 

  • Fraser RS (1976) Satellite measurement of mass of Sahara dust in the atmosphere. Appl. Opt. 15: 2471–2479.

    Article  Google Scholar 

  • Fraser RS, YJ Kaufman, and RL Mahoney (1984) Satellite measurements of aerosol mass and transport. Atmos. Environ. 18: 2577–2584.

    Article  Google Scholar 

  • Froidevaux L and A Douglass (2001) Earth Observing System (EOS) aura science data validation plan (available from http://eos-aura.gsfc.nasa.gov/mission/validation.html).

  • Geogdzhayev IV, MI Mishchenko, WB Rossow, B Cairns, and AA Lacis (2002) Global two-channel AVHRR retrievals of aerosol properties over the ocean for the period of NOAA-9 observations and preliminary retrievals using NOAA-7 and NOAA-11 data. J. Atmos Sci. 59: 262–278.

    Article  Google Scholar 

  • Glaccum W, R Lucke, RM Bevilacqua, EP Shettle, JS Hornstein, DT Chen, JD Lumpe, SS Krigman, DJ Debrestian, MD Fromm, F Dalaudier, E Chassefiere, C Deniel, CE Randall, DW Rusch, JJ Olivero, C Brogniez, J Lenoble, and R Kremer (1996) The polar ozone and aerosol measurement instrument. J. Geophys. Res. 101: 14479–14487.

    Article  Google Scholar 

  • Goloub P, D TanrĂ©, JL DeuzĂ©, M Herman, A Marchand, and FM BrĂ©on (1999) Validation of the first algorithm for deriving the aerosol properties over the ocean using the POLDER/ADEOS measurements. IEEE Trans. Geosci. Remote Sens. 37(3): 1586–1596.

    Article  Google Scholar 

  • Gordon HR and AY Morel (1983) Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review. Springer-Verlag, New York.

    Google Scholar 

  • Gordon HR and M Wang (1994) Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm. Appl. Opt. 33: 443–452.

    Article  Google Scholar 

  • Graaf M de and P Stammes (2005) SCIAMACHY absorbing aerosol index – calibration issues and global results from 2002–2004. Atmos. Chem. Phys. 5: 2385–2394, SRef-ID:1680-7324/acp/2005-5-2385.

    Google Scholar 

  • Grant WB, EV Browell, CF Butler, and GD Nowicki (1997) LITE measurements of biomass burning aerosols and comparisons with correlative airborne lidar measurements of multiple scattering in the planetary boundary layer. In: A Ansmann, R Neuber, P Rairoux, and U Wandinger (eds) Advances in Atmospheric Remote Sensing with Lidar. Springer-Verlag, Berlin, 153–156.

    Google Scholar 

  • Grey WMF, PRJ North, and SO Los (2006) Computationally efficient method for retrieving aerosol optical depth from ATSR-2 and AATSR data. Appl. Opt. 45: 2786–2795.

    Article  Google Scholar 

  • Griggs M (1975) Measurements of atmospheric aerosol optical thickness over water using ERTS-1 data. J. Air Pollut. Control. Assoc. 25: 622–626.

    Google Scholar 

  • Gu YY, CS Gardner, PA Castelberg, GC Papen, and MC Kelley (1997) Validation of the Lidar In-space Technology Experiment: Stratospheric temperature and aerosol measurements. Appl. Opt. 36: 5148–5157.

    Article  Google Scholar 

  • Hale GM, and MR Querry (1973) Optical constants of water in the 200 nm to 200 μm wavelength region. Appl. Opt. 12: 555–563.

    Article  Google Scholar 

  • Herman JR, PK Bhartia, O Torres, C Hsu, C Seftor, and E Celarier (1997) Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data. J. Geophys. Res. 102: 16911–16922.

    Article  Google Scholar 

  • Herman M, JL DeuzĂ©, C Devaux, Ph Goloub, FM BrĂ©on, and D TanrĂ© (1997) Remote sensing of aerosols over land surfaces, including polarization measurements; application to some airborne POLDER measurements. J. Geophys. Res. 102: 17039–17049.

    Article  Google Scholar 

  • Hervig ME, T Deshler, and JM Russell III (1998) Aerosol size distributions obtained from HALOE spectral extinction measurements. J. Geophys. Res. 103: 1573–1583.

    Article  Google Scholar 

  • Higurashi A and T Nakajima (1999) Development of a two channel aerosol retrieval algorithm on global scale using NOAA AVHRR. J. Atmos. Sci. 56: 924–941.

