Skip to main content

Arbuscular Mycorrhizae and Their Role in Plant Restoration in Native Ecosystems

  • Chapter
Mycorrhizae: Sustainable Agriculture and Forestry

Abstract

There is high plant biodiversity in southern Florida, due to the floristic mixing of warm temperate Southeastern North America and tropical Caribbean. Arbuscular mycorrhizal (AM) fungi were found in the roots of native plants in the families Anacardiaceae, Arecaceae (Palmae), Cactaceae, Convolvulaceae, Cycadaceae, Euphorbiaceae, Fabaceae, Lauraceae, Rubiaceae, Simarubaceae and Smilacaeae that grow in the coastal maritime and inland hammocks of southern Florida. Seedlings of the following genera: Amorpha, Coccothrinax, Gymnanthes, Hamelia, Jacquemontia, Licaria, Nectandra, Opuntia, Picramnia, Psychotria, Rhus, Sabal, Serenoa and Zamia inoculated with AM fungi showed enhancement of growth and phosphorus uptake on local sandy, nutrient poor soils. Most native species were depend on AM fungi under natural conditions of poor or no soils, phosphorus limitations and often water stress. Restoration of endangered species of Amorpha (Fabaceae), Jacquemontia (Convolvulaceae), Opuntia (Cactaceae) and Pseudophoenix (Arecaceae) was considered using AM fungi. The symbiotic relationship between AM fungi and native plants is important in the low P ecosystem and also useful for restoration of native plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen, E. B., Rincón, E., Allen, M. F., Pérez-Jimenez, A., and Huante, P., 1998, Disturbance and seasonal dynamics of mycorrhizae in a tropical deciduous forest in Mexico. Biotropica 30: 261-274.

    Article  Google Scholar 

  • Allen, M. F., 1991, The ecology of mycorrhizae. Cambridge University Press, Cambridge.

    Google Scholar 

  • Aziz, T., Sylvia, D. M., and Doren, R. F., 1995, Activity and species composition of arbuscular mycorrhizal fungi following soil removal. Ecol. Appli. 5: 776-784.

    Article  Google Scholar 

  • Barredo-Pool, F., Varela, L., Arce-Montoya, M., and Orellana, R., 1998, Estudio de la asoci-ación micorrízica en dos Cactáceas natives del Estado de Yucatán, México. In R. Zulueta Rodríguez, M. A. Escalona Aguilar, and D. Trejo Aguilar [eds.], Avances de la investigación micorrízica en México, pp. 69-76. Universidad Veracruzana, Xalapa, Mexico.

    Google Scholar 

  • Bedini, S., Maremmani, A., and Giovannetti, M., 2000, Paris-type mycorrhizas in Smilax aspera L. growing in a Mediterranean sclerophyllous wood. Mycorrhiza 10: 9-13.

    Article  Google Scholar 

  • Blal, B., Morel, C., Gianinazzi-Pearson, V., Fardeau, J. C., and Gianinazzi, S., 1990, Influence of vesicular-arbuscular mycorrhizae on phosphate fertilizer efficiency in two tropical acid soils planted with micropropagated oil palm (Elaeis guineensis Jacq.). Biol. Fert. Soils 9: 43-48.

    Article  CAS  Google Scholar 

  • Bray, R. H., and Kurtz, L. T., 1949, Determination of total, organic and available form of phosphorus in soil. Soil Sci. 59: 39-45.

    Article  Google Scholar 

  • Brundrett, M. C., and Abbott, L. K., 1991, Roots of jarrah forest plants. I. Mycorrhizal associations of shrubs and herbaceous plants. Austr. J. Bot. 39: 445-457.

    Article  Google Scholar 

  • Brundrett, M., Bougher, N., Dell, B., Grove, T., and Malajczuk, N., 1996, Working with mycorrhizas in forestry and agriculture. Austr. Centre Int. Agri. Res. Monogr. 32: 1-374.

    Google Scholar 

  • Caravaca, F., Barea, J. M., Palenzuela, J., Figueroa, D., Alguacil, M. M., and Roldán, A., 2003, Establishment of shrub species in a degraded semiarid site after inoculation with native or allochthonous arbuscular mycorrhizal fungi. Appl. Soil Ecol. 22: 103-111.

