Skip to main content

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 359))

In 1971, only four years after the discovery of the first radio pulsar, the first neutron star in a close binary was discovered: the 4.84 s X-ray pulsar Centaurus X-3, which is moving in a 2.087 day orbit around an O-star with a mass > 16M [135]. Several more of these High Mass X-ray Binaries (HMXBs) were discovered soon after and it was found that, contrary to what is observed in radio pulsars, the pulse periods of several of these X-ray pulsars are steadily decreasing in the course of time, moving to shorter and shorter values on timescales of order 104 years. It was soon realized that the same accretion process of matter flowing over from the massive companion star that is the cause of the X-ray emission, also causes this “spin-up”. The matter flow in the binary system has angular momentum – derived from the system's orbital motion – and this angular momentum is fed to the neutron star, causing its rotation rate to increase. A few years later, the suggestion was made by [6] that these pulsating X-ray sources in binaries may later in life, when their massive companion stars have exploded as a supernova, become observable as radio pulsars. Such pulsars, which had a history of accretion and spin-up in binaries were later given the name “recycled pulsars” [119]. In 1973 it was calculated [176] that before the second supernova explosion in a HMXB takes place, the orbit of the system will have become very narrow, as a consequence of extensive mass transfer to the neutron star and loss of mass with high angular momentum from the system, leading to final orbital periods of only a few hours. The resulting close system then consists of a helium star (the helium core of the massive companion) plus the neutron star. In 1974 the Hulse-Taylor binary radio pulsar PSRB 1913+16 was discovered, which in addition to its very narrow and eccentric orbit (Porb = 7.75 h, e = 0.615) appeared to have very abnormal characteristics as a radio pulsar: its magnetic field strength is only 2 x 1010 G, some two orders of magnitude lower than that of the other pulsars then known, and its spin period is abnormally short (0.059 s), which at the time made it the second fastest radio pulsar known, after the Crab pulsar (P = 0.033 s). Its orbital period and eccentricity were almost exactly what one would obtain if the helium star in the 4 hour orbit binary (resulting from a HMXB like Centaurus X-3, as calculated in 1973) would explode as a supernova and itself would leave a neutron star. This model for the origin of the Hulse-Taylor binary pulsar was therefore proposed immediately after its discovery [44, 31]. It was thought in these days that the magnetic fields of neutron stars decay on a relatively short timescale, of order 5 million years. The abnormally weak magnetic field of PSRB1913 +16 therefore led [139] to the suggestion that the observed pulsar is the oldest of the two neutron stars in the system, which after a long period of field decay had been spun up by accretion in an X-ray binary system, before the second star exploded. It was subsequently shown [142] that this spin-up idea is the only explanation possible for this peculiar combination of rapid spin and weak magnetic field observed in PSRB 1913+16. This then immediately implies that the companion of this pulsar must also be a neutron star. The reason for this is that during the phases of accretion, orbital shrinking and spin up, the orbit of the system will have become completely circularized by tidal and frictional forces. The only way to then subsequently obtain the large observed orbital eccentricity of the system is: if a second supernova explosion took place. This then implies that the companion of PSRB 1913+16 must itself also be a neutron star: the younger one of the two. As the last-born neutron star did not undergo any accretion, and after the second explosion the system was free of gas, the second neutron star is expected to be a normal newborn “garden variety” radio pulsar with a normal strong magnetic field of order 1012 G [142]. Such pulsars rapidly spin down on a timescale of order a few million years, after which they become unobservable. On the other hand, due to its weak magnetic field, the spin-down timescale of PSRB1913+16 is longer than 108 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpar, M.A., Cheng, A.F., Ruderman, M.A. and Shaham, J. (1982). Nature 300, 728

    Article  ADS  Google Scholar 

  2. Bailes (2005), in Binary Radio Pulsars, Eds. F.A.Rasio and I.H.Stairs (Astronomical Society of the Pacific Conf. Series Vol 328) pp 33–36

    Google Scholar 

  3. Bailes, M., Ord, S.M., Knight, H., and Hotan, A.W. (2003). ApJ 595, L49

    Article  ADS  Google Scholar 

  4. Barziv et al. (2001). A&A 377, 925

    Article  ADS  Google Scholar 

  5. Bildsten, L., Chakrabarty, D., Chiu, J., et al. (1997). ApJS 113, 367

    Article  ADS  Google Scholar 

  6. Bisnovatyi-Kogan, G.S. and Komberg, B.V. (1974). Astron. Zh. 51, 373

    ADS  Google Scholar 

  7. Bisscheroux, B. (1999). Master's thesis, University of Amsterdam (1999).

    Google Scholar 

  8. Bhattacharya, D. and van den Heuvel, E.P.J. (1991). Phys. Reports 203, 1

    Article  ADS  Google Scholar 

  9. Bhattacharya, D. and Srinivasan, G. (1995), in X-ray Binaries, eds. W.H.G. Lewin, J. van Paradijs and E.P.J. van den Heuvel. (Cambridge University Press)

    Google Scholar 

  10. Bjornsson, C.-I. (1996). ApJ 471, 321

    Article  ADS  Google Scholar 

  11. Blaauw, A. (1961). Bull. Astr. Inst. Neth. 15, 265

    ADS  Google Scholar 

  12. Blundell, K.M. (2007) Private Communication

    Google Scholar 

  13. Boriakoff, V., Buccheri, R. and Fauci, F. (1983). Nature 304, 417

    Article  ADS  Google Scholar 

  14. Brown, G.E. (1995). ApJ 440, 270

    Article  ADS  Google Scholar 

  15. Brown, G.E., Lee, C.H. and Bethe, H.A. (1999). New Astronomy 4, 313

    Article  ADS  Google Scholar 

  16. Burgay, M., D'Amico, N., Possenti, A., et al. (2003). Nature 426, 531

    Article  ADS  Google Scholar 

  17. Burrows, A. and Hayes, J. (1996). Phys. Rev. Letters 76, 352

    Article  ADS  Google Scholar 

  18. Camilo, F. (2007). Private Communication

    Google Scholar 

  19. Carpano, S., Pollock, A.M.T., Prestwich, A., et al. (2007). A&A 466, L17

    Article  ADS  Google Scholar 

  20. Chen, K.Y., and Ruderman, M.A. (1993). ApJ 402, 264

    Article  ADS  Google Scholar 

  21. Chevalier, R.A. (1993). ApJ 411, L33

    Article  ADS  MathSciNet  Google Scholar 

  22. Corbet, R.H.D. (1984). A&A 141, 91

    ADS  Google Scholar 

  23. Cordes, J., and Chernoff, D.F. (1998). textitApJ 505, 315

    Google Scholar 

  24. Counselman (1973). ApJ 180, 307

    Article  ADS  Google Scholar 

  25. Cox, J.P. and Giuli, R.T. (1968). Stellar Structure, vols. I and II, (Gordon and Breach, New York)

    Google Scholar 

  26. Cumming, A., Zweibel, E. and Bildsten, L. (2001). ApJ 557, 958

    Article  ADS  Google Scholar 

  27. Cumming, A. (2005), in Binary Radio Pulsars, Eds. F.A.Rasio and I.H.Stairs (Astron. Soc. Pacific Conf. Series Vol 328) pp 311–316

    Google Scholar 

  28. Darwin, G.H. (1879). Proc. Roy. Soc. London 29, 168

    Article  Google Scholar 

  29. Davidson, K. and Ostriker, J.P. (1973). ApJ 179, 585

    Article  ADS  Google Scholar 

  30. de Kool, M. (1990). ApJ 358, 189

    Article  ADS  Google Scholar 

  31. de Loore, C., De Greve, J.R. and De Cuyper, J.P. (1975a). textitApSpSci 36, 219

    Google Scholar 

  32. de Loore, C.W.H., De Greve, J.P., van den Heuvel, E.P.J. and De Cuyper, J.P. (1975b). textitMem.Soc.Astron. Ital. 45, 893

    Google Scholar 

  33. Dewi, J.D.M. and Tauris, T.M. (2000). A&A 360, 1043

    ADS  Google Scholar 

  34. Dewi, J.D.M., Pols, O.R., Savonije, G.J. and van den Heuvel, E.P.J. (2002). MNRAS 331, 1027

    Article  ADS  Google Scholar 

  35. Dewi, J.D.M. and Pols, O.R. (2003). MNRAS 344, 629

    Article  ADS  Google Scholar 

  36. Dewi, J.D.M., Podsiadlowski, Ph., and Pols, O.S. (2005). MNRAS 363, L71

    Article  ADS  Google Scholar 

  37. Eggleton, P.P. (1983). ApJ 268, 368

    Article  ADS  Google Scholar 

  38. Ergma, E. and Fedorova, A.V. (1991). A&A 242, 125

    ADS  Google Scholar 

  39. Ergma, E., Sarna, M.J. and Antipova, J. (1998). MNRAS 300, 352

    Article  ADS  Google Scholar 

  40. Ergma, E. and Yungelson, L.R. (1998). A&A 333, 151

    ADS  Google Scholar 

  41. Faulkner, J. (1971). ApJ 170, L99

    Article  ADS  Google Scholar 

  42. Faulkner, A.J., Kraemer,M., Lyne, A.G. et al. (2005). textitApJ 618, L119

    Google Scholar 

  43. Finger, M. (1998), in The Many Faces of Neutron Stars, Eds. R. Buccheri, J.van Paradijs and A.Alpar. (Kluwer, Dordrecht) pp 369–384

    Google Scholar 

  44. Flannery, B.P. and van den Heuvel, E.P.J. (1975). A&A 39, 61

    ADS  Google Scholar 

  45. Fryer, C.L. (1999). ApJ 522, 413

    Article  ADS  Google Scholar 

  46. Fryer, C. L. (2006). New Astron. Rev. 50, 492

    Article  ADS  Google Scholar 

  47. Fryxell, B.A. and Taam, R.E. (1988). ApJ 335, 862

    Article  ADS  Google Scholar 

  48. Ghosh, P. (2007). Rotation and Accretion Powered Pulsars (World Scientific, London), 772 pp

    MATH  Google Scholar 

  49. Ghosh, P. and Lamb, F.K. (1979). ApJ 234, 296

    Article  ADS  Google Scholar 

  50. Gies, D. and Bolton, C.T. (1982). ApJ 260, 240

    Article  ADS  Google Scholar 

  51. Gies, D. and Bolton, C.T. (1986). ApJ 304, 371

    Article  ADS  Google Scholar 

  52. Habets, G.M.H.J. (1985). Advanced Evolution of Helium Stars and Massive Close Binaries (Ph.D.Thesis Univ. of Amsterdam)

    Google Scholar 

  53. Habets, G.M.H.J. (1986). A&A 167, 61

    ADS  Google Scholar 

  54. Han, Z., Podsiadlowski, P. and Eggleton, P.P. (1994). MNRAS 270, 121

    ADS  Google Scholar 

  55. Han, Z., Podsiadlowski, P. and Eggleton, P.P. (1995). MNRAS 272, 800

    ADS  Google Scholar 

  56. Han, Z., Podsiadlowski, P., Maxted, P.F.L., et al. (2002). MNRAS 336, 449

    Article  ADS  Google Scholar 

  57. Hansen, B.M.S. and Phinney, E.S. (1997). MNRAS 291, 569

    ADS  Google Scholar 

  58. Hartman, J.W. (1997). A&A 322, 127

    ADS  Google Scholar 

  59. Hills, J. (1983). ApJ 267, 322

    Article  ADS  Google Scholar 

  60. Hobbs, G., Lorimer, D.R., Lyne, A.G. and Kramer, M. (2005). MNRAS 360, 974

    Article  ADS  Google Scholar 

  61. Iwamoto, K., Mazzali, P.A., Nomoto, K., et al. (1998). Nature 395, 672

    Article  ADS  Google Scholar 

  62. Johnston, S., et al. (2001). MNRAS 326, 643

    Article  ADS  Google Scholar 

  63. Joss, P.C., Rappaport, S.A. and Lewis W. (1987). ApJ 319, 180

    Article  ADS  Google Scholar 

  64. Kalogera, V. and Baym, G. (1996). ApJ 470, L61

    Article  ADS  Google Scholar 

  65. Kalogera, V., Narayan, R., Spergel, D.N. and Taylor, J.H. (2001). ApJ 556, 340

    Article  ADS  Google Scholar 

  66. Kalogera, V., Kim, C., Lorimer, D.R., et al. (2004). ApJ 601, L179

    Article  ADS  Google Scholar 

  67. Kaper, L., van der Meer, A., van Kerkwijk, M.H. and van den Heuvel, E.P.J. (2006). A&A 457, 595

    Article  ADS  Google Scholar 

  68. Kaspi, V.M., Lyne, A.G. and Manchester, R.N. (2000). ApJ 543, 321

    Article  ADS  Google Scholar 

  69. King, A.R. and Begelman, M.C. (1999). ApJ 519, L169

    Article  ADS  Google Scholar 

  70. King, A.R. and Ritter, H. (1999). MNRAS 309, 253

    Article  ADS  Google Scholar 

  71. Kippenhahn, R. and Weigert, A. (1967). Z. Astrophys. 65, 251

    ADS  Google Scholar 

  72. Kippenhahn, R. and Weigert, A. (1990). Stellar Structure and Evolution, (Springer, Heidelberg)

    Google Scholar 

  73. Kitaura, F.S., Janka, H.-Th., and Muller, E. (2006). A&A 450, 345

    Article  ADS  Google Scholar 

  74. Kolb, U., Davies, M.B., King, A.R., Ritter, H. (2000). MNRAS 317, 438

    Article  ADS  Google Scholar 

  75. Kulkarni, S.R. (1986). ApJ 306, L85

    Article  ADS  Google Scholar 

  76. Lamb, F.K., Pethick, C.J. and Pines, D. (1973). ApJ 184, 271

    Article  ADS  Google Scholar 

  77. Landau, L.D. and Lifshitz, E. (1958). The Classical Theory of Fields, Pergamon Press, Oxford)

    Google Scholar 

  78. Lewin, W.H.G., van Paradijs, J.A. and van den Heuvel, E.P.J. (1995). X-ray Binaries (Cambridge University Press) 662pp

    Google Scholar 

  79. Lewin, W.H.G. and van der Klis, M. (2006). Compact Stellar X-ray Sources (Cambridge University Press) 690pp

    Google Scholar 

  80. Liu, Q.Z. (2001). Private Communication

    Google Scholar 

  81. Liu, Q.Z., van Paradijs, J. and van den Heuvel, E.P.J. (2007). A & A 409, 807

    ADS  Google Scholar 

  82. Lommen, D., Yungelson, L., van den Heuvel, E., Nelemans, G. and Portegies Zwart, S. (2005). A&A 443, 231

    Article  ADS  Google Scholar 

  83. Lyne, A.G., Brinklow, A., Middleditch, J., Kulkarni, S.R. and Backer, D.C. (1987). Nature 328, 399

    Article  ADS  Google Scholar 

  84. Lyne, A.G. and Lorimer, D.R. (1994). Nature 369, 127

    Article  ADS  Google Scholar 

  85. Lyne, A.G., Burgay, M., Kramer, M., et al. (2004). Science 303, 1153

    Article  ADS  Google Scholar 

  86. Lyne, A.G. and Graham-Smith, F. (1990). Pulsar Astronomy, (Cambridge University Press) 274pp

    Google Scholar 

  87. Manchester, R.N. and Taylor, J.H. (1977). Pulsars, (Freeman, San Francisco)

    Google Scholar 

  88. Maraschi, L., Treves, A. and van den Heuvel, E.P.J. (1976). Nature 259, 292

    Article  ADS  Google Scholar 

  89. McClintock, J.E. and Remillard, R.A. (1986). ApJ 308, 110

    Article  ADS  Google Scholar 

  90. McClintock, J.E. and Remillard, R.A. (2006), in Compact Stellar X-ray Sources, Eds. W.H.G.Lewin and M. van der Klis. (Cambridge University Press) p 157–213

    Google Scholar 

  91. Meurs, E. and van den Heuvel, E.P.J. (1988). A&A 226, 88

    ADS  Google Scholar 

  92. Meyer, F. and Meyer-Hofmeister, E. (1978). A&A 78, 167

    ADS  Google Scholar 

  93. Miyaji, S., Nomoto, K., Yokoi, K., and Sugimoto, D. (1980) PASJ 32, 303

    ADS  Google Scholar 

  94. Mirabel, I.F., Mignami, R., Rodrigues, I., et al. (2002) A&A, in press

    Google Scholar 

  95. Nagase, F. (1989). PA SJ 41, 1

    MathSciNet  Google Scholar 

  96. Nauenberg, M. and Chapline, G. (1973). ApJ 179, 277

    Article  ADS  Google Scholar 

  97. Nelemans, G., Tauris, T.M. and van den Heuvel, E.P.J. (1999). A&A 352, L87

    ADS  Google Scholar 

  98. Nelemans, G. and van den Heuvel, E.P.J. (2001). A&A 376, 950

    Article  ADS  Google Scholar 

  99. Nomoto, K. (1984). ApJ 277, 791

    Article  ADS  Google Scholar 

  100. Nugis, T. and Larmers, H.J.G.L.M. (2000). A&A 360, 227

    ADS  Google Scholar 

  101. Ostriker J.P. (1976), in Structure and Evolution of Close Binary Systems, eds. P.P. Eggleton et al. (Reidel, Dordrecht) p. 206

    Google Scholar 

  102. Paczynski, B. (1967). Acta Astron. 17, 355

    ADS  Google Scholar 

  103. Paczynski B. (1971). Acta Astron. 21, 1

    ADS  Google Scholar 

  104. Paczynski B. (1976), in Structure and Evolution of Close Binary Systems, eds. P.P. Eggleton et al. (Reidel, Dordrecht) p. 75

    Google Scholar 

  105. Pfahl, E. Podsiadlowski, P., Rappaport, S.A. and Spruit, H. (2002). ApJ 574, 364

    Article  ADS  Google Scholar 

  106. Podsiadlowski, P. (1991). Nature 350, 136

    Article  ADS  Google Scholar 

  107. Podsiadlowski, P. and Rappaport, S.A. (2000). ApJ 529, 946

    Article  ADS  Google Scholar 

  108. Podsiadlowski, P., Rappaport, S.A. and Pfahl, E. (2002). ApJ 565, 1107

    Article  ADS  Google Scholar 

  109. Podsiadlowski, P., Rappaport, S.A. and Han, Z. (2002). MNRAS, submitted (astro-ph/0207153)

    Google Scholar 

  110. Podsiadlowski, Ph., Langer, N., Poelarends, A.J.T., Rappaport, S., Heger, A., and Pfahl, E. (2004). ApJ 612, 1044

    Article  ADS  Google Scholar 

  111. Pols, O.R., Tout, C.A., Eggleton, P.P. and Han, Z. (1995). MNRAS 274, 964

    ADS  Google Scholar 

  112. Pols, O.R., Schröder, K.P., Hurley, J.R., et al. (1998). MNRAS 298, 525

    Article  ADS  Google Scholar 

  113. Portegies Zwart, S.F. and Yungelson, L.R. (1999). MNRAS 309, 26p

    Article  ADS  Google Scholar 

  114. Portegies Zwart, S.F. and McMillan, S.L.W. (2000). ApJ 528, L17

    Article  ADS  Google Scholar 

  115. Prestwich, A. et al. (2007). ATel , Nr.955

    Google Scholar 

  116. Psaltis,D. (2006), in Compact Stellar X-ray Sources, Eds. W.H.G.Lewin and M.van der Klis. (Cambridge Univ. Press), pp 1–38

    Google Scholar 

  117. Pylyser, E. and Savonije, G.J. (1988). A&A 191, 57

    ADS  Google Scholar 

  118. Pylyser, E. and Savonije, G.J. (1989). A&A 208, 52

    MATH  ADS  Google Scholar 

  119. Radhakrishnan, V. and Srinivasan, G. (1982). Current Science 51, 1096

    ADS  Google Scholar 

  120. Radhakrishnan, V. and Srinivasan, G. (1984), in Proc. Second Asian-Pacific IAU Regional Meeting, Bandung Indonesia 24–29 Aug.1981 Eds. B.Hidayat and M.W.Feast. (Tira Pustaka, Jakarta) p. 423

    Google Scholar 

  121. Rappaport, S.A., Verbunt, F. and Joss, P.C. (1983). ApJ 275, 713

    Article  ADS  Google Scholar 

  122. Rappaport, S.A., Podsiadlowski, P., Joss, P.C., et al. (1995). MNRAS 273, 731

    ADS  Google Scholar 

  123. Rappaport, S.A. and van deen Heuvel, E.P.J. (1982), in B-e stars, Proceedi ngs of a Symposium in Munchen, (Reidel, Dordrecht)

    Google Scholar 

  124. Refsdal, S. and Weigert, A. (1971). A&A 13, 367

    ADS  Google Scholar 

  125. Reimers, D. (1975), in Problems in Stellar Atmospheres and Envelopes, eds. B. Bascheck, W.H.Kegel, G. Traving. (Springer, New York) p. 229

    Google Scholar 

  126. Reimers, D. and Koester, D. (1988). ESO Messenger 54, 47

    ADS  Google Scholar 

  127. Ruderman, M.A. (1998), in The Many Faces of Neutron Stars, eds. R. Buccheri, J. van Paradijs and A. Alpar. (Kluwer, Dordrecht) p. 77

    Google Scholar 

  128. Ruderman, M.A., Shaham, J. and Tavani, M. (1989). ApJ 336, 507

    Article  ADS  Google Scholar 

  129. Savonije, G.J. (1978). A&A 62, 317

    ADS  Google Scholar 

  130. Savonije, G.J. (1983), in Accretion Driven Stellar X-ray Sources, eds. W.H.G. Lewin and E.P.J. van den Heuvel. (Cambridge Uni. Press) p. 343

    Google Scholar 

  131. Savonije, G.J. (1987). Nature 325, 416

    Article  ADS  Google Scholar 

  132. Schaller, G., Schaerer, D., Meynet, G. and Maeder, A. (1992). A&AS 96, 269

    ADS  Google Scholar 

  133. Scheck, L., Plewa, T., Janka, H.-Th., Mueller, E. (2004). Phys.Rev.Lett. 92, id.011103

    Article  ADS  Google Scholar 

  134. Scheck, L., Kifonidis, H., Janka, H.-Th., Mueller, E. (2006). A&A 457, 963

    Article  ADS  Google Scholar 

  135. Schreier, E., Levinson, R., Gursky, H., et al. (1972). ApJ 172, L79

    Article  ADS  Google Scholar 

  136. Shaham, J. (1992), in X-ray Binaries and Recycled Pulsars, eds. E.P.J. van den Heuvel and S.A. Rappaport. (Kluwer, Dordrecht) p. 375

    Google Scholar 

  137. Sidoli, L., Paizis, A. and Mereghetti, S. (2006). A&A 450, L9

    Article  ADS  Google Scholar 

  138. Shapiro, S.L. and Teukolsky, S.A. (1983). Black Holes, White Dwarfs and Neutron Stars, (Wiley-Interscience, New York), 645pp

    Book  Google Scholar 

  139. Smarr, L.L. and Blandford, R.D. (1976). ApJ 207, 574

    Article  ADS  Google Scholar 

  140. Soberman, G.E., Phinney, E.S. and van den Heuvel, E.P.J. (1997). A&A 327, 620

    ADS  Google Scholar 

  141. Spruit, H.C. and Ritter, H. (1983). A&A 124, 267

    ADS  Google Scholar 

  142. Srinivasan, G. and van den Heuvel, E.P.J. (1982). A&A 108, 143

    ADS  Google Scholar 

  143. Stairs, I.H. (2004). Science 304, 547

    Article  ADS  Google Scholar 

  144. Sugimoto, D. and Nomoto, K. (1980). Space Sc. Rev. 25, 155

    ADS  Google Scholar 

  145. Taam, R.E. (1983). ApJ 270, 694

    Article  ADS  Google Scholar 

  146. Taam, R.E. and Bodenheimer, P. (1991). ApJ 373, 246

    Article  ADS  Google Scholar 

  147. Taam, R.E. and van den Heuvel, E.P.J. (1986). ApJ 305, 235

    Article  ADS  Google Scholar 

  148. Taam, R.E. and Fryxell, B.A. (1988). ApJ 327, L73

    Article  ADS  Google Scholar 

  149. Taam, R.E. and Sandquist, E.L. (2000). ARA&A 38, 113

    Article  ADS  Google Scholar 

  150. Tanaka, Y. and Lewin, W.H.G. (1995), in X-Ray Binaries, Eds. W.H.G.Lewin, J.van Paradijs and E.P.J.van den Heuvel. (Cambridge Univ. Press), p. 126

    Google Scholar 

  151. Tauris, T.M. (1996). A&A 315, 453

    ADS  Google Scholar 

  152. Tauris, T.M. and Takens, R. (1998). A&A 330, 1047

    ADS  Google Scholar 

  153. Tauris, T.M. and Savonije, G.J. (1999). A&A 350, 928

    ADS  Google Scholar 

  154. Tauris, T.M., van den Heuvel, E.P.J. and Savonije, G.J. (2000). ApJ 530, L93

    Article  ADS  Google Scholar 

  155. Tauris, T.M. and Dewi, J.D.M. (2001). A&A 369, 170

    Article  ADS  Google Scholar 

  156. Tauris, T.M. and Sennels, T. (2000). A&A 355, 236

    ADS  Google Scholar 

  157. Tauris, T.M. and van den Heuvel, E.P.J. (2006), in Compact Stellar X-ray Sources, Eds. W.H.G. Lewin and M. van der Klis. (Cambridge Univ. Press), p. 623

    Google Scholar 

  158. Tavani, M. (1992), in X-ray Binaries and Recycled Pulsars, eds. E.P.J. van den Heuvel and S.A. Rappaport. (Kluwer, Dordrecht) p. 387

    Google Scholar 

  159. Taylor, J.H. and Weisberg, J.M. (1989). ApJ 345, 434

    Article  ADS  Google Scholar 

  160. Terquem, C., Papaloizou, J.C.B., Nelson, R.P. and Lin, D.N.C. (1998). ApJ 502, 588

    Article  ADS  Google Scholar 

  161. Thompson, C. and Duncan, R. (1995). MNRAS 275, 255

    ADS  Google Scholar 

  162. Timmes, F.X., Woosley, S.E. and Weaver, T.A. (1996). ApJ 457, 834

    Article  ADS  Google Scholar 

  163. Truemper, J, Pietsch, W., Reppin, C., Voges, W., Staubert, R. and Kendit-zorra, E. (1978). ApJ 219, L105

    Article  ADS  Google Scholar 

  164. Tutukov, A.V. and Yungelson, L.R. (1973). Nauchnye Informatsii 27, 70

    ADS  Google Scholar 

  165. van den Heuvel, E.P.J. (1981a). Vistas in Astronomy 25, 95

    Article  ADS  Google Scholar 

  166. van den Heuvel, E.P.J. (1981b), in Fundamental Problems in the Theory of Stellar Evolution, Eds. D.Sugimoto, D.Q.Lamb and D.N.Schramm. (Reidel, Dordrecht) p 155

    Google Scholar 

  167. van den Heuvel, E.P.J. (1983), in Accretion-driven Stellar X-ray Sources, Eds. W.H.G. Lewin and E.P.J.van den Heuvel. (Cambridge Univ. Press), p 303

    Google Scholar 

  168. van den Heuvel, E.P.J. (1992), in X-ray Binaries and Recycled Pulsars, Eds. E.P.J.van den Heuvel and S.A.Rappaport. (Kluwer Acad. Publishers, Dordrecht), p 233

    Google Scholar 

  169. van den Heuvel, E.P.J. (1994a), in Interacting Binaries, Saas-Fee course 22, Eds.H. Nussbaumer and A. Orr. (Springer, Heidelberg) p. 263

    Chapter  Google Scholar 

  170. van den Heuvel, E.P.J. (1994b), in The Evolution of X-ray Binaries, AIP Conf. Proceedings, Vol. 3 08, Eds. S.Holt and C.S.Day. (American Institute of Physics Press, New York), p 18

    Google Scholar 

  171. van den Heuvel, E.P.J. (2004), in Proc. 5th INTEGRAL Workshop, ESA SP-552, Eds. V. Schoenfelder, G. Lichti and C.Winkler. (ESA Publ. Div. ESTEC, Noorwijk) p 185

    Google Scholar 

  172. van den Heuvel, E.P.J. (2005), in The Electromagnetic Spectrum of Neutron Stars, Eds. A. Baykal et al. (Springer, the Netherlands) p 191

    Chapter  Google Scholar 

  173. van den Heuvel, E.P.J. (2006). Advances in Space Res. 38, 2667

    Article  ADS  Google Scholar 

  174. van den Heuvel, E.P.J. (2007). Astro-ph/ 0704.1215v2

    Google Scholar 

  175. van den Heuvel, E.P.J. and Heise, J. (1972). Nature–Physical Science 239, 67

    ADS  Google Scholar 

  176. van den Heuvel, E.P.J. and de Loore, C. (1973). A&A 25, 387

    ADS  Google Scholar 

  177. van den Heuvel, E.P.J. and Taam, R.E. (1984).Nature 309, 235

    Article  ADS  Google Scholar 

  178. van den Heuvel, E.P.J., van Paradijs, J.A. and Taam, R.E. (1986).Nature 322, 153

    Article  ADS  Google Scholar 

  179. van den Heuvel, E.P.J. and Rappaport, S.A. (1987), in Physics of Be-stars, Proc. IAU Colloq. 92 (Cambridge Uni. Press) p. 291

    Google Scholar 

  180. van den Heuvel, E.P.J. and van Paradijs, J. (1988).Nature 334, 227

    Article  ADS  Google Scholar 

  181. van den Heuvel, E.P.J. and van Paradijs, J. (1997). ApJ 483, 399

    Article  ADS  Google Scholar 

  182. van den Heuvel, E.P.J., Portegies Zwart, S.F., Bhattacharya, D. and Kaper, L. (2000). A&A 363, 563

    Google Scholar 

  183. van der Hucht, K.A. (2006). A&A 458, 453

    Article  ADS  Google Scholar 

  184. van der Klis, M. (2006), in Compact Stellar X-ray Sources, Eds. W.H.G.Lewin and M. van der Klis. (Cambridge Univ. Press), p 39

    Google Scholar 

  185. van Kerkwijk, M.H., Charles, P.H., Geballe, T.R., King, D.L., Miley, G.K., Molnar, L.A. van den Heuvel, E.P.J., van der Klis, M. van Paradijs, J. (1992).Nature 355, 703

    Article  ADS  Google Scholar 

  186. van Kerkwijk, M.H. and Kulkarni, S.R. (1999). ApJ 516, L25

    Article  ADS  Google Scholar 

  187. van Paradijs, J. and McClintock, J.E. (1995), in X-ray Binaries, Eds. W.H.G.Lewin, J. van Paradijs and E.P.J.van den Heuvel. (Cambridge Univ. Press), 58

    Google Scholar 

  188. Verbunt, F. and Zwaan, C. (1981). A&A 100, L7

    ADS  Google Scholar 

  189. Verbunt, F. and Phinney, E.S. (1995). A&A 296, 709

    ADS  Google Scholar 

  190. Verbunt, F. and van den Heuvel, E.P.J. (1995), in X-ray Binaries, eds. W.H.G. Lewin, J. van Paradijs and E.P.J. van den Heuvel (Cambridge Uni. Press)

    Google Scholar 

  191. Verbunt, F. and Lewin, W.H.G. (2006), in Compact Stellar X-ray Sources, Eds. W.H.G. Lewin and M. van der Klis. (Cambridge Univ. Press), 341

    Google Scholar 

  192. Voss, R. and Tauris, T.M. (2003). MNRAS, 342, 1169

    Article  ADS  Google Scholar 

  193. Walter, R., Heras, Z., Bassani, L. et al. (2006). A&A 453, 133

    Article  ADS  Google Scholar 

  194. Waters, L.B.F.M. and van Kerkwijk, M.H. (1989). A&A 223, 196

    ADS  Google Scholar 

  195. Webbink, R.F. (1984). ApJ 277, 355

    Article  ADS  Google Scholar 

  196. Webbink, R.F., Rappaport, S.A. and Savonije, G.J. (1983). ApJ 270, 678

    Article  ADS  Google Scholar 

  197. Weidemann, V. (1990). ARA&A 28, 103

    Article  ADS  Google Scholar 

  198. Wellstein, S. and Langer, N. (1999). A&A 350, 148

    ADS  Google Scholar 

  199. Wolszczan, A. (1994). Science 264, 538

    Article  ADS  Google Scholar 

  200. Woosley, S.E. and Weaver, T.A. (1995). ApJS 101, 181

    Google Scholar 

  201. Woosley, S.E., Langer, N. and Weaver, T.A. (1995). ApJ 448, 315

    Article  ADS  Google Scholar 

  202. Zhang, C.M. (1998). A&A 330, 195

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Canopus Publishing Limited

About this chapter

Cite this chapter

Heuvel, E.P.J.v.d. (2009). The Formation and Evolution of Relativistic Binaries. In: Colpi, M., Casella, P., Gorini, V., Moschella, U., Possenti, A. (eds) Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence. Astrophysics and Space Science Library, vol 359. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9264-0_4

Download citation

Publish with us

Policies and ethics