Skip to main content

Geolocating Fish Using Hidden Markov Models and Data Storage Tags

  • Chapter
Tagging and Tracking of Marine Animals with Electronic Devices

Abstract

Geolocation of fish based on data from archival tags typically requires a statistical analysis to reduce the effect of measurement errors. In this paper we present a novel technique for this analysis, one based on Hidden Markov Models (HMM’s). We assume that the actual path of the fish is generated by a biased random walk. The HMM methodology produces, for each time step, the probability that the fish resides in each grid cell. Because there is no Monte Carlo step in our technique, we are able to estimate parameters within the likelihood framework. The method does not require the distribution to be Gaussian or belong to any other of the usual families of distributions and can thus address constraints from shorelines and other nonlinear effects; the method can and does produce bimodal distributions. We discuss merits and limitations of the method, and perspectives for the more general problem of inference in state-space models of animals. The technique can be applied to geolocation based on light, on tidal patterns, or measurement of other variables that vary with space. We illustrate the method through application to a simulated data set where geolocation relies on depth data exclusively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ådlandsvik, B., G. Huse, and K. Michaelsen (2007). Introducing a method for extracting horizontal migration patterns from data storage tags. Hydrobiologia 582: 187–197.

    Article  Google Scholar 

  • Andersen, K. H., A. Nielsen, U. H. Thygesen, H. H. Hinrichsen, and S. Neuenfeldt (2007). Using the particle filter to geolocate atlantic cod (Gadus morhua) in the Baltic Sea, with special emphasis on determining uncertainty. Can. J. Fish. Aquat. Sci. 64(4): 618–627.

    Article  Google Scholar 

  • Bertsekas, D. P. (1995). Dynamic Programming and Optimal Control, Vol. 1–2. Athena Scientific, Belmont, Mass.

    Google Scholar 

  • Brockwell, P. and R. Davis (1987). Time Series: Data Analysis and Theory. New York.

    Google Scholar 

  • Cappé, O., E. Moulines, and T. Ryden (2005). Inference in Hidden Markov Models. Springer.

    Google Scholar 

  • Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press.

    Google Scholar 

  • Hunter, E., J. N. Aldridge, J. D. Metcalfe, and G. P. Arnold (2003). Geolocation of free-ranging fish on the european continental shelf as determined from environmental variables. Mar. Biol. 142: 601–609.

    Google Scholar 

  • Hunter, E., J. D. Metcalfe, B. H. Holford, and G. P. Arnold (2004). Geolocation of free-ranging fish on the european continental shelf as determined from environmental variables ii. reconstruction of plaice ground tracks. Mar. Biol. 144: 787–798.

    Article  Google Scholar 

  • Jonsen, I. D., J. M. Flemming, and R. A. Myers (2005). Robust state-space modeling of animal movement data. Ecology 86(11): 2874–2880.

    Article  Google Scholar 

  • Jonsen, I. D., R. A. Myers, and J. M. Flemming (2003). Meta-analysis of animal movement using state-space models. Ecology 84(11): 3055–3065.

    Article  Google Scholar 

  • Metcalfe, J. D. and G. P Arnold (1997). Tracking fish with electronic tags. Nature 387: 665–666.

    Article  CAS  Google Scholar 

  • Morales, J. M., D. T. Haydon, J. Frair, K. E. Holsinger, and J. M. Fryxell (2004). Extracting more out of relocation data: Building movement models as mixtures of random walks. Ecology 85(9): 2436–2445.

    Article  Google Scholar 

  • Nielsen, A. and J. R. Sibert (2007). State-space model for light-based tracking of marine animals. Can. J. Fish. Aquat. Sci. 64: 1055–1068.

    Article  Google Scholar 

  • Okubo, A. (1980). Diffusion and Ecological Problems: Mathematical Models. Springer.

    Google Scholar 

  • Patterson, T.A., L. Thomas, C. Wilcox, O. Ovaskainen, and J. Mathhiopoulos (2008). State-space models of individual animal movement. Tree 23(2): 87–94.

    PubMed  Google Scholar 

  • Pedersen, M. W. (2007). Hidden markov models for geolocation of fish. Master’s thesis, Informatics and Mathematical Modelling, Technical University of Denmark.

    Google Scholar 

  • Pedersen, M. W., D. Righton, U. H. Thygesen, K.H. Andersen, and H. Madsen (2008). Geolocation of north sea cod using hidden markov models and behavioural switching. Can. J. Fish. Aquat. Sci. 65: 2367–2377.

    Google Scholar 

  • Righton, D., O. S. Kjesbu, and J. D. Metcalfe (2006). A field and experimental evaluation of the effect of data storage tags on the growth of cod. J. Fish Biol. 68: 385–400.

    Article  Google Scholar 

  • Ristic, B., S. Arulampalam, and N. Gordon (2004). Beyond the Kalman Filter. Particle Filters for Tracking Applications. Artech House.

    Google Scholar 

  • Royer, F., J.-M. Fromentin, and P. Gaspar (2005). A state-space model to derive bluefin tuna movement and habitat from archival tags. Oikos 109(3): 473–484.

    Article  Google Scholar 

  • Shaffer, S. A., Y. Tremblay, J. A. Awkerman, R. W. Henry, S. L. H. Teo, D. J. Anderson, D. A. Croll, B. A. Block, and D. P. Costa (2005). Comparison of light-and sst-based geolocation with satellite telemetry in free-ranging albatrosses. Mar. Biol. 147(4): 833–843.

    Article  Google Scholar 

  • Sibert, J. R., J. Hampton, D. A. Fournier, and P. J. Bills (1999). An advection-diffusion-reaction model for the estimation of fish movement parameters from tagging data, with application to skipjack tuna (Katsuwonus pelamis). Can. J. Fish. Aquat. Sci. 56: 925–938.

    Article  Google Scholar 

  • Sibert, J. R., M. K. Musyl, and R. W. Brill (2003). Horizontal movements of bigeye tuna (Thunnus obesus) near hawaii determined by Kalman filter analysis of archival tagging data. Fish. Oceanogr. 12: 141–151.

    Article  Google Scholar 

  • Thygesen, U. H. and A. Nielsen (2009). Lessons from a prototype geolocation problem. In J. L. Nielsen et al. (eds.), Tagging and Tracking of Marine Animals with Electronic Devices, Reviews: Methods and Technologies in Fish Biology and Fisheries 9, DOI 10.1007/978-1-4020-9640-2. Springer.

    Google Scholar 

  • Versteeg, H. K. and W. Malalasekera (1995). An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Prentice Hall, Harlow, England.

    Google Scholar 

  • Viterbi, A. J. (2006). A personal history of the Viterbi Algorithm. IEEE Signal Processing Magazine 23(4): 120–142.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uffe Høgsbro Thygesen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Thygesen, U.H., Pedersen, M.W., Madsen, H. (2009). Geolocating Fish Using Hidden Markov Models and Data Storage Tags. In: Nielsen, J.L., Arrizabalaga, H., Fragoso, N., Hobday, A., Lutcavage, M., Sibert, J. (eds) Tagging and Tracking of Marine Animals with Electronic Devices. Reviews: Methods and Technologies in Fish Biology and Fisheries, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9640-2_17

Download citation

Publish with us

Policies and ethics