    Article  Google Scholar 

  • Carrillo-Garcia, A., León de la Luz, J.-L., Bashan, Y., and Bethlenfalvay, G. J., 1999, Nurse plants, mycorrhizae, and plant establishment in a disturbed area of the Sonoran Desert. Restor. Ecol. 7: 321-335.

    Google Scholar 

  • Cavagnaro, T. R., Gao, L.-L., Smith, F. A., and Smith, S. E., 2001, Morphology of arbuscular mycorrhizas is influenced by fungal identity. New Phytol. 151: 469-475.

    Article  Google Scholar 

  • Cavagnaro, T. R., Smith, F. A., Ayling, S. M., and Smith, S. E., 2003, Growth and phos-phorus nutrition of a Paris-type arbuscular mycorrhizal symbiosis. New Phytol. 157: 127-134.

    Article  Google Scholar 

  • Coile, N.C.,2000. Notes on Florida’s endangered and threatened plants. Florida Dept. of Agriculture and consumer services, 3rd edition. Botany section contribution No.38.

    Google Scholar 

  • Corkidi, L., and Rincón, E., 1997, Arbuscular mycorrhizae in a tropical sand dune ecosystem on the Gulf of Mexico. II Effects of arbuscular mycorrhizal fungi on the growth of species distributed in different early successional stages. Mycorrhiza 7: 17-23.

    Article  Google Scholar 

  • Drew, E. A., Murray, R. S., Smith, S. E., and Jakobsen, I., 2003, Beyond the rhizosphere: growth and function of arbuscular mycorrhizal external hyphae in sands of varying pore size. Plant Soil 251: 105-114.

    Article  CAS  Google Scholar 

  • Fisher, J. B., and Jayachandran, K., 1999, Root structure and arbuscular mycorrhizal colonization of the palm Serenoa repens under field conditions. Plant Soil 217: 229-241.

    Article  Google Scholar 

  • Fisher, J. B., and Jayachandran, K., 2002, Arbuscular mycorrhizal fungi enhance seedling growth in two endangered plant species from south Florida. Intern. J. Plant Sci. 163: 559-566.

    Article  Google Scholar 

  • Fisher, J. B., and Vovides, A. P., 2004, Mycorrhizae are present in cycad roots. Bot. Rev. 70: 16-23.

    Article  Google Scholar 

  • Gemma, J. N., and Koske, R. E., 1997, Arbuscular mycorrhizae in sand dune plants of the North Atlantic coast of the U.S.: field and greenhouse inoculation and presence of mycorrhizae in planting stock. J. Environ. Manag. 50: 251-264.

    Article  Google Scholar 

  • Gemma, J. N., Koske, R. E., and Habte, H., 2002, Mycorrhizal dependency of some endemic and endangered Hawaiian plant species. Amer. J. Bot. 89: 337-345.

    Article  Google Scholar 

  • Graham, J. H., and Eissenstat, D. M., 1994, Host genotype and the formation and function of VA mycorrhizae. Plant Soil 159: 170-185.

    Google Scholar 

  • Hart, M. M., and Reader, R. J., 2002, Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol. 153: 335-344.

    Article  Google Scholar 

  • Henkel, T. W., Smith, W. K., and Christensen, M., 1989, Infectivity and effectivity of indigenous vesicular-arbuscular mycorrhizal fungi from contiguous soils in southwestern Wyoming. New Phytol. 112: 205-214.

    Article  Google Scholar 

  • Janos, D. P., Schroeder, M. S., Schaffer, B., and Crane, J. H., 2001, Inoculation with arbuscular mycorrhizal fungi enhances growth of Litchi chinensis Sonn. trees after propagation by air-layering. Plant Soil 233: 85-94.

    Article  CAS  Google Scholar 

  • Jayachandran, K., and Shetty, K. G., 2003, Growth response and phosphorus uptake by arbuscular mycorrhizae of wet prairie sawgrass. Aquat. Bot. 76: 281-290.

    Article  CAS  Google Scholar 

  • Koske, R. E., and Gemma, J. N., 1995, Vesicular-arbuscular mycorrhizal inoculation of Hawaiian plants: a conservation technique for endangered tropical species. Pacific Sci. 49: 181-191.

