Skip to main content

Part of the book series: IUTAM BookSeries ((IUTAMBOOK,volume 11))

Abstract

We discuss inelastic media under uncertainty modelled by probabilistic methods. As a prototype inelastic material we consider perfect plasticity. We propose a mathematical formulation as a stochastic variational inequality. The new element vis à vis a stochastic elastic medium is the so-called return map at each Gauss-point. We concentrate on a stochastic version of this, showing how it may be solved via (generalised) polynomial expansion.

Explicit formulas are provided for plane strain, together with results from example computations, giving a stochastic inelastic or irreversible time-step procedure. This may serve as a prototype example for any other irreversible behaviour, especially of the rate-independent kind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. Adler. The Geometry of Random Fields. John Wiley & Sons, Chichester, 1981.

    MATH  Google Scholar 

  2. M. Anders and M. Hori. Stochastic finite element methods for elasto-plastic body. Int. J. Num. Meth. Engnrng., 46:1897–1916, 1999.

    Article  MATH  Google Scholar 

  3. I. Babuska, R. Tempone, and G. E. Zouraris. Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal., 42:800–825, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. E. Caflisch. Monte Carlo and Quasi-Monte-Carlo methods. Acta Numerica, 7:1–49, 1998.

    Article  MathSciNet  Google Scholar 

  5. R. Courant and D. Hilbert. Methods of Mathematical Physics. John Wiley & Sons, Chichester, 1989.

    Google Scholar 

  6. G. Duvaut and J. L. Lions. Inequalties in Mechanics and Physics. Springer Verlag, Berlin, 1976.

    Google Scholar 

  7. R. Ghanem and P. Spanos. Stochastic Finite Elements — A Spectral Approach. Springer Verlag, Berlin, 1991.

    MATH  Google Scholar 

  8. W. Han and B. D. Reddy. Plasticity: Mathematical Theory and Numerical Analysis. Springer Verlag, Berlin, 1999.

    MATH  Google Scholar 

  9. T. Hida, H. H. Kuo, J. Potthoff, and L. Streit. White Noise — An Infinite Dimensional Calculus. Kluwer, Dordrecht, 1993.

    MATH  Google Scholar 

  10. H. Holden, B. Øksendal, J. Uboe, and T. Zhang. Stochastic Partial Differential Equations. A Modeling, White Noise, Functional Approach. Birkhäuser, Basel, 1996.

    MATH  Google Scholar 

  11. B. Jeremić, K. Sett, and M. Levent Kavvas. Probabilistic elasto-plasticity: Formulation in 1d. Acta Geotechnica, 2:197–210, 2007.

    Article  Google Scholar 

  12. A. Keese. Numerical Solution of Systems with Stochastic Uncertainties. A General Purpose Framework for Stochastic Finite Elements. PhD thesis, TU Braunschweig, Brunswick, 2003. url: http://www.digibib.tu-bs.de/?docid=00001595

    Google Scholar 

  13. A. Keese. A review of recent develpoments in the numerical solution of stochastic partial differential equations. Informatikbericht 2003–6, Institute of Scientific Computing, TU Braunschweig, Brunswick, 2003. url: http://www.digibib.tu-bs.de/?docid==00001504

    Google Scholar 

  14. M. Kojić and K.-J. Bathe. Inelastic Analysis of Solids and Structures. Springer Verlag, Berlin, 2004.

    Google Scholar 

  15. P. Krée and C. Soize. Mathematics of Random Phenomena-Random Vibrations of Mechanical Structures. D. Reidel, Dordrecht, 1986.

    MATH  Google Scholar 

  16. M. Loève. Probability Theory. Springer-Verlag, Berlin, 1977.

    MATH  Google Scholar 

  17. P. Malliavin. Stochastic Analysis. Springer-Verlag, Berlin, 1997.

    MATH  Google Scholar 

  18. K. Z. Markov. Application of Volterra-Wiener series for bounding the overall conductivity of heterogeneous media, I. general procedure. SIAM J. Appl. Math., 4:831–849, 1987.

    Article  Google Scholar 

  19. H. G. Matthies. Quantifying uncertainty: Modern computational representation of probability and applications. In A. Ibrahimbegović and I. Kožar (Eds.), Extreme Man-Made and Natural Hazards in Dynamics of Structures, NATO-ARW, Springer Verlag, Berlin, 2007.

    Google Scholar 

  20. H. G. Matthies. Uncertainty quantification with stochastic finite elements. In E. Stein, R. de Borst, and T. J. R. Hughes (Eds.), Encyclopedia of Computational Mechanics. John Wiley & Sons, Chichester, 2007.

    Google Scholar 

  21. H. G. Matthies, C. E. Brenner, C. G. Bucher, and C. Guedes Soares. Uncertainties in probabilistic numerical analysis of structures and solids — Stochastic finite elements. J. Stuctural Safety, 19:283–336, 1997.

    Article  Google Scholar 

  22. H. G. Matthies and C. Bucher. Finite elements for stochastic media problems. Comp. Meth. Appl. Mech. Engnrng., 168:3–17, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  23. H. G. Matthies and A. Keese. Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comp. Meth. Appl. Mech. Engnrng., 194:1295–1331, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  24. E. Novak and K. Ritter. Simple cubature formulas with high polynomial exactness. Constructive Approximation, 15:499–522, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  25. G. Schuëller. A state of the art report on computational stochastic mechanics. Prob. Engnrng. Mech., 12:197–321, 1997.

    Article  Google Scholar 

  26. C. Schwab and R. A. Todor. Sparse finite elements for elliptic problems with stochastic loading. Numer. Math., 95:707–734, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  27. J. C. Simo and T. J. R. Hughes. Computational Inelasticity. Springer Verlag, Berlin, 1998.

    MATH  Google Scholar 

  28. S. A. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR (Soviet Math. Dokl.), 4:240–243, 1963.

    Google Scholar 

  29. D. Xiu and G. E. Karniadakis. Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comp. Meth. Appl. Mech. Engnrng., 191:4927–4948, 2002.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this paper

Cite this paper

Matthies, H.G., Rosić, B.V. (2008). Inelastic Media under Uncertainty: Stochastic Models and Computational Approaches. In: Reddy, B.D. (eds) IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media. IUTAM BookSeries, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9090-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9090-5_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9089-9

  • Online ISBN: 978-1-4020-9090-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics