Skip to main content

Environments Providing Favourable Conditions for the Multiplication and Transmission of Mycobacteria

  • Chapter
  • First Online:
The Ecology of Mycobacteria: Impact on Animal's and Human's Health

As a result of a number of systematic surveys to detect or enumerate ESM and PPM in water and soil throughout the world, it has been possible to identify those habitats that harbour the highest numbers of ESM and PPM. It would be expected that those sources should be linked to the highest frequencies of disease, provided that there are routes for human or animal transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbes C, Parent LE, Karam A (1993) Ammonia Sorption by Peat and N-Fractionation in Some Peat-Ammonia Systems. Fertilizer Res. 36:249–257

    CAS  Google Scholar 

  • Abdullin K, Morozovskii KK, Kiriliuk DA, Pavlova IP (1969) [Survival of avian tuberculosis mycobacteria in feed grain]. Veterinariia. 46:102–105

    Google Scholar 

  • Ancusa M, Terbancea W (1970) [Occurrence of tuberculosis bacteria in streams]. Z. Gesamte Hyg. 16:913–916

    PubMed  CAS  Google Scholar 

  • Andersen AA (1958) New sampler for the collection, sizing, and enumeration of viable airborne particles. J. Bacteriol. 76:471–484

    PubMed  CAS  Google Scholar 

  • Andersson MA, Nikulin M, Koljalg U, Andersson MC, Rainey F, Reijula K, Hintikka EL, SalkinojaSalonen M (1997) Bacteria, molds, and toxins in water-damaged building materials. Appl. Environ. Microbiol. 63:387–393

    PubMed  CAS  Google Scholar 

  • Argueta C, Yoder S, Holtzman AE, Aronson TW, Glover N, Berlin OG, Stelma GN, Jr., Froman S, Tomasek P (2000) Isolation and identification of nontuberculous mycobacteria from foods as possible exposure sources. J. Food Prot. 63:930–933

    PubMed  CAS  Google Scholar 

  • Asadi-Pooya AA, Pnjehshahin MR, Beheshti S (2003) The antimycobacterial effect of honey: an in vitro study. Riv. Biol. 96:491–495

    PubMed  Google Scholar 

  • Aubuchon C, Hill JJ, Jr., Graham DR (1986) Atypical mycobacterial infection of soft tissue associated with use of a hot tub. A case report. J. Bone Joint Surg. Am. 68:766–768

    CAS  Google Scholar 

  • Ayele WY, Neill SD, Zinsstag J, Weiss MG, Pavlik I (2004) Bovine tuberculosis: an old disease but a new threat to Africa. Int. J. Tuberc. Lung Dis. 8:924–937

    PubMed  CAS  Google Scholar 

  • Baker MG, Lopez LD, Cannon MC, de Lisle GW, Collins DM (2006) Continuing Mycobacterium bovis transmission from animals to humans in New Zealand. Epidemiol. Infect. 134:1068–1073

    PubMed  CAS  Google Scholar 

  • Bartos M, Hlozek P, Svastova P, Dvorska L, Bull T, Matlova L, Parmova I, Kuhn I, Stubbs J, Moravkova M, Kintr J, Beran V, Melicharek I, Ocepek M, Pavlik I (2006) Identification of members of Mycobacterium avium species by Accu-Probes, serotyping, and single IS900, IS901, IS1245 and IS901-flanking region PCR with internal standards. J. Microbiol. Methods. 64:333–345

    PubMed  CAS  Google Scholar 

  • Beattie VE, Walker N, Sneddon IA (1998) Preference testing of substrates by growing pigs. Anim. Welfare. 7:27–34

    Google Scholar 

  • Bedrynska-Dobek M (1966) Investigations of sewage sediment and water from the pond Starorzecze-Naramowice for the presence of tubercle bacilli. Pol. Med. J. 5:1058–1064

    PubMed  CAS  Google Scholar 

  • Beer AM, Grozeva A, Sagorchev P, Lukanov J (2003a) Comparative study of the thermal properties of mud and peat solutions applied in clinical practice. Biomed. Tech. (Berl). 48:301–305

    CAS  Google Scholar 

  • Beer AM, Junginger HE, Lukanov J, Sagorchev P (2003b) Evaluation of the permeation of peat substances through human skin in vitro. Int. J. Pharm. 253:169–175

    PubMed  CAS  Google Scholar 

  • Beer AM, Lukanov J, Sagorchev P (2000) The influence of fulvic and ulmic acids from peat, on the spontaneous contractile activity of smooth muscles. Phytomedicine. 7:407–415

    PubMed  CAS  Google Scholar 

  • Beer AM, Sagorchev P, Lukanov J (2002) Isolation of biologically active fractions from the water soluble components of fulvic and ulmic acids from peat. Phytomedicine. 9: 659–666

    PubMed  CAS  Google Scholar 

  • Beerwerth W (1971) [Mycobacterial soil flora in the course of the seasons]. Prax. Pneumol. 25:661–668

    PubMed  CAS  Google Scholar 

  • Beerwerth W (1973) [The use of natural substrates as culture media for mycobacteria]. Ann. Soc. Belg. Med. Trop. 53:355–360

    PubMed  CAS  Google Scholar 

  • Beerwerth W, Kessel U (1976) [Mycobacteria in the environment of man and animal (proceedings)]. Zentralbl. Bakteriol. [Orig. A]. 235:177–183

    CAS  Google Scholar 

  • Beerwerth W, Schurmann J (1969) [Contribution to the ecology of mycobacteria]. Zentralbl. Bakteriol. [Orig.]. 211: 58–69

    CAS  Google Scholar 

  • Bejsovec J (1962) Spreading of helminths’ germs by passage through the intestinal tract of adequate carriers (in Czech). Cs. Parasitol. 9:95–109

    Google Scholar 

  • Bellometti S, Giannini S, Sartori L, Crepaldi G (1997) Cytokine levels in osteoarthrosis patients undergoing mud bath therapy. Int. J. Clin. Pharmacol. Res. 17:149–153

    PubMed  CAS  Google Scholar 

  • Bennett SN, Peterson DE, Johnson DR, Hall WN, Robinson-Dunn B, Dietrich S (1994) Bronchoscopy-associated Mycobacterium xenopi pseudoinfections. Am. J. Respir. Crit Care Med. 150:245–250

    PubMed  CAS  Google Scholar 

  • Beran V, Havelkova M, Kaustova J, Dvorska L, Pavlik I (2006) Cell wall deficient forms of mycobacteria: a review. Veterinarni Medicina 51:365–389

    CAS  Google Scholar 

  • Bercovier H, Vincent V (2001) Mycobacterial infections in domestic and wild animals due to Mycobacterium marinum, M. fortuitum, M. chelonae, M. porcinum, M. farcinogenes, M. smegmatis, M. scrofulaceum, M. xenopi, M. kansasii, M. simiae and M. genavense. Rev. Sci. Tech. 20: 265–290

    CAS  Google Scholar 

  • Bernstein DI, Lummus ZL, Santilli G, Siskosky J, Bernstein IL (1995) Machine Operators Lung - A Hypersensitivity Pneumonitis Disorder Associated with Exposure to Metalworking Fluid Aerosols. Chest. 108:636–641

    PubMed  CAS  Google Scholar 

  • Besser RE, Pakiz B, Schulte JM, Alvarado S, Zell ER, Kenyon TA, Onorato IM (2001) Risk factors for positive mantoux tuberculin skin tests in children in San Diego, California: evidence for boosting and possible foodborne transmission. Pediatrics. 108:305–310

    PubMed  CAS  Google Scholar 

  • Blagodarnyi I, Vaksov VM (1972) [Epidemiological and epizootiological significance of effluents coming from antituberculous establishments]. Probl. Tuberk. 50:8–12

    PubMed  Google Scholar 

  • Body BA, Boyd JC (1988) Acid-fast staining of urine and gastric contents is an excellent indicator of mycobacterial disease. Am. Rev. Respir. Dis. 137:1514–1515

    PubMed  CAS  Google Scholar 

  • Bohrerova Z, Linden KG (2006) Ultraviolet and chlorine disinfection of Mycobacterium in wastewater: effect of aggregation. Water Environ. Res. 78:565–571

    PubMed  CAS  Google Scholar 

  • Bonsu OA, Laing E, Akanmori BD (2000) Prevalence of tuberculosis in cattle in the Dangme-West district of Ghana, public health implications. Acta Trop. 76:9–14

    PubMed  CAS  Google Scholar 

  • Brooks OH (1971) Observations on outbreaks of Battey type mycobacteriosis in pigs raised on deep litter. Aust. Vet. J. 47:424–427

    PubMed  CAS  Google Scholar 

  • Brooks RW, George KL, Parker BC, Falkinham JO, III, Gruff H (1984) Recovery and survival of nontuberculous mycobacteria under various growth and decontamination conditions. Can. J. Microbiol. 30:1112–1117

    Google Scholar 

  • Brown J, Tollison JW (1979) Influence of pork consumption on human infection with Mycobacterium avian-intracellulare. Appl. Environ. Microbiol. 38:1144–1146

    PubMed  CAS  Google Scholar 

  • Bryan FL (1977) Diseases Transmitted by Foods Contaminated by Wastewater. J. Food Prot. 40:45–56

    Google Scholar 

  • Buczowska Z (1965) Tubercle bacilli in the Sewage and in Sewage-receiving waters. Biul. Inst. Med. Morsk. Gdansk. 16:49–56

    PubMed  CAS  Google Scholar 

  • Buraczewski O, Osinski J (1966) Acid-fast bacilli in sewage. Pol. Med. J. 5:1065–1072

    PubMed  CAS  Google Scholar 

  • Burchfield SR, Elich MS, Woods SC (1977) Geophagia in Response to Stress and Arthritis. Physiol. Behav. 19:265–267

    PubMed  CAS  Google Scholar 

  • Carpenter TE, Hird DW (1986) Time-Series Analysis of Mycobacteriosis in California Slaughter Swine. Prev. Vet. Med.. 3:559–572

    Google Scholar 

  • Carson LA, Bland LA, Cusick LB, Favero MS, Bolan GA, Reingold AL, Good RC (1988) Prevalence of nontuberculous mycobacteria in water supplies of hemodialysis centers. Appl. Environ. Microbiol. 54:3122–3125

    PubMed  CAS  Google Scholar 

  • Carter G, Wu M, Drummond DC, Bermudez LE (2003) Characterization of biofilm formation by clinical isolates of Mycobacterium avium. J. Med. Microbiol. 52:747–752

    PubMed  CAS  Google Scholar 

  • Cavanagh HM, Hipwell M, Wilkinson JM (2003) Antibacterial activity of berry fruits used for culinary purposes. J. Med. Food. 6:57–61

    PubMed  CAS  Google Scholar 

  • Chan DKO, Chaw D, Lo CYY (1994) Management of the Sawdust Litter in the Pig-On-Litter System of Pig Waste Treatment. Resour. Conserv. Recy.. 11:51–72

    Google Scholar 

  • Chanarin I, Stephenson E (1988) Vegetarian diet and cobalamin deficiency: their association with tuberculosis. J. Clin. Pathol. 41:759–762

    PubMed  CAS  Google Scholar 

  • Chapman JS (1971) The ecology of the a typical mycobacteria Arch. Environ. Health 22:41–46

    PubMed  CAS  Google Scholar 

  • Chapman JS, Bernard JS, Speight M (1965) Isolation of mycobacteria from raw milk. Am. Rev. Respir. Dis. 91:351–355

    PubMed  CAS  Google Scholar 

  • Charette R, Martineau GP, Pigeon C, Turcotte C, Higgins R (1989) An outbreak of granulomatous lymphadenitis due to Mycobacterium avium in swine. Can. Vet. J. 30:675–678

    PubMed  CAS  Google Scholar 

  • Chen SK, Vesley D, Brosseau LM, Vincent JH (1994) Evaluation of single-use masks and respirators for protection of health care workers against mycobacterial aerosols. Am. J. Infect. Control. 22:65–74

    PubMed  CAS  Google Scholar 

  • Cheung PY, Kinkle BK (2001) Mycobacterium diversity and pyrene mineralization in petroleum-contaminated soils. Appl. Environ. Microbiol. 67:2222–2229

    PubMed  CAS  Google Scholar 

  • Chiodini RJ (1989) Crohn Disease and the Mycobacterioses - A Review and Comparison of 2 Disease Entities. Clin. Microbiol. Rev. 2:90–117

    PubMed  CAS  Google Scholar 

  • Chiodini RJ, Van Kruiningen HJ, Merkal RS (1984) Ruminant paratuberculosis (Johne’s disease): the current status and future prospects. Cornell Vet. 74:218–262

    PubMed  CAS  Google Scholar 

  • Choi JH, Kim YH, Joo DJ, Choi SJ, Ha TW, Lee DH, Park IH, Jeong YS (2003) Removal of ammonia by biofilters: a study with flow-modified system and kinetics. J. Air Waste Manag. Assoc. 53:92–101

    PubMed  CAS  Google Scholar 

  • Chumkaew P, Karalai C, Ponglimanont C, Chantrapromma K (2003) Antimycobacterial activity of phorbol esters from the fruits of Sapium indicum. J. Nat. Prod. 66:540–543

