Skip to main content

Insect Pests as Climate Change Driven Disturbances in Forest Ecosystems

  • Chapter
Bioclimatology and Natural Hazards

Abstract

Climate change is generally agreed to have a profound impact on forest structure and its dynamics (Aber et al. 2001; Ayres and Lombardero 2000; Dale et al. 2000, 2001). As trees can live from decades to centuries, rapid changes of climate are also expressed through alterations of the disturbance regime (Franklin et al. 2002; He et al. 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber J, Neilson RP, McNulty S, Lenihan JM, Bachelet D, Drapek RJ (2001) Forest processes and global environmental change: Predicting the effects of individual and multiple stressors. BioScience, 51: 735–751

    Article  Google Scholar 

  • Anderbrant O (1986) A model for the temperature and density dependent reemergence of the bark beetle Ips typographus. Entomologia Experimentalis et Applicata, 40: 81–88

    Article  Google Scholar 

  • Anderbrant O (1990) Gallery construction and oviposition of the bark beetle Ips typographus (Coleoptera: Scolytidae) at different breeding densities. Ecological Entomology, 15: 1–8

    Article  Google Scholar 

  • Andersson M, Erlinge S (1977) Influence of predation on rodent populations. Oikos, 29: 591–597

    Article  Google Scholar 

  • Annila E (1969) Influence of temperature upon the development and voltinism of Ips typographus L. (Coleoptera, Scolitidae). Annales Zoologici Fennici, 6: 161–208

    Google Scholar 

  • Ayres MP, Lombardero MJ (2000) Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Science of the Total Environment 262: 263–286

    Article  Google Scholar 

  • Baier P (1996a) Auswirkungen von Vitalität und Brutbaum–Qualität der Europaischen Fichte, Picea abies, auf die Entwicklung der Borkenkäfer–Art Ips typographus (Coleoptera: Scolytidae). Entomology General, 21: 27–35

    Google Scholar 

  • Baier P (1996b) Defence reactions of Norway spruce (Picea abies Karst) to controlled attacks of Ips typographus (L.) (Col Scolytidae) in relation to tree parameters. Journal of Applied Entomology, 120: 587–593

    Article  Google Scholar 

  • Baier P, Pennerstorfer J, Schopf A (2007) PHENIPS – A comprehensive phenology model of Ips typographus (L.) (Col. Scolytinae) as a tools for hazard rating of bark beetle infestation, Forest Ecology and Management, 249: 171–186

    Article  Google Scholar 

  • Baltensweiler W, Fischlin A (1988) The larch budmoth in the Alps. In: Berryman A (ed.) Dynamics of Forest Insect Populations: Patterns, Causes, Implications, Plenum, New York, pp. 331–351

    Google Scholar 

  • Battles JJ, Robards T, Das A, Waring K, Gilless JK, Schurr F, LeBlanc J, Biging G, Simon C (2006) Climate change impact on forest resources, California Climate Change Center

    Google Scholar 

  • Berryman AA (1996) What causes population cycles of forest Lepidoptera? Trends in Ecology and Evolution, 11: 28–32

    Article  Google Scholar 

  • Brasier CM (1996) Phytophthora cinnamomi and oak decline in southern Europe: Environmental constraints including climate change. Annales des Sciences Forestières, 53: 347–358

    Article  Google Scholar 

  • Byers JA (1993) Simulation and equation models of insect population control by pheromone-baited traps. Journal of Chemical Ecology, 19: 1939–1956

    Article  Google Scholar 

  • Byers JA (1996) An encounter rate model of bark beetle populations searching at random for susceptible host trees. Ecological Modelling 91: 57–66

    Article  Google Scholar 

  • Byers JA (1999) Effects of attraction radius and flight paths on catch of scolytid beetles dispersing outward through rings of pheromone traps. Journal of Chemical Ecology, 25: 985–1005

    Article  Google Scholar 

  • Byers JA (2000) Wind-aided dispersal of simulated bark beetles flying through forests. Ecological Modelling, 125: 231–243

    Article  Google Scholar 

  • Csóka G, Hirka A (2006) 2004- year of the gypsy moth in Hungary. In: Csóka G, Hirka A, Koltay A (eds.). Biotic damage in forests. Proceedings of the IUFRO WP. 7.03.10.) Symposium held in Mátrafüred, Hungary, 12–16 September 2004. pp. 271–275.

