Skip to main content

Epigenetics – Potential Contribution to Fetal Programming

  • Conference paper
Early Nutrition Programming and Health Outcomes in Later Life

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 646))

Whilst the primary DNA sequence sets the limits of potential gene expression, the pattern of gene expression in a given cell under particular circumstances is determined by several factors including the epigenetic marking of the genome. These marks include DNA methylation and post-translational modification of the histones around which DNA is wrapped when packaged in the nucleus. Importantly, these marks are malleable in response to environmental exposures and contribute to phenotypic plasticity in the context of a fixed genotype. There is now proof of principle that maternal diet can have a profound impact on the epigenome and so determine gene expression patterns and health throughout the life-course. Studies of altered epigenetic marking will be of profound importance for mechanistic understanding of the role of nutrition in health but especially for studies of the developmental origins of health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bastow, R., J.S. Mylne, C. Lister, Z. Lippman, R.A. Martienssen and C. Dean (2004) “Vernalization requires epigenetic silencing of FLC by histone methylation.” Nature 427: 164–167.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, B.E., A. Meissner and E.S. Lander (2007) “The mammalian epigenome.” Cell 128: 669–681.

    Article  PubMed  CAS  Google Scholar 

  • Bertram, C.E. and M.A. Hanson (2001) “Animal models and programming of the metabolic syndrome.” Brit Med Bull 60: 103–121.

    Article  PubMed  CAS  Google Scholar 

  • Bird, A. (2002) “DNA methylation patterns and epigenetic memory.” Genes Dev 16: 6–21.

    Article  PubMed  CAS  Google Scholar 

  • Dolinoy, D.C., J.R. Weidman, R.A. Waterland and R.L. Jirtle (2006) “Maternal genistein alters coat colour and protects Avy mouse offspring from obesity by modifying the fetal epigenome.” Environ Health Perspect 114(4): 567–572.

    Article  PubMed  CAS  Google Scholar 

  • Fraga, M.F., E. Ballestar, M.F. Paz, S. Ropero, F. Setien, M.L. Ballestar, D. Heine-Suner, J.C. Cigudosa, M. Urioste, J. Benitez, M. Boix-Chornet, A. Sanchez-Aguilera, C. Ling, E. Carlsson, P. Poulsen, A. Vaag, Z. Stephan, T.D. Spector, Y.Z. Wu, C. Plass and M. Esteller (2005) “Epigenetic differences arise during the lifetime of monozygotic twins.” Proc Natl Acad Sci USA 102(30): 10604–10609.

    Article  PubMed  CAS  Google Scholar 

  • Jirtle, R.L. and M.K. Skinner (2007) “Environmental epigenomics and disease susceptibility.” Nat Rev Genet 8: 253–262.

    Article  PubMed  CAS  Google Scholar 

  • Lillycrop, K.A., E.S. Phillips, A.A. Jackson, M.A. Hanson and G.C. Burdge (2005) “Dietary restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring.” J Nutr 135: 1382–1386.

    PubMed  CAS  Google Scholar 

  • Poulsen, P., M. Esteller, A. Vaag and M.F. Fraga (2007) “The epigenetic basis of twin discordance in age-related diseases.” Pediatr Res 61(5): 38R–42R.

    Article  PubMed  Google Scholar 

  • Reik, W., W. Dean and J. Walter (2001) “Epigenetic reprogramming in mammalian development.” Science 293: 1089–1093.

    Article  PubMed  CAS  Google Scholar 

  • Waterland, R.A. and R.L. Jirtle (2003) “Transposable elements: targets for early nutritional effects on epigenetic gene regulation.” Mol Cell Biol 23: 5293–5300.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Mathers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this paper

Cite this paper

Mathers, J.C., McKay, J.A. (2009). Epigenetics – Potential Contribution to Fetal Programming. In: Koletzko, B., Decsi, T., Molnár, D., de la Hunty, A. (eds) Early Nutrition Programming and Health Outcomes in Later Life. Advances in Experimental Medicine and Biology, vol 646. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9173-5_13

Download citation

Publish with us

Policies and ethics