    PubMed  CAS  Google Scholar 

  • Clark DL, Jr., Anderson JL, Koziczkowski JJ, Ellingson JL (2006) Detection of Mycobacterium avium subspecies paratuberculosis genetic components in retail cheese curds purchased in Wisconsin and Minnesota by PCR. Mol. Cell Probes. 20:197–202

    PubMed  CAS  Google Scholar 

  • Codias EK, Reinhardt DJ (1979) Distribution of serotypes of the Mycobacterium avium-intracellulare-scrofulaceum complex in Georgia. Am. Rev. Respir. Dis. 119:965–970

    PubMed  CAS  Google Scholar 

  • Collins CH, Grange JM, Yates MD (1984) Mycobacteria in water. J. Appl. Bacteriol. 57:193–211

    PubMed  CAS  Google Scholar 

  • Collins CH, Yates MD (1984) Infection and colonisation by Mycobacterium kansasii and Mycobacterium xenopi: aerosols as a possible source? J. Infect. 8:178–179

    CAS  Google Scholar 

  • Combourieu B, Besse P, Sancelme M, Veschambre H, Delort AM, Poupin P, Truffaut N (1998a) Morpholine degradation pathway of Mycobacterium aurum MO1: direct evidence of intermediates by in situ 1H nuclear magnetic resonance. Appl. Environ. Microbiol. 64:153–158

    PubMed  CAS  Google Scholar 

  • Combourieu B, Poupin P, Besse P, Sancelme M, Veschambre H, Truffaut N, Delort AM (1998b) Thiomorpholine and morpholine oxidation by a cytochrome P450 in Mycobacterium aurum MO1. Evidence of the intermediates by in situ 1H NMR. Biodegradation. 9:433–442

    PubMed  CAS  Google Scholar 

  • Conlon CP, Banda HM, Luo NP, Namaambo MK, Perera CU, Sikweze J (1989) Faecal mycobacteria and their relationship to HIV-related enteritis in Lusaka, Zambia. AIDS. 3:539–541

    PubMed  CAS  Google Scholar 

  • Conn VM, Franco CM (2004) Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl. Environ. Microbiol. 70:1787–1794

    PubMed  CAS  Google Scholar 

  • Cooney R, Kazda J, Quinn J, Cook B, Muller K, Monaghan M (1997) Environmental mycobacteria in Ireland as a source of non-specific sensitization to tuberculin. Irish Vet. J. 50:370–373

    Google Scholar 

  • Corbett EL, Churchyard GJ, Clayton T, Herselman P, Williams B, Hayes R, Mulder D, De Cock KM (1999) Risk factors for pulmonary mycobacterial disease in South African gold miners. A case-control study. Am. J. Respir. Crit. Care Med. 159:94–99

    CAS  Google Scholar 

  • Corbett EL, Churchyard GJ, Clayton TC, Williams BG, Mulder D, Hayes RJ, De Cock KM (2000) HIV infection and silicosis: the impact of two potent risk factors on the incidence of mycobacterial disease in South African miners. AIDS. 14:2759–2768

    PubMed  CAS  Google Scholar 

  • Corner LA, Pearson CW (1979) Response of cattle to inoculation with atypical mycobacteria isolated from soil. Aust. Vet. J. 55:6–9

    PubMed  CAS  Google Scholar 

  • Cosivi O, Grange JM, Daborn CJ, Raviglione MC, Fujikura T, Cousins D, Robinson RA, Huchzermeyer HFAK, de Kantor I, Meslin FX (1998) Zoonotic tuberculosis due to Mycobacterium bovis in developing countries. Emerg. Infect. Dis. 4:59–70

    PubMed  CAS  Google Scholar 

  • Cosivi O, Meslin FX, Daborn CJ, Grange JM (1995) Epidemiology of Mycobacterium-Bovis Infection in Animals and Humans, with Particular Reference to Africa. Revue Scientifique et Technique de l Office International des Epizooties. 14:733–746

    CAS  Google Scholar 

  • Costallat LF, Pestana de Castro AF, Rodrigues AC, Rodrigues FM (1977) Examination of soils in the Campinas rural area for microorganisms of the Mycobacterium avium-intracellulare-scrofulaceum complex. Aust. Vet. J. 53:349–350

    PubMed  CAS  Google Scholar 

  • Covert TC, Rodgers MR, Reyes AL, Stelma GN, Jr. (1999) Occurrence of nontuberculous mycobacteria in environmental samples. Appl. Environ. Microbiol. 65:2492–2496

    PubMed  CAS  Google Scholar 

  • Cowan HE, Falkinham JO, III (2001) A luciferase-based method for assessing chlorine-susceptibility of Mycobacterium avium. J. Microbiol. Methods. 46:209–215

    Google Scholar 

  • Cronin GM, Schirmer BN, Mccallum TH, Smith JA, Butler KL (1993) The Effects of Providing Sawdust to Pre-Parturient Sows in Farrowing Crates on Sow Behavior, the Duration of Parturition and the Occurrence of Intra-Partum Stillborn Piglets. Appl. Anim. Behav. Sci. 36:301–315

    Google Scholar 

  • Cummings GH, Natarajan S, Dewitt CC, Gardner TL, Garces MC (2000) Mycobacterium thermoresistible recovered from a cutaneous lesion in an otherwise healthy individual. Clin. Infect. Dis. 31:816–817

    PubMed  CAS  Google Scholar 

  • Dailloux M, Morlot M, Sirbat C (1980) [Study of factors affecting presence of atypical Mycobacteria in water of a swimming pool (author’s transl)]. Rev. Epidemiol. Sante Publique. 28:299–306

    PubMed  CAS  Google Scholar 

  • Dalchow W (1988) Mycobacteriosis in pigs fed cereal waters (in German). Tietärztliche Umschau. 43:62–74

    Google Scholar 

  • Damsker B, Bottone EJ (1985) Mycobacterium avium-Mycobacterium intracellulare from the intestinal tracts of patients with the acquired immunodeficiency syndrome: concepts regarding acquisition and pathogenesis. J. Infect. Dis. 151:179–181

    PubMed  CAS  Google Scholar 

  • Danilova AK, Naidenskii MS, Shpits IS, Plotinskii I (1968) [Zoohygienic assessment of various types of peat used for litter]. Veterinariia. 45:88–91

    PubMed  CAS  Google Scholar 

  • David HL, Jones WD, Jr., Newman CM (1971) Ultraviolet light inactivation and photoreactivation in the mycobacteria. Infect. Immun. 4:318–319

    PubMed  CAS  Google Scholar 

  • Dawson DJ, Armstrong JG, Blacklock ZM (1982) Mycobacterial cross-contamination of bronchoscopy specimens. Am. Rev. Respir. Dis. 126:1095–1097

    PubMed  CAS  Google Scholar 

  • De Groote MA, Pace NR, Fulton K, Falkinham JO, III (2006) Relationships between Mycobacterium isolates from patients with pulmonary mycobacterial infection and potting soils. Appl. Environ. Microbiol. 72:7602–7606

    Google Scholar 

  • Debacker M, Zinsou C, Aguiar J, Meyers WM, Portaels F (2003) First case of Mycobacterium ulcerans disease (Buruli ulcer) following a human bite. Clin. Infect. Dis. 36: e67-e68

    PubMed  Google Scholar 

  • Delaha EC, Garagusi VF (1985) Inhibition of mycobacteria by garlic extract (Allium sativum). Antimicrob. Agents Chemother. 27:485–486

    PubMed  CAS  Google Scholar 

  • Diamond J, Bishop KD, Gilardi JD (1999) Geophagy in New Guinea birds. Ibis. 141:181–193

    Google Scholar 

  • Dominy NJ, Davoust E, Minekus M (2004) Adaptive function of soil consumption: an in vitro study modeling the human stomach and small intestine. J. Exp. Biol. 207: 319–324

    PubMed  Google Scholar 

  • Donoghue HD, Overend E, Stanford JL (1997) A longitudinal study of environmental mycobacteria on a farm in south-west England. J. Appl. Microbiol. 82:57–67

    PubMed  CAS  Google Scholar 

  • Dudley DJ, Guentzel MN, Ibarra MJ, Moore BE, Sagik BP (1980) Enumeration of potentially pathogenic bacteria from sewage sludges. Appl. Environ. Microbiol. 39: 118–126

    PubMed  CAS  Google Scholar 

  • du Moulin GC, Stottmeier KD, Pelletier PA, Tsang AY, Hedley-Whyte J (1988) Concentration of Mycobacterium avium by hospital hot water systems. JAMA. 260:1599–1601

    PubMed  Google Scholar 

  • du Moulin GC, Stottmeier KD (1986) Waterborne mycobacteria: an increasing threat to health. ASM News. 52:525–529

    Google Scholar 

  • Durborow RM (1999) Health and safety concerns in fisheries and aquaculture. Occup. Med.-State of the Art Reviews. 14:373–406

    CAS  Google Scholar 

  • Durrling H, Ludewig F, Uhlemann J, Gericke R (1998) Peat as a source of Mycobacterium avium infection for pigs. Tierarztliche Umschau. 53:259–261

    Google Scholar 

  • Dutkiewicz J (1994) Bacteria, Fungi, and Endotoxin As Potential Agents of Occupational Hazard in A Potato Processing Plant. Am. J. Ind. Med.. 25:43–46

    PubMed  CAS  Google Scholar 

  • Dutkiewicz J, Pomorski ZJH, Sitkowska J, Krysinskatraczyk E, Skorska C, Prazmo Z, Cholewa G, Wojtowicz H (1994) Airborne Microorganisms and Endotoxin in Animal Houses. Grana. 33:85–90

    Google Scholar 

  • Dvorska L, Bartos M, Ostadal O, Kaustova J, Matlova L, Pavlik I (2002) IS1311 and IS1245 restriction fragment length polymorphism analyses, serotypes, and drug susceptibilities of Mycobacterium avium complex isolates obtained from a human immunodeficiency virus-negative patient. J. Clin. Microbiol. 40:3712–3719

    PubMed  CAS  Google Scholar 

  • Dvorska L, Matlova L, Ayele WY, Fischer OA, Amemori T, Weston RT, Alvarez J, Beran V, Moravkova M, Pavlik I (2007) Avian tuberculosis in naturally infected captive water birds of the Ardeideae and Threskiornithidae families studied by serotyping, IS901 RFLP typing, and virulence for poultry. Vet. Microbiol. 119:366–374

    PubMed  CAS  Google Scholar 

  • Dvorska L, Parmova I, Lavickova M, Bartl J, Vrbas V, Pavlik I (1999) Isolation of Rhodococcus equi and atypical mycobacteria from lymph nodes of pigs and cattle in herds with the occurrence of tuberculoid gross changes in the Czech Republic over the period of 1996–1998. Veterinarni Medicina 44: 321–330

    Google Scholar 

  • Edwards LB, Acquaviva FA, Livesay VT, Cross FW, Palmer CE (1969) An atlas of sensitivity to tuberculin, PPD-B, and histoplasmin in the United States. Am. Rev. Respir. Dis. 99:Suppl-132

    PubMed  Google Scholar 

  • Egamberdiyeva D, Hoflich G (2004) Effect of plant growth-promoting bacteria on growth and nutrient uptake of cotton and pea in a semi-arid region of Uzbekistan. J. Arid Environ. 56:293–301

    Google Scholar 

  • Eichelsdorfer D (1992) [Examination and evaluation of the hygiene status of natural peloids for human medical use]. Gesundheitswesen. 54:400–405

    PubMed  CAS  Google Scholar 

  • Eilertsen E (1969) Atypical mycobacteria and reservoir in water. Scand. J. Respir. Dis. Suppl. 69:85–88

    PubMed  CAS  Google Scholar 

  • Ellertsen LK, Wiker HG, Egeberg NT, Hetland G (2005) Allergic sensitisation in tuberculosis and leprosy patients. Int. Arch. Allergy Immunol. 138:217–224

    PubMed  CAS  Google Scholar 

  • Embil JM, Warren CPW (1997) Pneumonitis due to Mycobacterium avium complex in hot tub water - Infection or hypersensitivity? Chest. 112:1713–1714

    Google Scholar 

  • Emde KME, Chomyc SA, Finch GR (1992) Initial Investigation on the Occurrence of Mycobacterium Species in Swimming Pools. J. Environ. Health. 54:34–36

    Google Scholar 

  • Engel HW, Berwald LG, Havelaar AH (1980) The occurrence of Mycobacterium kansasii in tapwater. Tubercle. 61: 21–26

    PubMed  CAS  Google Scholar 

  • Engel HW, Groothuis DG, Wouda W, Konig CD, Lendfers LH (1978) “Pig-compost” as a source of Mycobacterium avium infection in swine. Zentralbl. Veterinarmed. B. 25:373–382

    PubMed  CAS  Google Scholar 

  • Ermolenko ZM, Kholodenko VP, Chugunov VA, Zhirkova NA, Rasulova GE (1997) A mycobacterial strain isolated from the oil of the Ukhtinskoe oil field: Identification and degradative properties. Microbiology. 66:542–545

    CAS  Google Scholar 

  • Falkinham JO, III (1996) Epidemiology of infection by nontuberculous mycobacteria. Clin. Microbiol. Rev. 9:177–215

    Google Scholar 

  • Falkinham JO (2003) The changing pattern of nontuberculous mycobacterial disease. Can. J. Infect. Dis. 14:281–286

    PubMed  Google Scholar 

  • Falkinham JO, III (2007) Growth in catheter biofilms and antibiotic resistance of Mycobacterium avium. J. Med. Microbiol. 56:250–254