    Article  Google Scholar 

  • Higurashi A and T Nakajima (2002) Detection of aerosol types over the East China Sea near Japan from four-channel satellite data. Geophys. Res. Lett. 29(17): 1836, doi:10.1029/2002GL015357.

    Article  Google Scholar 

  • Hoff RM and KB Strawbridge (1997) LITE observations of anthropogenically produced aerosols. In: A Ansmann, R Neuber, P Rairoux, and U Wandinger (eds) Advances in Atmospheric Remote Sensing with Lidar, Springer-Verlag, Berlin, 145–148.

    Google Scholar 

  • Holzer-Popp T, M Schroedter-Homscheidt, H Breitkreuz, L KlĂ¼ser, D Martynenko (2008) Synergistic aerosol retrieval from SCIAMACHY and AATSR onboard ENVISAT. Atmos. Chem. Phys. Discuss. 8: 1–49.

    Google Scholar 

  • Holzer-Popp T, M Schroedter, and G Gesell (2002a) Retrieving aerosol optical depth and type in the boundary layer over land and ocean from simultaneous GOME spectrometer and ATSR-2 radiometer measurements, 1, Method description. J. Geophys. Res. 107(D21): 4578, doi:10.1029/2001JD002013.

    Google Scholar 

  • Holzer-Popp T, M Schroedter, and G Gesell (2002b) Retrieving aerosol optical depth and type in the boundary layer over land and ocean from simultaneous GOME spectrometer and ATSR-2 radiometer measurements, 2, Case study application and validation. J. Geophys. Res. 107(D24): 4770, doi:10.1029/2002JD002777.

    Google Scholar 

  • Hsu NC, JR Herman, PK Bhartia, CJ Seftor, O Torres, AM Thompson, JF Gleason, TF Eck, and BN Holben (1996) Detection of Biomass Burning Smoke from TOMS Measurements. Geophys. Res. Lett. 23(7): 745–748.

    Article  Google Scholar 

  • Hsu NC, JR Herman, O Torres, BN Holben, D TanrĂ©, TF Eck, A Smirnov, B Chatenet, and F Lavenu (1999) Comparison of the TOMS aerosol Index with Sun-photometer aerosol optical thickness: Results and application. J. Geophy. Res. 23: 745–748.

    Google Scholar 

  • Hsu NC, SC Tsay, MD King, and JR Herman (2004) Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens. 42(3): 557–569.

    Article  Google Scholar 

  • Hsu NC, SC Tsay, MD King, and JR Herman (2006) Deep blue retrievals of Asian aerosol properties during ACE-Asia. IEEE Trans. Geosci. Remote Sens. 44: 3180–3195.

    Article  Google Scholar 

  • Hu RM, RV Martin, and TD Fairlie (2007) Global retrieval of columnar aerosol single scattering albedo from space-based observations. J. Geophys. Res. 112(D02204), doi:10.1029/2005JD006832.

    Google Scholar 

  • Huebert BJ, T Bates, PB Russell, G Shi, YJ Kim, K Kawamura, G Carmichael, and T Nakajima (2003) An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts. J. Geophys. Res. 108(D23): 8633, doi:10.1029/2003JD003550.

    Article  Google Scholar 

  • Ignatov A and L Stowe (2000) Physical basis, premises, and self-consistency checks of aerosol retrievals from TRMM VIRS. J. Appl. Meteor. 39(12): 2259–2277.

    Article  Google Scholar 

  • Ignatov A, L Stowe, SM Sakerin, and GK Korotaev (1995a) Validation of the NOAA/NESDIS satellite aerosol product over the North Atlantic in 1989. J. Geophys. Res. 100(D3): 5123–5132.

    Google Scholar 

  • Ignatov A, L Stowe, R Singh, D Kabanov, and I Dergileva (1995b) Validation of NOAA AVHRR aerosol retrievals using sun-photometer measurements from RV Akademik Vernadsky in 1991. Adv. Space Res. 16(10): 95–98.

    Google Scholar 

  • International Global Atmospheric Chemistry Project (IGAC) (1996) Atmospheric aerosols: A new focus of the International Global Atmospheric Chemistry Project. In: PV Hobbs, and BJ Huebert (eds), IGAC Core Project Office, Mass. Inst. Technol., Cambridge.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: S Solomon, D Qin, M Manning, Z Chen, M Marquis, KB Averyt, M Tignor, and HL Miller (eds), Cambridge University Press, Cambridge, UK and New York, USA, 996.

    Google Scholar 

  • Jacobowitz H, L Stowe, G Ohring, A Heidinger, K Knapp, and NR Nalli (2003) The Advanced Very High Resolution Radiometer Pathfinder Atmosphere (PATMOS) climate 25 dataset: A resource for climate research. Bull. Am. Meteor. Soc. 84: 785–793.

    Article  Google Scholar 

  • Jeong MJ, and Z Li (2005) Quality, compatibility, and synergy analyses of global aerosol products derived from the advanced very high resolution radiometer and Total Ozone Mapping Spectrometer. J. Geophys. Res. 110, D10S08, doi:10.1029/2004JD004647.

    Article  Google Scholar 

  • Jeong MJ, Z Li, DA Chu, and SC Tsay (2005). Quality and compatibility analyses of global aerosol products derived from the advanced very high resolution radiometer and Moderate Resolution Imaging Spectroradiometer, J. Geophys. Res. 110, D10S09, doi:10.1029/2004JD004648.

    Article  Google Scholar 

  • Josset D, J Pelon, A Protat, and C Flamant (2008) New approach to determine aerosol optical depth from combined CALIPSO and CloudSat ocean surface echoes. Geophys. Res. Lett. 35, L10805, doi:10.1029/2008GL033442.

    Article  Google Scholar 

  • Kahn RA, BJ Gaitley, JV Martonchik, DJ Diner, KA Crean, and B Holben (2005) Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations. J. Geophys. Res. 110, D10S04, doi:10.1029/2004JD004706.

    Article  Google Scholar 

  • Kaufman YJ and RS Fraser (1983) Light extinction by aerosols during summer air pollution, J. Appl. Meteorol. 22: 1694–1706.

    Article  Google Scholar 

  • Kaufman YJ and JH Joseph (1982) Determination of Surface Albedos and Aerosol Extinction Characteristics from Satellite Imagery. J. Geophys. Res. 87(C2): 1287–1299.

    Article  Google Scholar 

  • Kaufman YJ, D TanrĂ©, and O Boucher (2002) A satellite view of aerosols in the climate system. Nature. 419: 215–223.

    Article  Google Scholar 

  • Kaufman YJ, D TanrĂ©, LA Remer, EF Vermote, A Chu, and BN Holben (1997) Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res. 102(D14): 17051–17067.

    Article  Google Scholar 

  • Kent GS, CR Trepte, KM Skeens, and DM Winker (1998) LITE and SAGE II measurements of aerosols in the southern hemisphere upper troposphere. J. Geophys. Res. 103(D15): 19111–19127.

    Article  Google Scholar 

  • Kim J, J Lee, HC Lee, A Higurashi, T Takemura, and CH Song (2007) Consistency of the aerosol type classification from satellite remote sensing during the Atmospheric Brown Cloud–East Asia Regional Experiment campaign. J. Geophys. Res. 112, D22S33, doi:10.1029/2006JD008201.

    Article  Google Scholar 

  • King MD, YJ Kaufman, D TanrĂ©, and T Nakajima (1999) Remote sensing of tropospheric aerosols from space: Past, present, and future. Bull. Am. Meteorol. Soc. 80: 2229–2259.

    Article  Google Scholar 

  • Knapp KR, R Froulin, S Kondragunta, and AI Prados (2005) Towards aerosol optical depth retrievals over land from GOES visible radiances: Determining surface reflectance. Int. J. Remote Sens. 26(18): 4097–4116.

    Article  Google Scholar 

  • Knapp KR and LL Stowe (2002) Evaluating the potential for retrieving aerosol optical depth over land from AVHRR pathfinder atmosphere data. J. Atmos. Sci. 59(3): 279–293.

    Article  Google Scholar 

  • Knapp KR, TH Vonder Harr, and YJ Kaufman (2002) Aerosol optical depth retrieval from GOES-8: Uncertainty study and retrieval validation over South America. J. Geophys. Res. 107(D7): 4055, doi:10.1029/2001JD000505.

    Article  Google Scholar 

  • Knapp, KR (2002) Quantification of aerosol signal in GOES 8 visible imagery over the United States. J. Geophys. Res. 107(D20): 4426, doi:10.1029/2001JD002001.

    Article  Google Scholar 

  • Kokhanovsky AA, FM Breon, A Cacciari, E Carboni, D Diner, WD Nicolantonio, RG Grainger, WMF Grey, R Höller, KH Lee, Z Li, PRJ North, A Sayer, G Thomas, W von Hoyningen-Huene (2007) Aerosol remote sensing over land: Satellite retrievals using different algorithms and instruments. Atmos. Res. 85: 372–394.

    Article  Google Scholar 

  • Kokhanovsky AA and G de Leeuw (2009) Satellite aerosol remote sensing over land, Berlin, Springer-Praxis.

    Google Scholar 

  • Lazarev AI, VV Kovalenok, and SV Avakyan (1987) Investigation of Earth from manned spacecraft, Leningrad, Gidrometeoizdat.

    Google Scholar 

  • Lee KH, YJ Kim, and W. von Hoyningen-Huene (2004) Estimation of regional aerosol optical thickness from satellite observations during the 2001 ACE-Asia IOP. J. Geophys. Res. 109 D19S16, doi:10.1029/2003JD004126

    Article  Google Scholar 

  • Lee KH, JE Kim, YJ Kim, J Kim, and W von Hoyningen-Huene (2005) Impact of the smoke aerosol from Russian forest fires on the atmospheric environment over Korea during may 2003. Atmos. Environ. 39(2): 85–99, doi:10.1016/j.atmosenv.2004.09.032.

    Article  Google Scholar 

  • Lee KH, YJ Kim, and MJ Kim (2006a) Characteristics of aerosol observed during two severe haze events over Korea in June and October 2004. Atmos. Environ. 40: 5146–5155. doi:10.1016/j.atmosenv.2006.03.050.

    Google Scholar 

  • Lee KH, YJ Kim, W von Hoyningen-Huene, and JP Burrows (2006b) Influence of land surface effects on MODIS aerosol retrieval using the BAER method over Korea. Int. J. Remot. Sens. 27(14): 2813–2830.

    Google Scholar 

  • Lee KH, YJ Kim, W von Hoyningen-Huene, and JP Burrows (2007a) Spatio-Temporal Variability of Atmospheric Aerosol from MODIS data over Northeast Asia in 2004. Atmos. Environ. 41(19): 3959–3973. doi:10.1016/j.atmosenv.2007.01.048.

    Google Scholar 

  • Lee DH, KH Lee, and YJ Kim (2006c) Application of MODIS aerosol data for aerosol type classification. Korean J. Remot Sens. 22(6): 495–505 (In Korean).

    Google Scholar 

  • Lee KH, Z Li, MS Wong, J Xin, Y Wang, WM Hao, and F Zhao (2007b) Aerosol single scattering albedo estimated across China from a combination of ground and satellite measurements, J. Geophys. Res. 112(D22S15), doi:10.1029/2007JD009077.

    Google Scholar 

  • Leroy M, JL DeuzĂ©, FM BrĂ©on, O Hautecoeur, M Herman, JC Buriez, D TanrĂ©, S Bouffies, P Chazette, and JL Roujean (1997) Retrieval of atmospheric properties and surface bidirectional reflectances over land from POLDER/ADEOS. J. Geophys. Res. 102: 17023–17038.

    Article  Google Scholar 

  • Levelt P, C Camy-Perret, H Eskes, M van Weele, D Hauglustaine, I Aben, D TanrĂ©, L Lavanant, C Clerbaux, M de Maziere, R Jogma, M Dobber, P Veefkind, J Leon, and P Coheur (2006) A mission for TRopospheric composition and Air Quality (TRAQ), American Geophysical Union, Fall Meeting 2006, abstract #A31B-0888, 2006AGUFM.A31B0888L.

    Google Scholar 

  • Levy RC, LA Remer, and O Dubovik (2007b) Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land, J. Geophys. Res. 112(D13210), doi:10.1029/2006JD007815.

    Google Scholar 

  • Levy RC, LA Remer, JV Martins, YJ Kaufman, A Plana-Fattori, J Redemann, PB Russell, and B Wenny (2005) Evaluation of the MODIS aerosol retrievals over ocean and land during CLAMS. J. Atmos. Sci. 62: 974–992.

    Article  Google Scholar 

  • Levy RC, LA Remer, S Mattoo, EF Vermote, and YJ Kaufman (2007a) A second-generation algorithm for retrieving aerosol properties over land from MODIS spectral reflectance. J. Geophys. Res. 112(D13211).

    Google Scholar 

  • Li Z, A Khananian, R Fraser, and J Cihlar (2001) Automatic detection of fire smoke using artificial neural networks and threshold approaches applied to AVHRR imagery. IEEE Trans. Geosci. Remote Sens. 39: 1859–1870.