    Google Scholar 

  • Christiansen E, Bakke A (1988) The spruce bark beetle of Eurasia. In: Berryman AA (ed.), Dynamics of Forest Insect Populations; Patterns, Causes, Implications, Plenum Press, New York, pp 479–503

    Google Scholar 

  • Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff D, Swanson FJ, Stocks BJ, Wotton B (2001) Climate change and forest disturbance. BioScience 51(9): 723–734

    Article  Google Scholar 

  • Dale VH, Joyce LA, McNulty S, Neilson RP (2000) The interplay between climate change, forests, and disturbance. Science of the Total Environment 262(3): 201–204

    Article  Google Scholar 

  • Doane CC, McManus ME (eds) (1981) The gypsy moth: research toward integrated pest management. USDA Tech Bull 1584, Washington

    Google Scholar 

  • Docherty M, Salt DT, Holopainen JK. (1997) The impacts of climate change and pollution on forest pests. In: Watt AD, Stork NE, Hunter MD (eds.), Forests and Insects, London: Chapman & Hall, pp. 229–247

    Google Scholar 

  • Esper J, Buntgen U, Frank DC, Nievergelt D, Liebhold A (2007) 1200 years of regular outbreaks in alpine insects. Proceedings of the Royal Society, B 274: 671–679

    Google Scholar 

  • Flannigan MD, Stocks BJ, Wotton BM (2000) Climate change and forest fires. Science of the Total Environment 262: 221–229

    Article  Google Scholar 

  • Franklin JF, Spies TA, Van Pelt R. et al. (2002) Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. Forest Ecology and Management 155: 399–423

    Article  Google Scholar 

  • Forsse E (1991) Flight propensity and diapause incidence in five populations of the bark beetle Ips typographus in Scandinavia. Entomologia Experimentalis et Applicata, 61: 53–58

    Article  Google Scholar 

  • Furuta K, Iguchi K, Lawson S. (1996) Seasonal difference in the abundance of the spruce beetle (Ips typographus japonicus Niijima) (Col., Scolytidae) within and outside forest in a bivoltine area. Journal of Applied Entomology 120: 125–129

    Article  Google Scholar 

  • Gordon TR, Storer AJ, Wood DL (2001) The pitch canker epidemic in California. Plant Dis. 85(11): 1128–1139

    Article  Google Scholar 

  • Hansen EM. Bentz BJ, (2003) Comparison of reproductive capacity among univoltine, semivoltine, and re-emerged parent spruce beetles (Coeloptera: Scolytidae). The Canadian Entomologist, 135: 697–712

    Article  Google Scholar 

  • Hanson PJ, Weltzin JF. 2000. Drought disturbance from climate change response of United States forests. Science of the Total Environment 262: 205–220

    Article  Google Scholar 

  • Harding S, Ravn H, (1985) Seasonal activity of Ips typographus in Denmark. Z. Angew. Ent. 99: 123–131

    Google Scholar 

  • Harrington R, Fleming RA, Woiwod IP (2001) Climate change impacts on insect management and conservation in temperate regions: can they be predicted? Agricultural and Forest Entomology, 3(4): 233–240

    Article  Google Scholar 

  • He HS, Mladenoff DJ, Crow TR (1999) Linking an ecosystem model and a landscape model to study forest species response to climate warming. Ecological Modelling, 114: 213–233

    Article  Google Scholar 

  • Hedgren PO, Schroeder LM (2004) Reproductive success of the spruce bark beetle Ips typographus (L.) and occurrence of associated species: a comparison between standing beetle-killed trees and cut trees. Forest Ecology and Management, 203(1–3): 241–250

    Article  Google Scholar 

  • Hirka A (2006) (ed.) A 2005. évi biotikus és abiotikus erdogazdasági károk, valamint a 2006-ban várható károsítások [Biotic and abiotic forest damages in 2005 and forecasts for 2006.], Növényvédelem 42, 5 (in Hungarian)

    Google Scholar 

  • Johnson DM, Liebhold AM, Bjørnstad ON (2006) Geographical variation in the periodicity of gypsy moth outbreaks. Ecography 148: 51–60.

    Google Scholar 

  • Johnson DM, Liebhold AM, Bjornstad ON, McManus ML (2006) Circumpolar variation in periodicity and synchrony among gypsy moth populations. Journal of Animal Ecology, 74: 882–892

    Article  Google Scholar 

  • Kendall BE, Prendergast J, Bjørnstad ON (1998) The macroecology of population dynamics: taxonomic and biogeographic patterns in population cycles. Ecology Letters 1: 160–164

    Article  Google Scholar 

  • Knapp R, Casey MT (1986) Thermal ecology, behavior, and growth of Gypsy moth and eastern tent caterpillars. Ecology, 67(3): 598–608

    Article  Google Scholar 

  • Kunca A, Brutovský D, Finďo S, Gubka A, Konôpka B, Konôpka J, Leontovyč, R, Longauerová V, Minďáš J, Novotný J, Pajtík J, Vakula J, Varínsky J, Zúbrik M, 2007. Occurrence of injurious factors in Slovakia in 2005 and their prediction for 2006. Forest Research Institute Zvolen. 89pp

    Google Scholar 

  • Lange H, Økland B, Krokene P (2006) Thresholds in the life cycle of the spruce bark beetle under climate change. Interjournal for Complex Systems 1648

    Google Scholar 

  • Lapin M, Damborská I, Melo M. (2001) Downscaling of GCM outputs for precipitation time series in Slovakia. Meteorologický časopis, 4(3): 29–40

    Google Scholar 

  • Lapin M, Melo M, Damborská M, Vojtek M, Martini M (2006) Physically and statistically plausible downscaling of daily GCMs outputs and selected results. Acta Meteorologica Universitatis Comenianae, 34: 35–57

    Google Scholar 

  • Liebhold A, Kamata N, (2000) Introduction: Are population cycles and spatial synchrony a universal characteristic of forest insect populations? Population Ecology, 42: 205–209

    Article  Google Scholar 

  • Liebhold AM, Turčáni M, Kamata N (2008) Inference of adult female dispersal from the distribution of Gypsy moth egg masses in a Japanese City. Agricultural and Forestry Entomology, Journal Summary 2007, 1–5

    Google Scholar 

  • Lieutier F, Brignolas F, Sauvard D, Galet C, Yart A, Brunet M, Christiansen E, Solheim H, Berryman AA (1997) Phenolic compounds as predictors of Norway spruce resistance to bark beetles. USDA, Forest Service. General Technical Report NE 236: 215–216

    Google Scholar 

  • Lieutier F, Day KR, Battisti A, Grégoire JC, Evans HF (eds.) (2004) Bark and Wood Boring Insects in Living Trees in Europe, A Synthesis 2004, XIV, Hardcover, Kluwer Academic Publishers Dordrecht/ Boston/ London.

    Google Scholar 

  • Logan JA, Regniere J, Powell JA (2003) Assessing the impact of global warming on forest pest dynamics. Frontiers in Ecology, 1(3): 130–137

    Article  Google Scholar 

  • Logan JA, Regniere J, Gray DR, Munson AS (2007) Risk assessment in the face of a changing environment: Gypsy moth and climate change in Utah. Ecological Applications 17(1): 101–117

    Article  Google Scholar 

  • Lonsdale D, Gibbs JN (1996) Effects of climate change on fungal diseases. In: Frankland JC, Magan M, Gadd GM (eds.) Fungi and Environmental Change: Symposium of the British Mycological Society, Cranfield, England, pp. 1–19

    Google Scholar 

  • Malcolm JR, Markham A, Neilson RP (2001) Can species keep up with climate change? Conservation Biology In Practice, 2(2): 24–25

    Google Scholar 

  • Martinat PJ (1987) The role of climatic variation and weather in forest insect outbreaks. In: Barbosa P and Schultz J (eds.), Insect Outbreaks, Academic Press, New York, pp. 241–268

    Google Scholar 

  • McCune B, Mefford MJ (1999) PC-ORD. Multivariate analysis of ecological data, version 4. MjM Software Design, Gleneden Beach, Oregon, USA.

    Google Scholar 

  • Moravčík M et al. (2006) Report on Forestry in the Slovak Republic 2006 (Green Report). Bratislava, MP SR a NLC-LVÚ Zvolen

    Google Scholar 

  • Myers JH (1993) Population outbreaks in forest Lepidoptera. American Scientist, 81: 240–251

    Google Scholar 

  • Myers JH (1998) Synchrony in outbreaks of forest Lepidoptera: a possible example of the Moran effect. Ecology, 79: 1111–1117

    Article  Google Scholar 

  • Netherer S, Pennerstorfer J, Baier P, Schopf A, Führer E (2004) Modellierung der Entwicklung des Fichtenborkenkäfers, Ips typographus L., als Grundlage einer umfassenden Risikoanalyse. Mitt. Deut. Gesell. Allg. Ang. Ent. 14: 277–282