    Google Scholar 

  • Falkinham JO, III, George KL, Parker BC (1989) Epidemiology of infection by nontuberculous mycobacteria. VIII. Absence of mycobacteria in chicken litter. Am. Rev. Respir. Dis. 139:1347–1349

    Google Scholar 

  • Falkinham JO, Iseman MD, de Haas P, van Soolingen D (2008) Mycobacterium avium in a shower linked to pulmonary disease. J. Water Health. 6:209–213

    PubMed  Google Scholar 

  • Falkinham JO, III, Norton CD, LeChevallier MW (2001) Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other Mycobacteria in drinking water distribution systems. Appl. Environ. Microbiol. 67:1225–1231

    Google Scholar 

  • Falkinham JO, III, Parker BC, Gruft H (1980) Epidemiology of infection by nontuberculous mycobacteria. I. Geographic distribution in the eastern United States. Am. Rev. Respir. Dis. 121:931–937

    Google Scholar 

  • Ferreira R, Fonseca LS, Afonso AM, da Silva MG, Saad MH, Lilenbaum W (2006) A report of mycobacteriosis caused by Mycobacterium marinum in bullfrogs (Rana catesbeiana). Vet. J. 171:177–180

    PubMed  Google Scholar 

  • Fertig S (1961) [Area irrigated with sewage. Its hygienic and sanitary evaluation. II. Examination of rodents from fields irrigated with sewage for the presence of tubercle bacilli.]. Acta Microbiol. Pol. 10:429–432

    PubMed  CAS  Google Scholar 

  • Fijan S, Koren S, Cencic A, Sostar-Turk S (2007) Antimicrobial disinfection effect of a laundering procedure for hospital textiles against various indicator bacteria and fungi using different substrates for simulating human excrements. Diagn. Microbiol. Infect. Dis. 57:251–257

    PubMed  CAS  Google Scholar 

  • Fine PE (1995) Variation in protection by BCG: implications of and for heterologous immunity. Lancet. 346: 1339–1345

    PubMed  CAS  Google Scholar 

  • Fischer O, Matlova L, Bartl J, Dvorska L, Melicharek I, Pavlik I (2000) Findings of mycobacteria in insectivores and small rodents. Folia Microbiol. (Praha). 45:147–152

    CAS  Google Scholar 

  • Fischer OA, Matlova L, Bartl J, Dvorska L, Svastova P, du MR, Melicharek I, Bartos M, Pavlik I (2003a) Earthworms (Oligochaeta, Lumbricidae) and mycobacteria. Vet. Microbiol. 91:325–338

    Google Scholar 

  • Fischer OA, Matlova L, Dvorska L, Svastova P, Pavlik I (2003b) Nymphs of the Oriental cockroach (Blatta orientalis) as passive vectors of causal agents of avian tuberculosis and paratuberculosis. Med. Vet. Entomol. 17:145–150

    PubMed  CAS  Google Scholar 

  • Fischer OA, Matlova L, Dvorska L, Svastova P, Peral DL, Weston RT, Bartos M, Pavlik I (2004) Beetles as possible vectors of infections caused by Mycobacterium avium species. Vet. Microbiol. 102:247–255

    PubMed  CAS  Google Scholar 

  • Fodstad FH (1977) Tuberculin reactions in bulls and boars sensitized with atypical Mycobacteria from sawdust. Acta Vet. Scand. 18:374–383

    PubMed  CAS  Google Scholar 

  • Frahm H (1959) Die Lebensdauer pathogener Mikroben in Milch und Milcherzeugnissen insbesondere von Tuberkulosebakterien im Kase. Kieler Milchw. ForschBer. 11:333–339

    Google Scholar 

  • Framstad T, Hed-Opp G, Rein KA (2001) The use of peat to prevent diarrhoea after weaning. Int. Pig Topics. 16 (3):7–9

    Google Scholar 

  • Francis J (1973) Letter: Very small public health risk from flesh of tuberculous cattle. Aust. Vet. J. 49:496–497

    PubMed  CAS  Google Scholar 

  • Fuchs B, Orda J, Pres J, Muchowicz M (1995) The effect of feeding piglets up to the 100th day of their life with peat preparation on their growth and physiological and biochemical indices. Arch. Vet. Pol. 35:97–107

    PubMed  CAS  Google Scholar 

  • Fuchs V, Kuhnert M, Golbs S, Dedek W (1990) [The enteral absorption of iron (II) from humic acid-iron complexes in suckling piglets using radiolabeled iron (59Fe)]. Dtsch. Tierarztl. Wochenschr. 97:208–209

    PubMed  CAS  Google Scholar 

  • Garcia MM, Brooks BW, Stewart RB, Dion W, Trudel JR, Ouwerkerk T (1987) Evaluation of gamma radiation levels for reducing pathogenic bacteria and fungi in animal sewage and laboratory effluents. Can. J. Vet. Res. 51:285–289

    PubMed  CAS  Google Scholar 

  • Garcia MM, McKay KA (1970) Pathogenic microorganisms in soil: an old problem in a new perspective. Can. J. Comp. Med. 34:105–110

    PubMed  CAS  Google Scholar 

  • Gawaad AAA, Heins B, Stein W (1997) Untersuchung uber die Attraktivwierkung von Lebensmitteln fur Fliegen (Diptera, Calliphoridae, Muscidae). Alimenta. 16: 49–52

    Google Scholar 

  • Gaynor WT, Cousins DV, Friend JA (1990) Mycobacterial Infection in Numbats (Myrmecobius-Fasciatus). J. Zoo Wildlife Med. 21:476–479

    Google Scholar 

  • Gebesh VV, Ianchenko VI, Sukhov IuA (1999) Kaopectate in the combined treatment of patients with intestinal infection (In Russian). Lik. Sprava. 3:140–142

    PubMed  Google Scholar 

  • George KL, Parker BC, Gruft H, Falkinham JO, III (1980) Epidemiology of infection by nontuberculous mycobacteria. II. Growth and survival in natural waters. Am. Rev. Respir. Dis. 122:89–94

    CAS  Google Scholar 

  • George RH (1997) Killing activity of microwaves in milk. J. Hosp. Infect. 35:319–320

    PubMed  CAS  Google Scholar 

  • Ghaemi E, Ghazisaidi K, Koohsari H, Khodabakhshi B, Mansoorian A (2006) Environmental mycobacteria in areas of high and low tuberculosis prevalence in the Islamic Republic of Iran. East Mediterr. Health J. 12:280–285

    PubMed  CAS  Google Scholar 

  • Ghio AJ, Kennedy TP, Schapira RM, Crumbliss AL, Hoidal JR (1990) Hypothesis: is lung disease after silicate inhalation caused by oxidant generation? Lancet. 336:967–969

    PubMed  CAS  Google Scholar 

  • Ghittino C, Latini M, Agnetti F, Panzieri C, Lauro L, Ciappelloni R, Petracca G (2003) Emerging pathologies in aquaculture: effects on production and food safety. Vet. Res. Commun. 27 Suppl 1:471–479

    Google Scholar 

  • Gilardi JD, Duffey SS, Munn CA, Tell LA (1999) Biochemical functions of geophagy in parrots: Detoxification of dietary toxins and cytoprotective effects. J. Chem. Ecol. 25: 897–922

    CAS  Google Scholar 

  • Gira AK, Reisenauer AH, Hammock L, Nadiminti U, Macy JT, Reeves A, Burnett C, Yakrus MA, Toney S, Jensen BJ, Blumberg HM, Caughman SW, Nolte FS (2004) Furunculosis due to Mycobacterium mageritense associated with footbaths at a nail salon. J. Clin. Microbiol. 42:1813–1817

    PubMed  Google Scholar 

  • Glazer C, Martyny J, Rose C (2008) Hot Tub Associated Granulomatous Lung Disease From Mycobacterial Bioaerosols [Interstitial, Inflammatory, and Occupational Lung Disease]. Clini. Pulm. Med. 15:138–144

    Google Scholar 

  • Gonzalez M, Rodriguez-Bertos A, Gimeno I, Flores JM, Pizarro M (2002) Outbreak of avian tuberculosis in 48-week-old commercial layer hen flock. Avian Dis. 46:1055–1061

    PubMed  Google Scholar 

  • Gotze U (1967) [The problem of meat hygiene in pig tuberculosis with special reference to the incidence of mycobacteria in meat from pigs with “isolated” lymph node tuberculosis]. Berl Munch. Tierarztl. Wochenschr. 80:47–49

    PubMed  CAS  Google Scholar 

  • Graham L, Jr., Warren NG, Tsang AY, Dalton HP (1988) Mycobacterium avium complex pseudobacteriuria from a hospital water supply. J. Clin. Microbiol. 26:1034–1036

    PubMed  Google Scholar 

  • Grange JM (1996) Mycobacteria and human disease. 2nd ed. London, Arnold, 230 pp

    Google Scholar 

  • Grange JM, Yates MD (1994) Zoonotic Aspects of Mycobacterium-Bovis Infection. Vet. Microbiol. 40:137–151

    PubMed  CAS  Google Scholar 

  • Grant IR (2005) Zoonotic potential of Mycobacterium avium ssp paratuberculosis: the current position. J. Appl. Microbiol. 98:1282–1293

    PubMed  CAS  Google Scholar 

  • Grant IR, Ball HJ, Rowe MT (1996) Thermal inactivation of several Mycobacterium spp. in milk by pasteurization. Lett. Appl. Microbiol. 22:253–256

    CAS  Google Scholar 

  • Greenlees KJ, Machado J, Bell T, Sundlof SF (1998) Food borne microbial pathogens of cultured aquatic species. Vet. Clin. North Am. Food Anim Pract. 14:101–112

    PubMed  CAS  Google Scholar 

  • Groothuis DG (1985) [Swine tuberculosis and public health]. Tijdschr. Diergeneeskd. 110:716–717

    PubMed  CAS  Google Scholar 

  • Gubler JGH, Salfinger M, Vongraevenitz A (1992) Pseudoepidemic of Nontuberculous Mycobacteria Due to A Contaminated Bronchoscope Cleaning Machine - Report of An Outbreak and Review of the Literature. Chest. 101:1245–1249

    PubMed  CAS  Google Scholar 

  • Guerin WF, Jones GE (1988) Mineralization of Phenanthrene by A Mycobacterium Sp. Appl. Environ. Microbiol. 54:937–944

    PubMed  CAS  Google Scholar 

  • Gutierrez Garcia JM (2006) Meat as a vector of transmission of bovine tuberculosis to humans in Spain: a historical perspective. Vet. Herit. 29:25–27

    PubMed  Google Scholar 

  • Hahn H (1959) Ist die Herstellung von Emmentaler Markenkase aus Rohmilch vom Standpunkt des Lebensmittelhygienikers vertretbar? Tierartl. Umsch. 14:254–256

    Google Scholar 

  • Hall-Stoodley L, Keevil CW, Lappin-Scott HM (1999) Mycobacterium fortuitum and Mycobacterium chelonae biofilm formation under high and low nutrient conditions. J. Appl. Microbiol. 85:60S–69S

    Google Scholar 

  • Hancox M (2002) Bovine tuberculosis: milk and meat safety. Lancet. 359:706–707

    PubMed  CAS  Google Scholar 

  • Harrington R, Jr., Karlson AG (1965) Destruction of various kinds of mycobacteria in milk by pasteurization. Appl. Microbiol. 13:494–495

    PubMed  Google Scholar 

  • Hartikainen T, Ruuskanen J, Martikainen PJ (2001) Carbon disulfide and hydrogen sulfide removal with a peat biofilter. J. Air Waste Manag. Assoc. 51:387–392

    PubMed  CAS  Google Scholar 

  • Havelaar AH, Berwald LG, Groothuis DG, Baas JG (1985) Mycobacteria in semi-public swimming-pools and whirlpools. Zentralbl. Bakteriol. Mikrobiol. Hyg. [B]. 180:505–514

    CAS  Google Scholar 

  • Heavey M (2003) Low-cost treatment of landfill leachate using peat. Waste Manag. 23:447–454

    PubMed  CAS  Google Scholar 

  • Heigis G, Krimmel M, Hoffmann J, Kaiserling E, Reinert S (2005) [Oral manifestation of miliary tuberculosis]. Mund Kiefer Gesichtschir. 9:180–183

    PubMed  CAS  Google Scholar 

  • Heimann G (1984) Pharmacotherapy of acute infant enteritis (in German). Montsschr. Kinderheilkd. 132:303–305

    CAS  Google Scholar 

  • Hietala SK, Ardans AA (1987) Neutrophil Phagocytic and Serum Opsonic Response of the Foal to Corynebacterium-Equi. Vet. Immunol. Immunopathol. 14:279–294

    PubMed  CAS  Google Scholar 

  • Higgins DA, Kung IT, Or RS (1985) Environmental silica in badger lungs: a possible association with susceptibility to Mycobacterium bovis infection. Infect. Immun. 48:252–256

    PubMed  CAS  Google Scholar 

  • Hilborn ED, Covert TC, Yakrus MA, Harris SI, Donnelly SF, Rice EW, Toney S, Bailey SA, Stelma GN, Jr. (2006) Persistence of nontuberculous mycobacteria in a drinking water system after addition of filtration treatment. Appl. Environ. Microbiol. 72:5864–5869

    PubMed  CAS  Google Scholar 

  • Holland J, Smith C, Childs PA, Holland AJ (1997) Surgical management of cutaneous infection caused by atypical mycobacteria after penetrating injury: the hidden dangers of horticulture. J. Trauma. 42:337–340

    PubMed  CAS  Google Scholar 

  • Horsburgh CR, Jr., Chin DP, Yajko DM, Hopewell PC, Nassos PS, Elkin EP, Hadley WK, Stone EN, Simon EM, Gonzalez P (1994) Environmental risk factors for acquisition of Mycobacterium avium complex in persons with human immunodeficiency virus infection. J. Infect. Dis. 170:362–367

    PubMed  Google Scholar 

  • Hsueh PR, Luh KT (1998) Catheter sepsis due to Mycobacterium chelonae - Reply. J. Clin. Microbiol. 36:3444–3445

    Google Scholar 

  • Hsueh PR, Teng LJ, Yang PC, Chen YC, Ho SW, Luh KT (1998) Recurrent catheter-related infection caused by a single clone of Mycobacterium chelonae with two colonial morphotypes. J. Clin. Microbiol. 36:1422–1424

    PubMed  CAS  Google Scholar 

  • Huang GF, Wong JWC, Wu QT, Nagar BB (2004) Effect of C/N on composting of pig manure with sawdust. Waste Manage. 24:805–813

    CAS  Google Scholar 

  • Hutchings MR, Harris S (1999) Quantifying the risks of TB infection to cattle posed by badger excreta. Epidemiol. Infect. 122:167–173

    PubMed  CAS  Google Scholar 

  • Hutchings MR, Service KM, Harris S (2001) Defecation and urination patterns of badgers Meles meles at low density in south west England. Acta Theriol. 46:87–96

    Google Scholar 

  • Huttunen K, Ruotsalainen M, Iivanainen E, Torkko P, Katila ML, Hirvonen MR (2000) Inflammatory responses in RAW264.7 macrophages caused by mycobacteria isolated from moldy houses. Environ. Toxicol. Pharmacol. 8:237–244

    PubMed  CAS  Google Scholar 

  • Iannuzzi L (1968) [On the resistance of pathogenic tubercular mycobacteria in sausages]. Acta Med. Vet. (Napoli). 14:255–261

    CAS  Google Scholar 

  • Ichiriu ET, Bushnell OA (1950) The survival time of Mycobacterium tuberculosis in poi; studies in the bacteriology of poi. Hawaii Med. J. 9:163–165

    PubMed  CAS  Google Scholar 

  • Iivanainen E (1995) Isolation of Mycobacteria from Acidic Forest Soil Samples - Comparison of Culture Methods. J. Appl. Bacteriol. 78:663–668

    Google Scholar 

  • Iivanainen E, Martikainen P, Vaananen P, Katila ML (1999a) Environmental factors affecting the occurrence of mycobacteria in brook sediments. J. Appl. Microbiol. 86:673–681

    PubMed  CAS  Google Scholar 

  • Iivanainen E, Sallantaus T, Katila ML, Martikainen PJ (1999b) Mycobacteria in runoff-waters from natural and drained peatlands. J. Environ. Qual. 28:1226–1234

    CAS  Google Scholar 

  • Iivanainen EK, Martikainen PJ, Raisanen ML, Katila ML (1997) Mycobacteria in boreal coniferous forest soils. Fems Microbiol. Ecol. 23:325–332

    CAS  Google Scholar 

  • Iivanainen EK, Martikainen PJ, Vaananen PK, Katila ML (1993) Environmental-Factors Affecting the Occurrence of Mycobacteria in Brook Waters. Appl. Environ. Microbiol. 59:398–404

    PubMed  CAS  Google Scholar 

  • Ikonomopoulos J, Pavlik I, Bartos M, Svastova P, Ayele WY, Roubal P, Lukas J, Cook N, Gazouli M (2005) Detection of Mycobacterium avium subsp. paratuberculosis in retail cheeses from Greece and the Czech republic. Appl. Environ. Microbiol. 71:8934–8936

    PubMed  CAS  Google Scholar 

  • Jackson R (2002) The role of wildlife in Mycobacterium bovis infection of livestock in New Zealand. N.Z. Vet. J. 50: 49–52

    Google Scholar 

  • Jackson R, de Lisle GW, Morris RS (1995) A study of the environmental survival of Mycobacterium bovis on a farm in New Zealand. N.Z. Vet. J. 43:346–352

    PubMed  CAS  Google Scholar 

  • Jamieson W, Madri P, Claus G (1976) Survival of certain pathogenic microorganisms in sea water. Hydrobiologica 50:117–121

    Google Scholar 

  • Jankowski A, Nienartowicz B, Polanska B, Lewandowicz-Uszynska A (1993) A randomised, double-blind study on the efficacy of Tolpa Torf Preparation (TTP) in the treatment of recurrent respiratory tract infections. Arch. Immunol. Ther. Exp. (Warsz.). 41:95–97

    CAS  Google Scholar 

  • Jeppsson KH (1998) Ammonia emission from different deep-litter materials for growing-finishing pigs. Swed. J. Agric. Res. 28:197–206

    Google Scholar 

  • Jeppsson KH (1999) Volatilization of ammonia in deep-litter systems with different bedding materials for young cattle. J. Agric. Eng. Res. 73:49–57

    Google Scholar 

  • Johns T, Duquette M (1991a) Detoxification and Mineral Supplementation As Functions of Geophagy. Am. J. Clin. Nutr.. 53:448–456

    PubMed  CAS  Google Scholar 

  • Johns T, Duquette M (1991b) Traditional Detoxification of Acorn Bread with Clay. Ecol. Food Nutr. 25:221–228

    Google Scholar 

  • Jones JJ, Falkinham JO, III (2003) Decolorization of malachite green and crystal violet by waterborne pathogenic mycobacteria. Antimicrob. Agents Chemother. 47:2323–2326

    PubMed  CAS  Google Scholar 

  • Jones PW, Rennison LM, Matthews PR, Collins P, Brown A (1981) The occurrence and significance to animal health of Leptospira, Mycobacterium, Escherichia coli, Brucella abortus and Bacillus anthracis in sewage and sewage sludges. J. Hyg. (Lond). 86:129–137

    CAS  Google Scholar 

  • Jones WD, Kubica GP (1965) Differential Grouping of Slowly Growing Mycobacteria Based on Their Susceptibility to Various Dyes. Am. Rev. Respir. Dis. 91:613–615

    PubMed  Google Scholar 

  • Jorgensen JB (1977) Survival of Mycobacterium paratuberculosis in slurry. Nord. Vet. Med. 29:267–270

    PubMed  CAS  Google Scholar 

  • Jorgensen JB, Engbaek HC, Dam A (1972) An enzootic of pulmonary tuberculosis in pigs caused by M. avium. 2. Bacteriological studies. Acta Vet. Scand. 13:68–86

    CAS  Google Scholar 

  • Kaffka A, Thiele H, Schroder KH (1979) Atypical Mycobacteria in Swimming-Pool Water. Offentliche Gesundheitswesen. 41:405–409

    PubMed  CAS  Google Scholar 

  • Kahana LM, Kay JM, Yakrus MA, Waserman S (1997) Mycobacterium avium complex infection in an immunocompetent young adult related to hot tub exposure. Chest. 111:242–245

    PubMed  CAS  Google Scholar 

  • Kamala T, Paramasivan CN, Herbert D, Venkatesan P, Prabhakar R (1994) Isolation and Identification of Environmental Mycobacteria in the Mycobacterium bovis BCG Trial Area of South India. Appl. Environ. Microbiol. 60: 2180–2183

    PubMed  CAS  Google Scholar 

  • Kao MM (1993) The Evaluation of Sawdust Swine Waste Compost on the Soil Ecosystem, Pollution and Vegetable Production. Water Sci. Technol. 27:123–131

    CAS  Google Scholar 

  • Kaplan JE, Masur H, Holmes KK (2002) Guidelines for preventing opportunistic infections among HIV-infected persons – 2002. Recommendations of the U.S. Public Health Service and the Infectious Diseases Society of America. MMWR Recomm. Rep. 51:1–52

    Google Scholar 

  • Kasi M, Kausar P, Naz R, Miller LC (1995) Treatment of diarrhoea in infants by medical doctors in Balochistan, Pakistan. J. Diarrhoeal. Dis. Res. 13:238–241

    PubMed  CAS  Google Scholar 

  • Katayama N, Tanaka Ch, Fujita T, Saitou Y, Suzuki S, Onouchi E (2000) Effect of ensilage on inactivation of M. avium subsp. paratuberculosis. Grassland Sci. 46:282–288

    CAS  Google Scholar 

  • Katila ML, Iivanainen E, Torkko P, Kauppinen J, Martikainen P, Vaananen P (1995) Isolation of potentially pathogenic mycobacteria in the Finnish environment. Scand. J. Infect. Dis. Suppl. 98:9–11

    PubMed  CAS  Google Scholar 

  • Kauker E, Rheinwald W (1972) [Studies on the occurrence of atypical mycobacteria, group 3 Runyon, in the bedding material (sawdust) and feed of swine in North Hesse]. Berl Munch. Tierarztl. Wochenschr. 85:384–387

    PubMed  CAS  Google Scholar 

  • Kawamura Y, Li Y, Liu H, Huang X, Li Z, Ezaki T (2001) Bacterial population in Russian space station “Mir”. Microbiol. Immunol. 45:819–828

    PubMed  CAS  Google Scholar 

  • Kazda J (1966) [Isolation and description of a Mycobacterium species, the cause of a para-allergy against tuberculin in poultry]. Zentralbl. Bakteriol. [Orig.]. 199:529–532

    CAS  Google Scholar 

  • Kazda J (1967) [Atypical mycobacteria in drinking water--the cause of para-allergies against tuberculin in animals]. Z. Tuberk. Erkr. Thoraxorg. 127:111–113

    PubMed  CAS  Google Scholar 

  • Kazda J (1973a) Importance of Water for Spread of Potentially Pathogenic Mycobacteria. 1. Possibilities for Multiplication of Mycobacteria. Zentralblatt fur Bakteriologie Mikrobiologie und Hygiene Serie B-Umwelthygiene Krankenhaushygiene Arbeitshygiene Praventive Medizin. 158: 161–169

    CAS  Google Scholar 

  • Kazda J (1973b) [The importance of water for the distribution of potentially pathogenic Mycobacteria. II. Growth of Mycobacteria in water models (author’s transl)]. Zentralbl. Bakteriol. [Orig. B]. 158:170–176

    CAS  Google Scholar 

  • Kazda J (1977) [The importance of sphagnum bogs in the ecology of Mycobacteria (author’s transl)]. Zentralbl. Bakteriol. [Orig. B]. 165:323–334

    CAS  Google Scholar 

  • Kazda J (1978a) [Multiplication of mycobacteria in the gray layer of sphagnum vegetation (author’s transl)]. Zentralbl. Bakteriol. [Orig. B]. 166:463–469

    CAS  Google Scholar 

  • Kazda J (1978b) [The behaviour of Mycobacterium intracellulare serotyp Davis and Mycobacterium avium in the head region of sphagnum moss vegetation after experimental inoculation (author’s transl)]. Zentralbl. Bakteriol. [Orig. B]. 166:454–462

    CAS  Google Scholar 

  • Kazda J (2000) The ecology of mycobacteria. Kluwer Academic Publishers, Dordrecht, Boston, London, 72 pp

    Google Scholar 

  • Kazda J, Cooney RP, Quinn JP, Cook BR, Muller K, Monaghan M, Keane M (1997) High density of mycobacteria in the bryophyte vegetation (Musci) of moorland. Int. Peat J. 7:14–19

    Google Scholar 

  • Kazda J, Muller K, Irgens LM (1979) Cultivable mycobacteria in sphagnum vegetation of moors in South Sweden and coastal Norway. Acta Pathol. Microbiol. Scand. [B]. 87B: 97–101

    CAS  Google Scholar 

  • Keogh BP (1971) Reviews of the progress of dairy science. Section B. The survival of pathogens in cheese and milk powder. J. Dairy Res. 38:91–111

    CAS  Google Scholar 

  • Khoor A, Leslie KO, Tazelaar HD, Helmers RA, Colby TV (2001) Diffuse pulmonary disease caused by nontuberculous mycobacteria in immunocompetent people (hot tub lung). Am. J. Clin. Pathol. 115:755–762

    PubMed  CAS  Google Scholar 

  • Kim BC, Park JH, Gu MB (2004) Development of a DNA microarray chip for the identification of sludge bacteria using an unsequenced random genomic DNA hybridization method. Environ. Sci. Technol. 38:6767–6774

    PubMed  CAS  Google Scholar 

  • Kindle G, Busse A, Kampa D, Meyer-Konig U, Daschner FD (1996) Killing activity of microwaves in milk. J. Hosp. Infect. 33:273–278

    PubMed  CAS  Google Scholar 

  • Kirschner RA, Jr., Parker BC, Falkinham JO, III (1992) Epidemiology of infection by nontuberculous mycobacteria. Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum in acid, brown-water swamps of the southeastern United States and their association with environmental variables. Am. Rev. Respir. Dis. 145: 271–275

    Google Scholar 

  • Kirschner RA, Parker BC, Falkinham JO (1999) Humic and fulvic acids stimulate the growth of Mycobacterium avium. Fems Microbiol. Ecol. 30:327–332