    Article  Google Scholar 

  • Li Z, F Niu, KH Lee, J Xin, WM Hao, B Nordgren, Y Wang, and P Wang (2007) Validation and understanding of MODIS aerosol products using ground-based measurements from the handheld sunphotometer network in China. J. Geophy. Res. 112(D22S07), doi:10.1029/2007JD008479.

    Google Scholar 

  • Liu Y, JA Sarnat, BA Coull, P Koutrakis, and DJ Jacob (2004) Validation of Multiangle Imaging Spectroradiometer (MISR) aerosol optical thickness measurements using Aerosol Robotic Network (AERONET) observations over the contiguous United States. J. Geophys. Res. 109(D06205), doi:10.1029/2003JD003981.

    Article  Google Scholar 

  • Martonchik JV and DJ Diner (1992) Retrieval of aerosol and land surface optical properties from multi-angle satellite imagery. IEEE Trans. Geosci. Remote Sens. 30: 223–230.

    Article  Google Scholar 

  • Martonchik JV, DJ Diner, KA Crean, and MA Bull (2002) Regional aerosol retrieval results from MISR. IEEE Trans. Geosci. Remote Sens. 40: 1520–1531.

    Article  Google Scholar 

  • Martonchik JV, DJ Diner, RA Kahn, TP Ackerman, MM Verstraete, B Pinty, and HR Gordon (1998) Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging. IEEE Trans. Geosci. Remote Sens. 36: 1212–1227.

    Article  Google Scholar 

  • Martonchik JV, DJ Diner, R Kahn, B Gaitley, and BN Holben (2004) Comparison of MISR and AERONET aerosol optical depths over desert sites. Geophys. Res. Lett. 31(L16102), doi:10.1029/2004GL019807.

    Article  Google Scholar 

  • McCormick MP, P Hamill, TJ Pepin, WP Chu, TJ Swissler, and LR McMaster (1979) Satellite studies of the stratospheric aerosol. Bull. Am. Meteorol. Soc. 60(9):1038–1046.

    Article  Google Scholar 

  • McCormick MP, DM Winker, EV Browell, JA Coakley, CS Gardner, RM Hoff, GS Kent, SH Melfi, RT Menzies, CMR Menzies, DA Randall, and JA Reagan (1993) Scientific investigations planned for the Lidar In-space Technology Experiment (LITE). Bull. Am. Meteorol. Soc. 74(2): 205–214.

    Article  Google Scholar 

  • McPeters, RD, PK Bhartia, AJ Krueger, JR Herman, and O Torres (1996) Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide, NASA Reference Publication.

    Google Scholar 

  • Mekler Y, H Quenzel, G Ohring, and I Marcus (1977) Relative atmospheric aerosol content from ERTS observations. J. Geophys. Res. 82: 967–972.

    Article  Google Scholar 

  • Mi W, Z Li, X Xia, B Holben, R Levy, F Zhao, H Chen, and M Cribb (2007) Evaluation of the Moderate Resolution Imaging Spectroradiometer aerosol products at two Aerosol Robotic Network stations in China. J. Geophys. Res. 112(D22S08), doi:10.1029/2007JD008474.

    Article  Google Scholar 

  • Mishchenko MI, B Cairns, G Kopp, CF Schueler, BA Fafaul, JE Hansen, RJ Hooker, T Itchkawich, HB Maring, and LD Travis (2007c). Precise and accurate monitoring of terrestrial aerosols and total solar irradiance: Introducing the Glory mission. Bull. Am. Meteorol. Soc. 88: 677–691, doi:10.1175/BAMS-88-5-677.

    Google Scholar 

  • Mishchenko MI, IV Geogdzhayev, B Cairns, WB Rossow, and AA Lacis (1999) Aerosol retrievals over the ocean by use of channels1 and 2 AVHRR data: Sensitivity analysis and Preliminary results. Appl. Opt. 38: 7325–7341.

    Article  Google Scholar 

  • Mishchenko MI, IV Geogdzhayev, WB Rossow, B Cairns, BE Carlson, AA Lacis, L Liu, and LD Travis (2007a) Long-term satellite record reveals likely recent aerosol trend. Science. 315(1543), doi:10.1126/science.1136709.

    Google Scholar 

  • Mishchenko MI and IV Geogdzhayev (2007b) Satellite remote sensing reveals regional tropospheric aerosol trends. Opt. Express. 15: 7423–7438.