    Google Scholar 

  • Netherer S, Pennerstorfer J (2001) Parameters relevant for Modelling the Potential Development of Ips typographus L. (Coleoptera, Scolitidae). Integrated Pests Management Reviews 6(3–4): 177–184

    Article  Google Scholar 

  • Netherer S (2003) Modelling of bark beetle development and of-site and stand-related predispositions toIps typographus (L.) (Coleoptera; Scolytidae). A contribution to risk assessment. Ph.D. thesis, Forstpathologie und Forstchutz der Universität fur Bodenkultur Wien

    Google Scholar 

  • Patočka J, Čapek M, Charvát K (1962) The communities of Invertebrata on oaks in Slovakia. Biologické práce SAV, p. 98

    Google Scholar 

  • Patočka J, Krištín A, Kulfan J, Zach P (eds.) (1999) Die Eichenschadling und ihre Feinde./ Institut fur Waldokologie der Slowakischen Akademie der Wissenschaften

    Google Scholar 

  • Raffa KF (1988) The Mountain Pine Beetle in Western North America, In: Berryman AA (ed.) Dynamics of Forest Insect Populations, Plenum Press, New York

    Google Scholar 

  • Reynolds KM, Holsten EH (1994) Relative importance of risk factors for spruce beetle outbreaks, Canadian Journal of Forest Research, 24: 2089–95

    Article  Google Scholar 

  • Rohde M, Waldmann R, Lunderstädt J (1996) Induced defence reaction in the phloem of spruce (Picea abies) and larch (Larix decidua) after attack by Ips typographus and Ips cembrae. Forest Ecology and Management, 86: 51–59

    Article  Google Scholar 

  • Rossiter MC (1994) Maternal effects hypothesis of herbivore outbreak. Bioscience, 44: 752–763

    Article  Google Scholar 

  • Schopf R, Köhler U (1995) Untersuchungen zur Populationsdynamik der Fichtenborkenkafer im Nationalpark Bayerischer Wald. Nationalpark Bayerischer Wald – 25 Jahre auf dem Weg zum Naturwald. Nationalparkverwaltung Bayerischer Wald, Neuschönau, 88–110

    Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO Reference Manual and CanoDraw for Windows User Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power (Ithaca NY, USA), 500pp

    Google Scholar 

  • Turchin P, Berryman AA (2000) Detecting cycles and delayed density dependence: a comment on Hunter & Price (1998). Ecological Entomology, 25: 119–121

    Article  Google Scholar 

  • Turčáni M, Novotný J (1998) The importance of eight-toothed spruce bark beetle (Ips typographusL.) in Central Europe. In: McManus M. (ed.), Proceedings of U.S. Department of Agriculture Interagency Gypsy Moth Research Forum 1998. pp. 62–63

    Google Scholar 

  • Vité JP (1952) Die holzzerstörenden Insekten Mitteleuropas. Göttingen: Musterschmidt, Wissenschafticher Verlag. pp. 68–84

    Google Scholar 

  • Villemant C, Fraval A (1998) Lymantria dispar en Europe et en Afrique du Nord, INRA

    Google Scholar 

  • Vité JP (1952) Die holzzerstörenden Insekten Mitteleuropas. Göttingen: Musterschmidt, Wissenschafticher Verlag, pp. 68–84

    Google Scholar 

  • Wackernagel H (1998) Multivariate geostatistics: an introduction with applications, 2nd Edition, Springer Verlag, New York

    Google Scholar 

  • Williams Dw, Liebhold Am (2002) Climate Change And The Outbreak ranges of two North American bark beetles. Agricultural and Forest Entomology, 4: 87–99

    Article  Google Scholar 

  • Wermelinger B, Seifert M (1998) Analysis of the temperature dependent development of spruce bark beetle Ips typographus L. (Coleoptera, Scolitidae). Journal of Applied Entomology, 122: 185–191

    Article  Google Scholar 

  • Woods A, Coates DK, Hamman A (2005) Is an unprecedented dothistroma needle blight epidemic related to climate change? Bioscience, 55(9): 761–769

    Article  Google Scholar 

  • Zumr V (1982) The data for the prognosis of spring swarming of main species of bark beetles (Coleoptera, Scolytidae) on the spruce (Picea excelsa L.). Z. Ang. Entomol. 93: 305–320

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hlásny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hlásny, T., Turčáni, M. (2009). Insect Pests as Climate Change Driven Disturbances in Forest Ecosystems. In: Střelcová, K., et al. Bioclimatology and Natural Hazards. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8876-6_15

Download citation

Publish with us

Policies and ethics