    PubMed  CAS  Google Scholar 

  • Kleeberg HH, Nel EE (1973) Occurrence of environmental atypical mycobacteria in South Africa. Ann. Soc. Belg. Med. Trop. 53:405–418

    PubMed  CAS  Google Scholar 

  • Knezevich M (1998) Geophagy as a therapeutic mediator of endoparasitism in a free-ranging group of rhesus macaques (Macaca mulatta). Am. J. Primatol. 44:71–82

    PubMed  CAS  Google Scholar 

  • Kohlmeier S, Smits TH, Ford RM, Keel C, Harms H, Wick LY (2005) Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ. Sci. Technol. 39:4640–4646

    PubMed  CAS  Google Scholar 

  • Kozhemiakin NG, Sidorenko BV, Ivanov NE (1967) [M. tuberculosis resistance to thermal conditions adopted in the production of cooked sausages]. Vopr. Pitan. 26: 61–64

    PubMed  CAS  Google Scholar 

  • Kreiss K, CoxGanser J (1997) Metalworking fluid-associated hypersensitivity pneumonitis: A workshop summary. Am. J. Ind. Med. 32:423–432

    PubMed  CAS  Google Scholar 

  • Krulwich TA, Pelliccione NJ (1979) Catabolic Pathways of Coryneforms, Nocardias, and Mycobacteria. Annu. Rev. Microbiol. 33:95–111

    PubMed  CAS  Google Scholar 

  • Kubalek I, Komenda S (1995) Seasonal variations in the occurrence of environmental mycobacteria in potable water. APMIS. 103:327–330

    PubMed  CAS  Google Scholar 

  • Kusnetsov J, Torvinen E, Perola O, Nousiainen T, Katila ML (2003) Colonization of hospital water systems by legionellae, mycobacteria and other heterotrophic bacteria potentially hazardous to risk group patients. APMIS. 111: 546–556

    PubMed  Google Scholar 

  • Larsen AB, Merkal RS, Vardaman TH (1956) Survival time of Mycobacterium paratuberculosis. Am. J. Vet. Res. 17:549–551

    PubMed  CAS  Google Scholar 

  • Larsson LO, Skoogh BE, Bentzon MW, Magnusson M, Olofson J, Taranger J, Lind A (1991) Sensitivity to sensitins and tuberculin in Swedish children. II. A study of preschool children. Tubercle. 72:37–42

    CAS  Google Scholar 

  • Laukkanen H, Soini H, Kontunen-Soppela S, Hohtola A, Viljanen M (2000) A Mycobacterium isolated from tissue cultures of mature Pinus sylvestris interferes with growth of Scots pine seedlings. Tree Physiol. 20:915–920

    PubMed  Google Scholar 

  • Lavoie J, Marchand G, Drolet JY, Gingras G (1995) Biological and Chemical Contamination of the Air in A Grower-Finisher Pig Building Using Deep-Litter Systems. Can. Agric. Eng. 37:195–203

    Google Scholar 

  • Le Dantec C, Duguet JP, Montiel A, Dumoutier N, Dubrou S, Vincent V (2002) Occurrence of mycobacteria in water treatment lines and in water distribution systems. Appl. Environ. Microbiol. 68:5318–5325

    PubMed  Google Scholar 

  • Lee WJ, Kim TW, Shur KB, Kim BJ, Kook YH, Lee JH, Park JK (2000) Sporotrichoid dermatosis caused by Mycobacterium abscessus from a public bath. J. Dermatol. 27:264–268

    PubMed  CAS  Google Scholar 

  • Lenk T, Benda A (1989) Peat paste - humic acid containing animal health agent for prophylaxis and treatment of calves for diarrhoea (in German). Mh. Vet. Med. 44:563–565

    Google Scholar 

  • Leoni E, Legnani P, Mucci MT, Pirani R (1999) Prevalence of mycobacteria in a swimming pool environment. J. Appl. Microbiol. 87:683–688

    PubMed  CAS  Google Scholar 

  • Lepper AWD (1977) Use of Bovine Ppd Tuberculin in Caudal Fold Tests - Reply. Aust. Vet. J. 53:451–452

    Google Scholar 

  • Lumb R, Stapledon R, Scroop A, Bond P, Cunliffe D, Goodwin A, Doyle R, Bastian I (2004) Investigation of spa pools associated with lung disorders caused by Mycobacterium avium complex in immunocompetent adults. Appl. Environ. Microbiol. 70:4906–4910

    PubMed  CAS  Google Scholar 

  • Lysons RE (1996) Pigs, peat and avian tuberculosis. Proceedings of the 14th IPVS Congress, Bologna, Italy, 7–10 July. 323–323

    Google Scholar 

  • Mahaney WC, Bezada M, Hancock RGV, Aufreiter S, Perez FL (1996a) Geophagy of Holstein hybrid cattle in the northern Andes, Venezuela. Mt. Res. Dev. 16:177–180

    Google Scholar 

  • Mahaney WC, Hancock RGV, Aufreiter S, Huffman MA (1996b) Geochemistry and clay mineralogy of termite mound soil and the role of geophagy in chimpanzees of the Mahale Mountains, Tanzania. Primates. 37:121–134

    Google Scholar 

  • Mallmann WL (1972) Should tuberculosis be eradicated from all species? Health Lab. Sci. 9:133–138

    CAS  Google Scholar 

  • Mangione EJ, Huitt G, Lenaway D, Beebe J, Bailey A, Figoski M, Rau MP, Albrecht KD, Yakrus MA (2001) Nontuberculous mycobacterial disease following hot tub exposure. Emerg. Infect. Dis. 7:1039–1042

    PubMed  CAS  Google Scholar 

  • Marks J (1975) Occupation and Kansasii infection in Cardiff residents. Tubercle. 56:311–313

    PubMed  CAS  Google Scholar 

  • Marlier D, Nicks B, Canart B, Shehi R (1994) Comparison of the Evolution of the Bedding of 2 Deep Litter Systems, Deep Sawdust and Deep Straw, for Fattening Pigs. Ann. Med. Vet. 138:43–53

    Google Scholar 

  • Marsollier L, Stinear T, Aubry J, Saint Andre JP, Robert R, Legras P, Manceau AL, Audrain C, Bourdon S, Kouakou H, Carbonnelle B (2004) Aquatic plants stimulate the growth of and biofilm formation by Mycobacterium ulcerans in axenic culture and harbor these bacteria in the environment. Appl. Environ. Microbiol. 70:1097–1103

    PubMed  CAS  Google Scholar 

  • Martyny JW, Rose CS (1999) Nontuberculous mycobacterial bioaerosols from indoor warm water sources cause granulomatous lung disease. Indoor Air. 9:1–6

    Google Scholar 

  • Masaki S, Konishi T, Sugimori G, Okamoto A, Hayashi Y, Kuze F (1989) Plasmid profiles of Mycobacterium avium complex isolated from swine. Microbiol. Immunol. 33:429–433

    PubMed  CAS  Google Scholar 

  • Matlova L, Dvorska L, Ayele WY, Bartos M, Amemori T, Pavlik I (2005) Distribution of Mycobacterium avium complex isolates in tissue samples of pigs fed peat naturally contaminated with mycobacteria as a supplement. J. Clin. Microbiol. 43:1261–1268

    PubMed  Google Scholar 

  • Matlova L, Dvorska L, Bartl J, Bartos M, Ayele WY, Alexa M, Pavlik I (2003) Mycobacteria isolated from the environment of pig farms in the Czech Republic during the years 1996 to 2002. Veterinarni Medicina 48:343–357

    Google Scholar 

  • Matlova L, Dvorska L, Bartos M, Docekal J, Trckova M, Pavlik I (2004a) Tuberculous lesions in pig lymph nodes caused by kaolin fed as a supplement. Veterinarni Medicina 49:379–388

    Google Scholar 

  • Matlova L, Dvorska L, Palecek K, Maurenc L, Bartos M, Pavlik I (2004b) Impact of sawdust and wood shavings in bedding on pig tuberculous lesions in lymph nodes, and IS1245 RFLP analysis of Mycobacterium avium subsp. hominissuis of serotypes 6 and 8 isolated from pigs and environment. Vet. Microbiol. 102:227–236

    PubMed  CAS  Google Scholar 

  • Matthews PR, Collins P, Jones PW (1976) Isolation of mycobacteria from dairy creamery effluent sludge. J. Hyg. (Lond). 76:407–413

    CAS  Google Scholar 

  • McClatchy JK (1981) The seroagglutination test in the study of nontuberculous mycobacteria. Rev. Infect. Dis. 3:867–870

    PubMed  CAS  Google Scholar 

  • McCullough NV, Brosseau LM, Vesley D (1997) Collection of three bacterial aerosols by respirator and surgical mask filters under varying conditions of flow and relative humidity. Ann. Occup. Hyg. 41:677–690

    PubMed  CAS  Google Scholar 

  • Mediel MJ, Rodriguez V, Codina G, Martin-Casabona N (2000) Isolation of mycobacteria from frozen fish destined for human consumption. Appl. Environ. Microbiol. 66:3637–3638

    PubMed  CAS  Google Scholar 

  • Mendum TA, Chilima BZ, Hirsch PR (2000) The PCR amplification of non-tuberculous mycobacterial 16S rRNA sequences from soil. FEMS Microbiol. Lett. 185: 189–192

    PubMed  CAS  Google Scholar 

  • Merkal RS, Crawford JA, Whipple DL (1979) Heat inactivation of Mycobacterium avium-Mycobacterium intracellulare complex organisms in meat products. Appl. Environ. Microbiol. 38:831–835

    PubMed  CAS  Google Scholar 

  • Merkal RS, Lyle PS, Whipple DL (1981) Heat inactivation of in vivo- and in vitro-grown mycobacteria in meat products. Appl. Environ. Microbiol. 41:1484–1485

    PubMed  CAS  Google Scholar 

  • Merkal RS, Whipple DL (1980) Inactivation of Mycobacterium bovis in meat products. Appl. Environ. Microbiol. 40:282–284

    PubMed  CAS  Google Scholar 

  • Michel AL (2002) Implications of tuberculosis in African wildlife and livestock. Ann. N.Y. Acad. Sci. 969:251–255

    PubMed  Google Scholar 

  • Mijs W, de Hass P, Rossau R, van der Laan T, Rigouts L, Portaels F, van Soolingen D (2002) Molecular evidence to support a proposal to reserve the designation Mycobacterium avium subsp. avium for bird-type isolates and `M. avium subsp. hominissuis’ for the human/porcine type of M. avium. Int. J Syst. Evol. Microbiol. 52:1505–1518

    Google Scholar 

  • Moore JS, Christensen M, Wilson RW, Wallace RJ, Jr., Zhang Y, Nash DR, Shelton B (2000) Mycobacterial contamination of metalworking fluids: involvement of a possible new taxon of rapidly growing mycobacteria. AIHAJ. 61: 205–213

    PubMed  CAS  Google Scholar 

  • Moravkova M, Bartos M, Dvorska-Bartosova L, Beran V, Parmova I, Ocepek M, Pate M, Pavlik I (2007) Genetic variability of Mycobacterium avium subsp. avium of pig isolates. Veterinarni Medicina 52:430–436

    CAS  Google Scholar 

  • Muilenberg ML, Burge HT, Sweet T (1998) Hypersensitivity pneumonitis and exposure to acid-fast bacilli in coolant aerosols. J. Allergy Clin. Immunol. 91:311-

    Google Scholar 

  • Mutimer MD, Woolcock JB (1980) Corynebacterium equi in cattle and pigs. Tijdschr. Diergeneeskd. 105:25–27

    PubMed  CAS  Google Scholar 

  • Naganawa R, Iwata N, Ishikawa K, Fukuda H, Fujino T, Suzuki A (1996) Inhibition of microbial growth by ajoene, a sulfur-containing compound derived from garlic. Appl. Environ. Microbiol. 62:4238–4242

    PubMed  CAS  Google Scholar 

  • Nakamura Y, Obase Y, Suyama N, Miyazaki Y, Ohno H, Oka M, Takahashi M, Kohno S (2004) A small outbreak of pulmonary tuberculosis in non-close contact patrons of a bar. Internal Medicine 43:263–267

    PubMed  Google Scholar 

  • Nakazawa M, Kubo M, Sugimoto C, Isayama Y (1983) Serogrouping of Rhodococcus equi. Microbiol. Immunol. 27:837–846

    PubMed  CAS  Google Scholar 

  • Naser SA, Schwartz D, Shafran I (2000) Isolation of Mycobacterium avium subsp. paratuberculosis from breast milk of Crohn’s disease patients. Am. J. Gastroenterol. 95:1094–1095

    PubMed  CAS  Google Scholar 

  • Nassal J, Breunig W, Schnedelbach U (1974) [Atypical mycobacteria in fruit, vegetables, and cereals]. Prax. Pneumol. 28:667–674

    PubMed  CAS  Google Scholar 

  • Nassal J, Werner-Schieck B (1970) [Presence of mycobacteria in human feces]. Prax. Pneumol. 24:473–478

    PubMed  CAS  Google Scholar 

  • Nel EE (1981) Mycobacterium avium-intracellulare complex serovars isolated in South Africa from humans, swine, and the environment. Rev. Infect. Dis. 3:1013–1020

    PubMed  CAS  Google Scholar 

  • Nicks B (2004) Technical characteristics and environmental aspects of breeding fattening pigs and weaned piglets on accumulated litters. Ann. Med. Vet. 148:31–38

    Google Scholar 

  • Nicks B, Desiron A, Canart B (1998) Comparison of two litter materials, sawdust and a straw-sawdust mixture, for fattening pigs on deep litter. Annales de Zootechnie. 47: 107–116

    Google Scholar 

  • Nicks B, Laitat M, Farnir F, Vandenheede M, Desiron A, Verhaeghe C, Canart B (2004) Gaseous emissions from deep-litter pens with straw or sawdust for fattening pigs. Anim. Sci. 78:99–107

    CAS  Google Scholar 

  • Nicks B, Laitat M, Vandenheede M, Desiron A, Verhaeghe C, Canart B (2003) Emissions of ammonia, nitrous oxide, methane, carbon dioxide and water vapor in the raising of weaned pigs on straw-based and sawdust-based deep litters. Anim. Res. 52:299–308

    CAS  Google Scholar 

  • Nieminen T, Pakarinen J, Tsitko I, Salkinoja-Salonen M, Breitenstein A, Ali-Vehmas T, Neubauer P (2006) 16S rRNA targeted sandwich hybridization method for direct quantification of mycobacteria in soils. J. Microbiol. Methods. 67:44–55

    PubMed  CAS  Google Scholar 

  • Niva M, Hernesmaa A, Haahtela K, Salkinoja-Salonen M, Sivonen K, Haukka K (2006) Actinobacterial communities of boreal forest soil and lake water are rich in mycobacteria. Boreal Environ. Res. 11:45–53

    Google Scholar 

  • Nix DE, Adam RD, Auclair B, Krueger TS, Godo PG, Peloquin CA (2004) Pharmacokinetics and relative bioavailability of clofazimine in relation to food, orange juice and antacid. Tuberculosis. (Edinb.). 84:365–373

    Google Scholar 

  • Norby B, Fosgate GT, Manning EJ, Collins MT, Roussel AJ (2007) Environmental mycobacteria in soil and water on beef ranches: Association between presence of cultivable mycobacteria and soil and water physicochemical characteristics. Vet. Microbiol. 124:153–159

    PubMed  CAS  Google Scholar 

  • Norton CD, LeChevallier MW, Falkinham JO, III (2004) Survival of Mycobacterium avium in a model distribution system. Water Res. 38:1457–1466

    PubMed  CAS  Google Scholar 

  • Norton JH, Duffield BJ, Coward AJ, Hielscher RW, Nicholls RF (1984) A necropsy technique for cattle to eliminate contamination of lymph nodes by mycobacteria. Aust. Vet. J. 61:75–76

    PubMed  CAS  Google Scholar 

  • Novotny L, Dvorska L, Lorencova A, Beran V, Pavlik I (2004) Fish: a potential source of bacterial pathogens for human beings. Veterinarni Medicina 49:343–358

    Google Scholar 

  • O’Donovan G (1987) An ecosystem study of grasslands in the Burren National Park, Co. Clare. Ph.D. Thesis, University of Dublin.

    Google Scholar 

  • Ogielski L, Zawadzki Z (1961) [Area irrigated with sewage. Its hygienic and sanitary evaluation. III. Studies on the presence of tubercle bacilli in sewage utilized for agricultural purposes.]. Acta Microbiol. Pol. 10:433–437

    PubMed  CAS  Google Scholar 

  • Olsen JE, Jorgensen JB, Nansen P (1985) On the Reduction of Mycobacterium-Paratuberculosis in Bovine Slurry Subjected to Batch Mesophilic Or Thermophilic Anaerobic-Digestion. Agric. Wastes. 13:273–280

    Google Scholar 

  • Ong HK, Choo PY, Soo SP (1993) Application of Bacterial Product for Zero-Liquid-Discharge Pig Waste Management Under Tropical Conditions. Water Sci. Technol. 27:133–140

    CAS  Google Scholar 

  • Palasek J, Pavlas M, Kubu I (1991) Survival of Salmonellae and mycobacteria in salted and unsalted swine guts used as sausage casing and sausage emulsion of a hard salami. Acta Vet. Brno. 60:375–381

    Google Scholar 

  • Pande TK, Hiran S, Rao VV, Pani S, Vishwanathan KA (1995) Primary lingual tuberculosis caused by M. bovis infection. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 80:172–174

    CAS  Google Scholar 

  • Parashar D, Chauhan DS, Sharma VD, Chauhan A, Chauhan SV, Katoch VM (2004) Optimization of procedures for isolation of mycobacteria from soil and water samples obtained in northern India. Appl. Environ. Microbiol. 70:3751–3753

    PubMed  CAS  Google Scholar 

  • Parker BC, Ford MA, Gruft H, Falkinham JO, III (1983) Epidemiology of infection by nontuberculous mycobacteria. IV. Preferential aerosolization of Mycobacterium intracellulare from natural waters. Am. Rev. Respir. Dis. 128: 652–656

    CAS  Google Scholar 

  • Parsek MR, Fuqua C (2004) Biofilms 2003: emerging themes and challenges in studies of surface-associated microbial life. J. Bacteriol. 186:4427–4440

    PubMed  CAS  Google Scholar 

  • Pavicic Z, Balenovic T, Balenovic M, Popovic M, Vlahovic K, Valpotic H, Rudan-Biuk N (2006) The effect of accommodation type and microclimatic conditions in farrowing units on the postural changes of sows and piglet mortality by crushing. Tieraerztliche Umschau. 61:68-+

    Google Scholar 

  • Pavlas M, Patlokova V (1985) Occurrence of mycobacteria in sawdust, straw, hay and their epizootiological significance. Acta Vet. Brno. 54:85–90

    Google Scholar 

  • Pavlas M (1990) Thermoresistance of Mycobacteria. Acta Vet. Brno. 59:65–71

    Google Scholar 

  • Pavlas M, Patlokova V (1977) [Occurrence of M. avium and M. intracellulare in the organs and muscles of slaughterhouse pigs]. Veterinarni Medicina 22:1–8

    CAS  Google Scholar 

  • Pavlik I, Horvathova A, Dvorska L, Bartl J, Svastova P, du Maine R, Rychlik I (1999) Standardisation of restriction fragment length polymorphism analysis for Mycobacterium avium subspecies paratuberculosis. J. Microbiol. Methods. 38:155–167

    PubMed  CAS  Google Scholar 

  • Pavlik I, Matlova L, Dvorska L, Bartl J, Oktabcova L, Docekal J, Parmova I (2003) Tuberculous lesions in pigs in the Czech Republic during 1990–1999: occurrence, causal factors and economic losses. Veterinarni Medicina 48:113–125

    Google Scholar 

  • Pavlik I, Matlova L, Dvorska L, Shitaye JE, Parmova I (2005) Mycobacterial infections in cattle and pigs caused by Mycobacterium avium complex members and atypical mycobacteria in the Czech Republic during 2000–2004. Veterinarni Medicina 50:281–290

    Google Scholar 

  • Pavlik I, Matlova L, Gilar M, Bartl J, Parmova I, Lysak F, Alexa M, Dvorska-Bartosova L, Svec V, Vrbas V, Horvathova A (2007) Isolation of conditionally pathogenic mycobacteria from the environment of one pig farm and the effectiveness of preventive measures between 1997 and 2003. Veterinarni Medicina 52:392–404

    CAS  Google Scholar 

  • Pavlik I, Svastova P, Bartl J, Dvorska L, Rychlik I (2000) Relationship between IS901 in the Mycobacterium avium complex strains isolated from birds, animals, humans, and the environment and virulence for poultry. Clin. Diagn. Lab. Immunol. 7:212–217

    PubMed  CAS  Google Scholar 

  • Peccia J, Hernandez M (2006) Incorporating polymerase chain reaction-based identification, population characterization, and quantification of microorganisms into aerosol science: A review. Atmos. Environ. 40:3941–3961

    CAS  Google Scholar 

  • Pedley JC (1967) The presence of M. leprae in human milk. Lepr. Rev. 38:239–242

    CAS  Google Scholar 

  • Pedley S, Bartram J, Rees G, Dufou A, Cotruvo JA (2004) Pathogenic mycobacteria in water. WHO, TJ International (Ltd.), Padstow, Cornwall, UK. 237 pp

    Google Scholar 

  • Pell AN (1997) Manure and microbes: public and animal health problem? J. Dairy Sci. 80:2673–2681

    CAS  Google Scholar 

  • Pereira MR, Benjaminson MA (1975) Broadcast of microbial aerosols by stacks of sewage treatment plants and effects of ozonation on bacteria in the gaseous effluent. Public Health Rep. 90:208–212

    PubMed  CAS  Google Scholar 

  • Perez C, Falero A, Hung BR, Tirado S, Balcinde Y (2005) Bioconversion of phytosterols to androstanes by mycobacteria growing on sugar cane mud. J. Ind. Microbiol. Biotechnol. 32:83–86

    PubMed  CAS  Google Scholar 

  • Pickup RW, Rhodes G, Bull TJ, Arnott S, Sidi-Boumedine K, Hurley M, Hermon-Taylor J (2006) Mycobacterium avium subsp. paratuberculosis in lake catchments, in river water abstracted for domestic use, and in effluent from domestic sewage treatment works: diverse opportunities for environmental cycling and human exposure. Appl. Environ. Microbiol. 72:4067–4077

    CAS  Google Scholar 

  • Picot B, Paing J, Toffoletto L, Sambuco JP, Costa RH (2001) Odor control of an anaerobic lagoon with a biological cover: floating peat beds. Water Sci. Technol. 44: 309–316

    PubMed  CAS  Google Scholar 

  • Piening C, Anz W, Meissner G (1972) [Serotyping and its significance for epidemiological studies of porcine tuberculosis in Schleswig Holstein]. Dtsch. Tierarztl. Wochenschr. 79:316–321

    PubMed  CAS  Google Scholar 

  • Policard A, Gernez-Rieux C, Tacquet A, Martin JC, Devulder B, Le Bouffant L (1967) Influence of pulmonary dust load on the development of experimental infection by Mycobacterium kansasii. Nature. 216:177–178

    PubMed  CAS  Google Scholar 

  • Poptsova NV (1974) [Contamination with Mycobacterium tuberculosis of certain environmental objects within the foci of tuberculosis]. Probl. Tuberk. 17–20

    Google Scholar 

  • Prescott JF (1991) Rhodococcus equi: an animal and human pathogen. Clin. Microbiol. Rev. 4:20–34

    PubMed  CAS  Google Scholar 

  • Prescott JF, Travers M, Yagerjohnson JA (1984) Epidemiological Survey of Corynebacterium-Equi Infections on 5 Ontario Horse Farms. Can. J. Comp. Med. Revue Canadienne de Medecine Comparee. 48:10–13

    CAS  Google Scholar 

  • Prince DS, Peterson DD, Steiner RM, Gottlieb JE, Scott R, Israel HL, Figueroa WG, Fish JE (1989) Infection with Mycobacterium avium complex in patients without predisposing conditions. N. Engl. J. Med. 321:863–868

    PubMed  CAS  Google Scholar 

  • Prince KA, Costa AR, Malaspina AC, Luis AF, Leite CQ (2005) Isolation of Mycobacterium gordonae from poultry slaughterhouse water in Sao Paulo State, Brazil. Rev. Argent Microbiol. 37:106–108

    PubMed  CAS  Google Scholar 

  • Pryor M, Springthorpe S, Riffard S, Brooks T, Huo Y, Davis G, Satter SA (2004) Investigation of opportunistic pathogens in municipal drinking water under different supply and treatment regimes. Water Sci. Technol. 50:83–90

    PubMed  CAS  Google Scholar 

  • Rao SP, Hayashi T, Catanzaro A (2002) Identification of a chemotactic, MCP-1-like protein from Mycobacterium avium. Fems Immunol. Med. Microbiol. 33:115–124

    PubMed  CAS  Google Scholar 

  • Rebmann T (2005) Management of patients infected with airborne-spread diseases: an algorithm for infection control professionals. Am. J. Infect. Control. 33:571–579

    PubMed  Google Scholar 

  • Reponen TA, Wang Z, Willeke K, Grinshpun SA (1999) Survival of mycobacteria on N95 personal respirators. Infect. Control Hosp. Epidemiol. 20:237–241

    PubMed  CAS  Google Scholar 

  • Reuther G (1957) [Interactions between bacteria and fungi in swamp turf.]. Arch. Mikrobiol. 26:93–131

    PubMed  CAS  Google Scholar 

  • Reznikov M, Dawson DJ (1980) Mycobacteria of the intracellulare-scrofulaceum group in soils from the Adelaide area. Pathology. 12:525–528

    PubMed  CAS  Google Scholar 

  • Rha YH, Taube C, Haczku A, Joetham A, Takeda K, Duez C, Siegel M, Aydintug MK, Born WK, Dakhama A, Gelfand E (2002) Effect of microbial heat shock proteins on airway inflammation and hyperresponsiveness. J. Immunol. 169:5300–5307

    PubMed  Google Scholar 

  • Rheinwald W (1972) Untersuchungen über das Vorkommen atypischer Mykobakterien in Eistreu (Sägemehl) und Futter von Schweinen in Nordhessen. Vet. Med. Diss. Giessen. 142 pp