    Google Scholar 

  • Moulin C, F Guillard, F. Dulac, and CE Lambert (1997) Long-term daily monitoring of Saharan dust load over marine areas using Meteosat ISCCP-B2 data, Part I: Methodology and preliminary results for the Western Mediterranean. J. Geophys. Res. 102: 16947–16958.

    Article  Google Scholar 

  • Murakami H, K Sasaoka, K Hosoda, H Fukushima, M Toarani, R Frouin, BG Mitchell, M Kahru, PY Deschamps, D Clark, S Flora, M Kishino, S Saitoh, I Asanuma, A Tanaka, H Sasaki, K Yokouchi, Y Kiyomoto, H Saito, C Dupouy, A Siripong, S Matsumura, and J Ishizaka (2006) Validation of ADEOS-II GLI ocean color products using in-situ observations. J. Oceanogr. 62: 373–393.

    Article  Google Scholar 

  • Myhre G, F Stordal, M Johnsrud, DJ Diner, IV Geogdzhayev, JM Haywood, BN Holben, T Holzer-Popp, A Ignatov, R Kahn, YJ Kaufman, N Loeb, J Martonchik, MI Mishchenko, NR Nalli, LA Remer, M Schroedter-Homscheidt, D TanrĂ©, O Torres, M Wang (2005) Intercomparison of satellite retrieved aerosol optical depth over ocean during the period September 1997 to December 2000, Atmos. Chem. Phys. 5: 1697–1719.

    Article  Google Scholar 

  • Myhre G, F Stordal, M Johnsrud, A Ignatov, MI Mishchenko, IV Geogdzhayev, D TanrĂ©, JL DeuzĂ©, P Goloub, T Nakajima, A Higurashi, O Torres, and BN Holben (2004) Intercomparison of satellite retrieved aerosol optical depth over ocean. J. Atmos. Sci. 61: 499–513.

    Article  Google Scholar 

  • Nicolantonio WD, A Cacciari, S Scarpanti, G Ballista, E Morisi, and R Guzzi (2006) SCIAMACHY TOA reflectance correction effects on aerosol optical depth retrieval, Proc. of the First ‘Atmospheric Science Conference’, ESRIN, Frascati, Italy 8–12 May 2006 (ESA SP-628, July 2006)

    Google Scholar 

  • Okada Y, S Mukai, and I Sano (2001) Neural network approach for aerosol retrieval. IGARSS. 4: 1716–1718.

    Google Scholar 

  • Palm S, W Hart, D Hlavka, EJ Welton, A Mahesh, and J Spinhirne (2002) GLAS atmospheric data products. GLAS algorithm theoretical basis document (ATBD). Version 4.2. Lanham, MD: Science Systems and Applications, Inc.

    Google Scholar 

  • Pepin TJ and MP McCormick (1976) Stratospheric Aerosol Measurement – Experiment MA-007, Apollo-Soyuz Test Project, Preliminary Science Report, NASA-JSC, TM-X-58173: 9.1–9.8.

    Google Scholar 

  • Popp C, A Hauser, N Foppa, and S Wunderle (2007) Remote sensing of aerosol optical depth over central Europe from MSG-SEVIRI data and accuracy assessment with ground-based AERONET measurements. J. Geophys. Res. 112(D24S11), doi:10.1029/2007JD008423.

    Google Scholar 

  • Powell KA, CR Trepte, and GS Kent (1997) Observation of Saharan dust by LITE. In: A Ansmann, R Neuber, P Rairoux, and U Wandinger (eds). Advances in Atmospheric Remote Sensing with Lidar, Springer-Verlag, Berlin, 149–152.

    Google Scholar 

  • Prados AI, S Kondragunta, P Ciren, and KR Knapp (2007) GOES Aerosol/Smoke Product (GASP) over North America: Comparisons to AERONET and MODIS observations, J. Geophys. Res. 112, D15201, doi:10.1029/2006JD007968.

    Google Scholar 

  • Raes F, T Bates, F McGovern, and M VanLiedekerke (2000) The 2nd Aerosol Characterization Experiment (ACE-2): General overview and main results. Tellus. 52:111–125.

    Article  Google Scholar 

  • Randall CE, DW Rusch, JJ Olivero, RM Bevilacqua, LR Poole, JD Lumpe, MD Fromm, KW Hoppel, JS Hornstein, and EP Shettle (1996) An overview of POAM II aerosol measurements at 1.06 m. Geophys. Res. Lett. 23: 3195–3198.

    Article  Google Scholar 

  • Rao CRN, EP McClain, and LL Stowe (1989) Remote sensing of aerosols over the oceans using AVHRR data theory, practice, and applications. Int. J. Remote Sens. 10(4–5): 743–749.

    Article  Google Scholar 

  • Remer LA, YJ Kaufman, D TanrĂ©, S Mattoo, DA Chu, JV Martins, RR Li, C Ichoku, RC Levy, RG Kleidman, TF Eck, E Vermote, BN Holben (2005) The MODIS aerosol algorithm, products and validation, J. Atmos. Sci. 62: 947–973.

    Article  Google Scholar 

  • Remer L, D TanrĂ©, and YJ Kaufman (2006) Algorithm for Remote Sensing of Tropospheric Aerosols from MODIS: Collection 5, Algorithm Theoretical Basis Document, http://modis.gsfc.nasa. 5 gov/data/atbd/atmos atbd.php.

  • Rossow WB, AW Walker, DE Beuschel, and MD Roiter (1996) International Satellite Cloud Climatology Project ∼ ISCCP documentation of new cloud data sets, World Climate Research Programme Rep. WMOyTD 737 ∼ World Meteorological Organization, Geneva, Switzerland.

    Google Scholar 

  • Russell III JM, LL Gordley, JH Park, SR Drayson, WD Hesketh, RJ Cicerone, AF Tuck, JE Frederick, JE Harries, and PJ Crutzen (1993) The halogen occulation experiment. J. Geophys. Res. 98(D6): 10,777–10,797.

    Article  Google Scholar 

  • Russell PB, PV Hobbs, and LL Stowe (1999) Aerosol properties and radiative effects in the United States East Coast haze plume: An overview of the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). J. Geophys. Res. 104(D2): 2213–2222.

    Article  Google Scholar 

  • Smith RC and KS Baker (1981) Optical properties of the clearest natural waters. Appl. Opt. 20: 177–184.

    Article  Google Scholar 

  • Spinhirne JD, SP Palm, WD Hart, DL Hlavka, and EJ Welton (2005b) Cloud and aerosol measurements from GLAS: Overview and initial results. Geophys. Res. Lett. 32(L22S03), doi:10.1029/2005GL023507.

    Google Scholar 

  • Spinhirne JD, SP Palm, DL Hlavka, WD Hart, EJ Welton (2005a) Global aerosol distribution from the GLAS polar orbiting lidar instrument. Remote Sensing of Atmospheric Aerosols, 2005. IEEE Workshop on aerosols. 2–8, DOI: 10.1109/AERSOL.2005.1494140.

    Google Scholar 

  • Stowe LL (1991) Cloud and aerosol products at NOAA/NESDIS. Paleogeogr. Paleoclimatol. Paleoecol. 90: 25–32.

    Google Scholar 

  • Stowe LL, AM Ignatov, and RR Singh (1997) Development, validation, and potential enhancements to the second-generation operational aerosol product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration. J. Geophys. Res. 102: 16923–16934.

    Article  Google Scholar 

  • Stowe LL, H Jacobowitz, G Ohring, K Knapp, and N Nalli (2002) The Advanced Very High Resolution Pathfinder Atmosphere (PATMOS) climate dataset: Initial analysis and evaluations. J. Climate. 15: 1243–1260.

    Article  Google Scholar 

  • Tang J, Y Xue, T Yuc, and YN Guan (2005) Aerosol optical thickness determination by exploiting the synergy of TERRA and AQUA MODIS. Remot Sens. Environ. 94: 327–34.

    Article  Google Scholar 

  • TanrĂ© D, YJ Kaufman, M Herman, and S Mattoo (1997) Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. J. Geophys. Res. 102(D14): 16971–16988.

    Article  Google Scholar 

  • TanrĂ© D, LA Remer, YJ Kaufman, S Mattoo, PV Hobbs, JM Livingston, PB Russell, and A Smirnov (1999) Retrieval of aerosol optical thickness and size distribution over ocean from the MODIS airborne simulator during TARFOX. J. Geophys. Res. 104(D2): 2261–2278.

    Article  Google Scholar 

  • Thomason LW, LR Poole, and CE Randall (2007) SAGE III aerosol extinction validation in the Arctic winter: Comparisons with SAGE II and POAM III. Atmos. Chem. Phys. 7: 1423–1433.

    Google Scholar 

  • Torres O, PK Bhartia, JR Herman, Z Ahmad, and J Gleason (1998) Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis. J. Geophys. Res. 103: 17099.