    Google Scholar 

  • Rice G, Wright JM, Boutin B, Swartout J, Rodgers P, Niemuth N, Broder M (2005) Estimating the frequency of tap-water exposures to Mycobacterium avium complex in the U.S. population with advanced AIDS. J. Toxicol. Environ. Health A. 68:1033–1047

    CAS  Google Scholar 

  • Ristola MA, von Reyn CF, Arbeit RD, Soini H, Lumio J, Ranki A, Buhler S, Waddell R, Tosteson ANA, Falkinham JO, Sox CH (1999) High rates of disseminated infection due to non-tuberculous mycobacteria among AIDS patients in Finland. J. Infect. 39:61–67

    PubMed  CAS  Google Scholar 

  • Rizzuti AM, Cohen AD, Hunt PG, Vanotti MB (1999) Evaluating peats for their capacities to remove odorous compounds from liquid swine manure using headspace “solid-phase microextraction”. J. Environ. Sci. Health B. 34:709–748

    PubMed  CAS  Google Scholar 

  • Robert J, Gantress J, Rau L, Bell A, Cohen N (2002) Minor histocompatibility antigen-specific MHC-restricted CD8 T cell responses elicited by heat shock proteins. J. Immunol. 168:1697–1703

    PubMed  CAS  Google Scholar 

  • Robinson P, Morris D, Antic R (1988) Mycobacterium bovis as an occupational hazard in abattoir workers. Aust. N.Z. J. Med. 18:701–703

    PubMed  CAS  Google Scholar 

  • Ronn R, Grunert J, Ekelund F (2001) Protozoan response to addition of the bacteria Mycobacterium chlorophenolicum and Pseudomonas chlororaphis to soil microcosms. Biology and Fertility of Soils 33:126–131

    Google Scholar 

  • Roost H, Dobberstein I, Kuntsch G, Berber H, Tardel H, Benda A, Helms E (1990) Results and experience obtained from use of peat paste in industrialized piglet raising (in German). Mh.Vet. Med. 45:239–243

    Google Scholar 

  • Rose CS (1999) Diagnosis and prevention of lung diseases associated with microbial bioaerosols. Semi. Respir. Crit. Care Med. 20:511–520

    Google Scholar 

  • Rose CS, Martyny JW, Newman LS, Milton DK, King TE, Jr., Beebe JL, McCammon JB, Hoffman RE, Kreiss K (1998) “Lifeguard lung”: endemic granulomatous pneumonitis in an indoor swimming pool. Am. J. Public Health. 88: 1795–1800

    PubMed  CAS  Google Scholar 

  • Safranek TJ, Jarvis WR, Carson LA, Cusick LB, Bland LA, Swenson JM, Silcox VA (1987) Mycobacterium-Chelonae Wound Infections After Plastic-Surgery Employing Contaminated Gentian-Violet Skin-Marking Solution. N. Engl. J. Med. 317:197–201

    PubMed  CAS  Google Scholar 

  • Saitanu K, Holmgaard P (1977) An epizootic of Mycobacterium intracellulare, serotype 8 infection in swine. Nord. Vet. Med. 29:221–226

    PubMed  CAS  Google Scholar 

  • Saito H, Tsukamura M (1976) Mycobacterium intracellulare from public bath water. Jpn. J. Microbiol. 20: 561–563

    PubMed  CAS  Google Scholar 

  • Saldanha FL, Sayyid SN, Kulkarn I, Sr. (1964) Viability of M. tuberculosis in the sanatorium sewage. Indian J. Med. Res. 52:1051–1056

    CAS  Google Scholar 

  • Savov D (1975) [Resistance of tuberculosis mycobacteria in raw-dried and raw-fumigated sausages]. Vet. Med. Nauki. 12:39–43

    PubMed  CAS  Google Scholar 

  • Scanlon MP, Quinn PJ (2000) Inactivation of Mycobacterium bovis in cattle slurry by five volatile chemicals. J. Appl. Microbiol. 89:854–861

    PubMed  CAS  Google Scholar 

  • Schelonka RL, Ascher DP, McMahon DP, Drehner DM, Kuskie MR (1994) Catheter-related sepsis caused by Mycobacterium avium complex. Pediatr. Infect. Dis. J. 13:236–238

    PubMed  CAS  Google Scholar 

  • Schliesser T, Claus U, Weber A (1972) [Resistance of fast-growing atypical mycobacteria to temperature within the range of short-term pasteurization]. Prax. Pneumol. 26:485–490

    PubMed  CAS  Google Scholar 

  • Schliesser T, Weber A (1973) [Studies on the tenacity of Mycobacteria of the Runyon Group III in sawdust litter]. Zentralbl. Veterinarmed. B. 20:710–714

    PubMed  CAS  Google Scholar 

  • Schroder KH, Kazda J, Muller K, Muller HJ (1992) Isolation of Mycobacterium simiae from the environment. Zentralbl. Bakteriol. 277:561–564

    PubMed  CAS  Google Scholar 

  • Schultze WD, Brasso WB (1987) Characterization and identification of Mycobacterium smegmatis in bovine mastitis. Am. J. Vet. Res. 48:739–742

    PubMed  CAS  Google Scholar 

  • Schultze WD, Stroud BH, Brasso WB (1985) Dairy herd problem with mastitis caused by a rapidly growing Mycobacterium species. Am. J. Vet. Res. 46:42–47

    PubMed  CAS  Google Scholar 

  • Schulze-Robbecke R, Buchholtz K (1992) Heat susceptibility of aquatic mycobacteria. Appl. Environ. Microbiol. 58:1869–1873

    PubMed  CAS  Google Scholar 

  • Schulze-Robbecke R, Fischeder R (1989) Mycobacteria in biofilms. Zentralbl. Hyg. Umweltmed. 188:385–390

    PubMed  CAS  Google Scholar 

  • September SM, Brozel VS, Venter SN (2004) Diversity of nontuberculoid Mycobacterium species in biofilms of urban and semiurban drinking water distribution systems. Appl. Environ. Microbiol. 70:7571–7573

    PubMed  CAS  Google Scholar 

  • Shelton BG, Flanders WD, Morris GK (1999) Mycobacterium sp. as a possible cause of hypersensitivity pneumonitis in machine workers. Emerg. Infect. Dis. 5:270–273

    CAS  Google Scholar 

  • Shitaye JE, Matlova L, Horvathova A, Moravkova M, Dvorska-Bartosova L, Trcka I, Lamka J, Treml F, Vrbas V, Pavlik I (2008a) Diagnostic testing of different stages of avian tuberculosis in naturally infected hens (Gallus domesticus) by the tuberculin skin and rapid agglutination tests, faecal and egg examinations. Veterinarni Medicina 53:101–110

    Google Scholar 

  • Shitaye JE, Matlova L, Horvathova A, Moravkova M, Dvorska-Bartosova L, Treml F, Lamka J, Pavlik I (2008b) Mycobacterium avium subsp. avium distribution studied in a naturally infected hen flock and in the environment by culture, serotyping and IS901 RFLP methods. Vet. Microbiol. 127: 155–164

    PubMed  CAS  Google Scholar 

  • Shitaye JE, Parmova I, Matlova L, Dvorska L, Horvathova A, Vrbas V, Pavlik I (2006) Mycobacterial and Rhodococcus equi infections in pigs in the Czech Republic between the years 1996 and 2004: the causal factors and distribution of infections in the tissues. Veterinarni Medicina 51: 497–511

    Google Scholar 

  • Shitaye JE, Tsegaye W, Pavlik I (2007) Bovine tuberculosis infection in animal and human populations in Ethiopia: a review. Veterinarni Medicina 52:317–332

    Google Scholar 

  • Skoric M, Shitaye EJ, Halouzka R, Fictum P, Trcka I, Heroldova M, Tkadlec E, Pavlik I (2007) Tuberculous and tuberculoid lesions in free living small terrestrial mammals and the risk of infection to humans and animals: a review. Veterinarni Medicina 52:144–161

    Google Scholar 

  • Skurski A, Szulga T, Wachnik Z, Madra J, Kowalczyk H (1965) Classification of acid-fast bacilli isolated from the milk of cows and from sewage used for fertilizing pastures. I. Pathogenic and saprophytic bacilli. Arch. Immunol. Ther. Exp. (Warsz.). 13:189–196

    CAS  Google Scholar 

  • Slosarek M, Kubin M, Pokorny J (1994) Water as a possible factor of transmission in mycobacterial infections. Cent. Eur. J. Public Health. 2:103–105

    PubMed  CAS  Google Scholar 

  • Sniezek PJ, Graham BS, Busch HB, Lederman ER, Lim ML, Poggemyer K, Kao A, Mizrahi M, Washabaugh G, Yakrus M, Winthrop K (2003) Rapidly growing mycobacterial infections after pedicures. Arch. Dermatol. 139:629–634

    PubMed  Google Scholar 

  • Sobiech T, WACHNIK Z (1966) [Allergic and serologic studies of cattle from areas supplied with city sewage by means of the use of tuberculins from atypical mycobacteria]. Arch. Exp. Veterinarmed. 20:901–908

    PubMed  CAS  Google Scholar 

  • Solomon A (2001) Silicosis and tuberculosis: Part 2--a radiographic presentation of nodular tuberculosis and silicosis. Int. J. Occup. Environ. Health. 7:54–57

    PubMed  CAS  Google Scholar 

  • Songer JG, Bicknell EJ, Thoen CO (1980) Epidemiological investigation of swine tuberculosis in Arizona. Can. J. Comp. Med. 44:115–120

    PubMed  CAS  Google Scholar 

  • Spahr U, Schafroth K (2001) Fate of Mycobacterium avium subsp. paratuberculosis in Swiss hard and semihard cheese manufactured from raw milk. Appl. Environ. Microbiol. 67:4199–4205

    CAS  Google Scholar 

  • Spiess LD, Lippincott JA (1981) Bacteria isolated from moss and their effect on moss development. Bot. Gaz. 142:512–518

    Google Scholar 

  • Steed KA, Falkinham JO, III (2006) Effect of growth in biofilms on chlorine susceptibility of Mycobacterium avium and Mycobacterium intracellulare. Appl. Environ. Microbiol. 72:4007–4011

    PubMed  CAS  Google Scholar 

  • Stephan R, Schumacher S, Tasara T, Grant IR (2007) Prevalence of Mycobacterium avium subspecies paratuberculosis in swiss raw milk cheeses collected at the retail level. J. Dairy Sci. 90:3590–3595

    PubMed  CAS  Google Scholar 

  • Sung N, Collins MT (2000) Effect of three factors in cheese production (pH, salt, and heat) on Mycobacterium avium subsp. paratuberculosis viability. Appl. Environ. Microbiol. 66:1334–1339

    CAS  Google Scholar 

  • Suppin D, Rippel-Rachle B, Smulders FJM (2007) Screening the microbiological condition of Sushi from Viennese restaurants. Wiener Tierarztliche Monatsschrift. 94:40–47

    Google Scholar 

  • Sutton AL, Kephart KB, Verstegen MW, Canh TT, Hobbs PJ (1999) Potential for reduction of odorous compounds in swine manure through diet modification. J. Anim. Sci. 77:430–439

    PubMed  CAS  Google Scholar 

  • Szabo I, Kiss KK, Varnai I (1982) Epidemic pulmonary infection associated with Mycobacterium xenopi indigenous in sewage-sludge. Acta Microbiol. Acad. Sci. Hung. 29:263–266

    PubMed  CAS  Google Scholar 

  • Szabo I, Tuboly S, Szeky A (1975) Swine lymphadenitis due to Mycobacterium avium and atypical Mycobacteria. I. Pathological studies. Acta Vet. Acad. Sci. Hung. 25: 67–76

    CAS  Google Scholar 

  • Szulga T, Wieczorek Z, Madra J, Kowalczyk H (1965) Classification of acid-fast bacilli isolated from the milk of cows and from sewage used for fertilizing pastures. 3. Identification of atypical bacilli (2nd and 3rd groups). Arch. Immunol. Ther. Exp. (Warsz.). 13:336–343

    CAS  Google Scholar 

  • Tacquet A, Tison F, Devulder B (1961) [Bactericidal action of yoghurt on mycobacteria.]. Ann. Inst. Pasteur (Paris). 100:581–587

    CAS  Google Scholar 

  • Takai S, Ohbushi S, Koike K, Tsubaki S, Oishi H, Kamada M (1991) Prevalence of Virulent Rhodococcus-Equi in Isolates from Soil and Feces of Horses from Horse-Breeding Farms with and Without Endemic Infections. J. Clin. Microbiol. 29:2887–2889

    PubMed  CAS  Google Scholar 

  • Takai S, Takeuchi T, Tsubaki S (1986) Isolation of Rhodococcus (Corynebacterium) equi and atypical mycobacteria from the lymph nodes of healthy pigs. Nippon Juigaku. Zasshi. 48:445–448

    PubMed  CAS  Google Scholar 

  • Takai S, Tsubaki S (1985) The incidence of Rhodococcus (Corynebacterium) equi in domestic animals and soil. Nippon Juigaku. Zasshi. 47:493–496

    PubMed  CAS  Google Scholar 

  • Takigawa K, Fujita J, Negayama K, Terada S, Yahaji Y, Kawanishi K, Takahara J (1995) Eradication of Contaminating Mycobacterium-Chelonae from Bronchofibrescopes and An Automated Bronchoscope Disinfection Machine. Respir. Med. 89:423–427

    PubMed  CAS  Google Scholar 

  • Taylor RH, Falkinham JO, III, Norton CD, LeChevallier MW (2000) Chlorine, chloramine, chlorine dioxide, and ozone susceptibility of Mycobacterium avium. Appl. Environ. Microbiol. 66:1702–1705

    PubMed  CAS  Google Scholar 

  • Thoen CO, Steele JH (1995) Mycobacterium bovis infection in animals and humans. Iowa State University Press, 1st ed., 355 pp

    Google Scholar 

  • Thoen CO, Steele JH, Gilsdorf MJ (2006) Mycobacterium bovis infection in animals and humans. 2nd ed., Blackwell Publishing Professional, Ames, Iowa, USA, 317 pp

    Google Scholar 

  • Thorel MF, Falkinham JO, Moreau RG (2004) Environmental mycobacteria from alpine and subalpine habitats. Fems Microbiol. Ecol. 49:343–347

    PubMed  CAS  Google Scholar 

  • Tiquia SM (2002) Evolution of extracellular enzyme activities during manure composting. J. Appl. Microbiol. 92: 764–775

    PubMed  CAS  Google Scholar 

  • Tobin-D’Angelo MJ, Blass MA, del Rio C, Halvosa JS, Blumberg HM, Horsburgh CR, Jr. (2004) Hospital water as a source of Mycobacterium avium complex isolates in respiratory specimens. J. Infect. Dis. 189:98–104

    Google Scholar 

  • Torvinen E, Meklin T, Torkko P, Suomalainen S, Reiman M, Katila ML, Paulin L, Nevalainen A (2006) Mycobacteria and fungi in moisture-damaged building materials. Appl. Environ. Microbiol.. 72:6822–6824

    PubMed  CAS  Google Scholar 

  • Trckova M, Matlova L, Dvorska L, Pavlik I (2004) Kaolin, bentonite, and zeolites as feed supplements for animals: health advantages and risks. Veterinarni Medicina 49: 389–399

    CAS  Google Scholar 

  • Trckova M, Matlova L, Hudcova H, Faldyna M, Zraly Z, Dvorska L, Beran V, Pavlik I (2005) Peat as a feed supplement for animals: a review. Veterinarni Medicina 50: 361–377

    CAS  Google Scholar 

  • Trckova M, Zraly Z, Bejcek P, Matlova L, Beran V, Horvathova A, Faldyna M, Moravkova M, Shitaye JE, Svobodova J, Pavlik I (2006a) Effect of feeding treated peat as a supplement to newborn piglets on the growth, health status and occurrence of conditionally pathogenic mycobacteria. Veterinarni Medicina 51:544–554

    Google Scholar 

  • Trckova M, Zraly Z, Matlova L, Beran V, Moravkova M, Svobodova J, Pavlik I (2006b) Effects of peat feeding on the performance and health status of fattening pigs and environmentally derived mycobacteria. Veterinarni Medicina 51:533–543

    CAS  Google Scholar 

  • Trunova ON (1971) [The effect of various reservoir self-cleaning factors on Mycobacterium tuberculosis]. Probl. Tuberk. 49:60–63

    PubMed  CAS  Google Scholar 

  • Tsang AY, Denner JC, Brennan PJ, McClatchy JK (1992) Clinical and epidemiological importance of typing of Mycobacterium avium complex isolates. J. Clin. Microbiol. 30:479–484

    PubMed  CAS  Google Scholar 

  • Tsavkelova EA, Cherdyntseva TA, Lobakova ES, Kolomeitseva GL, Netrusov AI (2001) [Microbiota of the Orchid rhizoplane]. Mikrobiologiia. 70:567–573

    PubMed  CAS  Google Scholar 

  • Tsintzou A, Vantarakis A, Pagonopoulou O, Athanassiadou A, Papapetropoulou M (2000) Environmental mycobacteria in drinking water before and after replacement of the water distribution network. Water Air Soil Pollut. 120: 273–282

    CAS  Google Scholar 

  • Tsukamura M, Mizuno S, Murata H, Nemoto H, Yugi H (1974) A comparative study of mycobacteria from patients’ room dusts and from sputa of tuberculous patients. Source of pathogenic mycobacteria occurring in the sputa of tuberculous patients as casual isolates. Jpn. J. Microbiol. 18:271–277

    CAS  Google Scholar 

  • Tsukamura M, Mizuno S, Toyama H (1984) [Mycobacteria from dusts of Japanese houses]. Kekkaku. 59:625–631

    PubMed  CAS  Google Scholar 

  • Tuffley RE, Holbeche JD (1980) Isolation of the Mycobacterium avium-M. intracellulare-M. scrofulaceum complex from tank water in Queensland, Australia. Appl. Environ. Microbiol. 39:48–53

    CAS  Google Scholar 

  • Uhlemann J, Held R, Müller K, Jahn H, Dürrling H (1975) Schweinetuberkulose im einem Mastkombinat nach Einstreu von Hobel- und Sägespänen. Monatshefte für Veterinärmedizin. 30:175–180

    Google Scholar 

  • Ulker N (1967) [Antibacterial action of honey toward different types of Mycobacterium]. Turk. Tip. Cemiy. Mecm. 33:282–287

    PubMed  CAS  Google Scholar 

  • Vaerewijck MJ, Huys G, Palomino JC, Swings J, Portaels F (2005) Mycobacteria in drinking water distribution systems: ecology and significance for human health. FEMS Microbiol. Rev. 29:911–934

    PubMed  CAS  Google Scholar 

  • Vantarakis A, Tsintzou A, Diamandopoulos A, Papapetropoulou M (1998) Non-tuberculosis mycobacteria in hospital water supplies. Water Air Soil Pollut. 104:331–337

    CAS  Google Scholar 

  • VanTiem JS (1997) The public health risks of cervid production in the United States of America. Rev. Sci. Tech. 16:564–570

    PubMed  CAS  Google Scholar 

  • Vincke E, Boon N, Verstraete W (2001) Analysis of the microbial communities on corroded concrete sewer pipes – a case study. Appl. Microbiol. Biotechnol. 57:776–785

    PubMed  CAS  Google Scholar 

  • von Hertzen L, Haahtela T (2006) Disconnection of man and the soil: reason for the asthma and atopy epidemic? J. Allergy Clin. Immunol. 117:334–344

    Google Scholar 

  • von Reyn CF, Arbeit RD, Horsburgh CR, Ristola MA, Waddell RD, Tvaroha SM, Samore M, Hirschhorn LR, Lumio J, Lein AD, Grove MR, Tosteson AN (2002) Sources of disseminated Mycobacterium avium infection in AIDS. J. Infect. 44:166–170

    Google Scholar 

  • von Reyn CF, Maslow JN, Barber TW, Falkinham JO, III, Arbeit RD (1994) Persistent colonisation of potable water as a source of Mycobacterium avium infection in AIDS. Lancet. 343:1137–1141

    Google Scholar 

  • von Reyn CF, Waddell RD, Eaton T, Arbeit RD, Maslow JN, Barber TW, Brindle RJ, Gilks CF, Lumio J, Lahdevirta J (1993) Isolation of Mycobacterium avium complex from water in the United States, Finland, Zaire, and Kenya. J. Clin. Microbiol. 31:3227–3230

    Google Scholar 

  • Vugia DJ, Jang Y, Zizek C, Ely J, Winthrop KL, Desmond E (2005) Mycobacteria in nail salon whirlpool footbaths, California. Emerg. Infect. Dis. 11:616–618

    PubMed  Google Scholar 

  • Wang HC, Liaw YS, Yang PC, Kuo SH, Luh KT (1995) A Pseudoepidemic of Mycobacterium-Chelonae Infection Caused by Contamination of A Fiberoptic Bronchoscope Suction Channel. Eur. Respir. J. 8:1259–1262

    PubMed  CAS  Google Scholar 

  • Wang XJ, Kim J, McWilliams R, Cutting GR (2005) Increased prevalence of chronic rhinosinusitis in carriers of a cystic fibrosis mutation. Arch. Otolaryngol. Head Neck Surg. 131:237–240

    PubMed  Google Scholar 

  • Wang Y, Ogawa M, Fukuda K, Miyamoto H, Taniguchi H (2006) Isolation and identification of mycobacteria from soils at an illegal dumping site and landfills in Japan. Microbiol. Immunol. 50:513–524

    PubMed  CAS  Google Scholar 

  • Wayne LG, Kubica GP (1986) Genus Mycobacterium Lehmann and Neumann 1896, 363AL. In: Sneath, P.H.A., Mair, N.S., Sharpe, M.E., Holt, J.G. (Eds.), Bergey’s manual of systematic bacteriology, 2. The Williams & Wilkins Co., Baltimore. 1436–1457

    Google Scholar 

  • Wendt SL, George KL, Parker BC, Gruft H, Falkinham JO, III (1980) Epidemiology of infection by nontuberculous Mycobacteria. III. Isolation of potentially pathogenic mycobacteria from aerosols. Am. Rev. Respir. Dis. 122:259–263

    CAS  Google Scholar 

  • Weyer K, Fourie PB, Durrheim D, Lancaster J, Haslov K, Bryden H (1999) Mycobacterium bovis as a zoonosis in the Kruger National Park, South Africa. Int. J. Tuberc. Lung Dis. 3:1113–1119

    PubMed  CAS  Google Scholar 

  • Whipple MJ, Rohovec JS (1994) The Effect of Heat and Low Ph on Selected Viral and Bacterial Fish Pathogens. Aquaculture. 123:179–189

    Google Scholar 

  • Wilson MJ (2003) Clay mineralogical and related characteristics of geophagic materials. J. Chem. Ecol. 29:1525–1547

    PubMed  CAS  Google Scholar 

  • Wilson RW, Steingrube VA, Bottger EC, Springer B, Brown-Elliott BA, Vincent V, Jost KC, Jr., Zhang Y, Garcia MJ, Chiu SH, Onyi GO, Rossmoore H, Nash DR, Wallace RJ, Jr. (2001) Mycobacterium immunogenum sp. nov., a novel species related to Mycobacterium abscessus and associated with clinical disease, pseudo-outbreaks and contaminated metalworking fluids: an international cooperative study on mycobacterial taxonomy. Int. J. Syst. Evol. Microbiol. 51:1751–1764

    CAS  Google Scholar 

  • Windsor RS, Durrant DS, Burn KJ, Blackburn JT, Duncan W (1984) Avian tuberculosis in pigs: miliary lesions in bacon pigs. J. Hyg. (Lond). 92:129–138

    CAS  Google Scholar 

  • Winthrop KL, Abrams M, Yakrus M, Schwartz I, Ely J, Gillies D, Vugia DJ (2002) An outbreak of mycobacterial furunculosis associated with footbaths at a nail salon. N.Engl. J. Med. 346:1366–1371

    PubMed  Google Scholar 

  • Wolinsky E (1979) Nontuberculous mycobacteria and associated diseases. Am. Rev. Respir. Dis. 119:107–159

    PubMed  CAS  Google Scholar 

  • Wolinsky E, Schaefer WB (1973) Proposed numbering scheme for mycobacterial serotypes by agglutination. Int. J. Syst. Bacteriol. 23:182–183

    Google Scholar 

  • Woolcock JB, Mutimer MD, Farmer AMT (1980) Epidemiology of Corynebacterium-Equi in Horses. Res. Vet. Sci. 28 :87–90

    PubMed  CAS  Google Scholar 

  • Xu P, Kujundzic E, Peccia J, Schafer MP, Moss G, Hernandez M, Miller SL (2005) Impact of environmental factors on efficacy of upper-room air ultraviolet germicidal irradiation for inactivating airborne mycobacteria. Environ. Sci. Technol. 39:9656–9664

    PubMed  CAS  Google Scholar 

  • Yajko DM, Chin DP, Gonzalez PC, Nassos PS, Hopewell PC, Reingold AL, Horsburgh CR, Jr., Yakrus MA, Ostroff SM, Hadley WK (1995) Mycobacterium avium complex in water, food, and soil samples collected from the environment of HIV-infected individuals. J. Acquir. Immune. Defic. Syndr. Hum. Retrovirol. 9:176–182

    PubMed  CAS  Google Scholar 

  • Yoder S, Argueta C, Holtzman A, Aronson T, Berlin OGW, Tomasek P, Glover N, Froman S, Stelma G (1999) PCR comparison of Mycobacterium avium isolates obtained from patients and foods. Appl. Environ. Microbiol. 65: 2650–2653

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Partially supported by the European Commission PathogenCombat FOOD-CT-2005-007081 (Sections 5.6 and 5.7) and ParaTBTools FP6-2004-FOOD-3B-023106 (Section 5.10). Grants from the Ministry of Agriculture of the Czech Republic NPV 1B53009 partially supported the Sections 5.2, 5.5, 5.6, 5.7, 5.8, 5.9 and 5.10; NAZV QH71054 Section 5.6.3; and NAZV QH81065 Sections 5.5, 5.6, 5.7 and 5.10.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Pavlik MVDr. CSc. , J. Kazda CSc. or I. Pavlik MVDr. CSc. .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pavlik, I., Falkinham, J.O., Kazda, J. (2009). Environments Providing Favourable Conditions for the Multiplication and Transmission of Mycobacteria. In: The Ecology of Mycobacteria: Impact on Animal's and Human's Health. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9413-2_5

Download citation

Publish with us

Policies and ethics