    Article  Google Scholar 

  • Torres O, PK Bhartia, JR Herman, A Sinyuk, and B Holben (2002) A long term record of aerosol optical thickness from TOMS observations and comparison to AERONET measurements. J. Atm. Sci. 59:398–413.

    Article  Google Scholar 

  • Torres O, PK Bhartia, A Sinyuk, EJ Welton, and B Holben (2005) Total Ozone Mapping Spectrometer measurements of aerosol absorption from space: Comparison to SAFARI 2000 ground-based observations. J. Geophys. Res. 110(D10S18), doi:10.1029/2004JD004611.

    Article  Google Scholar 

  • Trijonis J, R Charlson, R Husar, WC Malm, M Pitchford, W White (1991) Visibility: Existing and historical conditions – causes and effects. In: Acid Deposition: State of Science and Technology. Report 24. National Acid Precipitation Assessment Program.

    Google Scholar 

  • Vaughan M, S Young, D Winker, K Powell, A Omar, Z Liu, Y Hu, and C Hostetler (2004) Fully automated analysis of space-based lidar data: An overview of the CALIPSO retrieval algorithms and data products. Proc. SPIE. 5575: 16–30.

    Article  Google Scholar 

  • Veefkind JP, G de Leeuw, PA Durkee, PB Russell, PV Hobbs, and JM Livingston (1999) Aerosol optical depth retrieval using ATSR-2 and AVHRR data during TARFOX. J. Geophys. Res. 104(D2): 2253–2260.

    Article  Google Scholar 

  • Veefkind, JP and G de Leeuw (1998) A new aerosol retrieval algorithm to determine the spectral aerosol optical depth from satellite radiometer measurements. J. Aerosol Sci. 29: 1237–1248.

    Article  Google Scholar 

  • Vidot J, R Santer, and O Aznay (2008) Evaluation of the MERIS aerosol product over land with AERONET. Atmos. Chem. Phys. Discuss. 8: 3721–3759

    Article  Google Scholar 

  • Viollier M, D TanrĂ©, and P Deschamps (1980) An algorithm for remote sensing of water color from space. Boundary Layer Meteorol. 18: 247–267.

    Article  Google Scholar 

  • von Hoyningen-Huene W, M Freitag, and JP Burrows (2003) Retrieval of aerosol optical thickness over land surfaces from top-of-atmospher radiance. J. Geophys. Res. 108: 4260, doi:10.1029/2001JD002018.

    Article  Google Scholar 

  • von Hoyningen-Huene W, AA Kokhanovsky, JP Burrows, V Bruniquel-Pinel, P Regner, F Baret (2006) Simultaneous determination of aerosol and surface chracteristics from MERIS top-of-atmosphere reflectance. Adv. Space Res. 37: 2172–2177.

    Article  Google Scholar 

  • von Hoyningen-Huene W, AA Kokhanovsky, M Wuttke, M Buchwitz, S Noel, K Gerilowski, JP Burrows, B Latter, R Siddans, and BJ Kerridge (2005) Validation of SCIAMACHY top-of-atmosphere reflectance for aerosol remote sensing using MERIS L1 data, Atmos. Chem. Phys. Discuss. 6: 673–699.

    Article  Google Scholar 

  • Wang J, SA Christopher, F Brechtel, J Kim, B Schmid, J Redemann, PB Russell, P Quinn, and BN Holben (2003) Geostationary satellite retrievals of aerosol optical thickness during ACE-Asia. J. Geophys. Res. 108(D23): 8657, doi:10.1029/2003JD003580.

    Article  Google Scholar 

  • Wang M, KD Knobelspiesse, and CR McClain (2005) Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products. J. Geophys. Res. 110(D10S06), doi:10.1029/2004JD004950.

    Article  Google Scholar 

  • Winker DM, RH Couch, and MP McCormick (1996) An overview of LITE: NASA’s Lidar In-space Technology Experiment. Proc. IEEE. 84: 164–180.

    Article  Google Scholar 

  • Zasetsky AY and JJ Sloan (2005) Monte Carlo approach to identification of the composition of stratospheric aerosols from infrared solar occultation measurements. Appl. Opt. 44: 4785–4790.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwon H. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lee, K.H., Li, Z., Kim, Y.J., Kokhanovsky, A. (2009). Atmospheric Aerosol Monitoring from Satellite Observations: A History of Three Decades. In: Kim, Y.J., Platt, U., Gu, M.B., Iwahashi, H. (eds) Atmospheric and Biological Environmental Monitoring. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9674-7_2

Download citation

Publish with us

Policies and ethics