    Google Scholar 

  • Kyllo, D. A., Velez, V., and Tyree, M. T., 2003, Combined effects of arbuscular mycorrhizas and light on water uptake of the neotropical understory shrubs, Piper and Psychotria. New Phytol. 160: 443-454.

    Article  Google Scholar 

  • Maremmani, A., Bedini, S., MatoÅ¡evic, I., Tomai, P. E., and Giovannetti, M., 2003, Type of mycorrhizal associations in two coastal nature reserves of the Mediterranean basin. Mycorrhiza 13: 33-40.

    PubMed  Google Scholar 

  • Meador, R. E., 1977, The role of mycorrhizae in influencing succession on abandoned Everglades farmland. MS thesis, University of Florida, Gainesville, FL, 98 pp.

    Google Scholar 

  • Morte, A., and Honrubia, M., 2002, Growth response of Phoenix canariensis to inoculation with arbuscular mycorrhizal fungi. Palms 46: 76-80.

    Google Scholar 

  • Olsen, S. R., and Summers, L. E., 1982, Phosphorus. In A. L. Page, R. H. Miller, and D. R. Keeney [eds.] Methods of soil analysis, part 2 - chemical and microbiological properties, agronomy No 9 Part 2. American Society of Agronomy, Soil Science Society America, Madison, WI.

    Google Scholar 

  • Olsson, P. A., Jakobsen, I., and Wallander, H., 2002, Foraging and resource allocation strategies of mycorrhizal fungi in a patchy environment. In M. G. A. van der Heijden and I Sanders [eds.] Mycorrhizal ecology, pp. 93-115. Springer, Berlin.

    Google Scholar 

  • Pendleton, R. L., and Pendleton, B. K., 2003, Soil microorganisms affect survival and growth of shrubs grown in competition with cheatgrass (New Mexico). Ecol. Restor. 21: 215-216.

    Google Scholar 

  • Pendleton, R. L., Pendleton, B. K., Howard, G. L., and Warren, S. D., 2004, Response of Lewis flax seedlings to inoculation with arbuscular mycorrhizal fungi and cyanobacteria. In A. L. Hild, N. L. Shaw, E. E. Meyer, D. T. Booth, and E. D. McArthur [comps.] Seed and soil dynamics in shrubland ecosystems, Proceedings RMRS-P-31, pp. 64-68. US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Albuquerque, New Mexico.

    Google Scholar 

  • Pimienta-Barrios, E., Pimienta-Barrios, En., Salas-Galván, M. E., Zañudo-Hernandez, J., and Nobel, P. S., 2002, Growth and reproductive characteristics of the columnar cactus Stenocereus queretaroensis and their relationships with environmental factors and colonization by arbuscular mycorrhizae. Tree Physiol. 22: 667-674.

    PubMed  Google Scholar 

  • Pimienta-Barrios, E., Gonzalez del Castillo-Aranda, M. E., Muñoz-Urias, A., and Nobel, P. S., 2003, Effects of Benomyl and drought on the mycorrhizal development and daily net CO2 uptake of a wild platyopuntia in a rocky semi-arid environment. Ann. Bot. 92: 239-245.

    Google Scholar 

  • Ravolanirina, F., Blal, B., Gianinazzi, S., and Gianinazzi-Pearson, V., 1989, Mise au point d’une méthode rapide d’endomycorhization de vitroplants. Fruits 44: 165-170.

    Google Scholar 

  • Requena, N., Perez-Solis, E., Azcón-Aguilar, C., Jeffries, P., and Barea, J., 2001, Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl. Environ. Microbiol. 67: 495-498.

    Article  CAS  PubMed  Google Scholar 

  • Richter, B. S., and Stutz, J. C., 2002, Mycorrhizal inoculation of big sacaton: implications for grassland restoration of abandoned agricultural fields. Restor. Ecol. 10: 607-616.

    Article  Google Scholar 

  • Rincón, E., Huante, P., and Ramírez, Y., 1993, Influence of vesicular-arbuscular mycorrhizae on biomass production by the cactus Pachycereus pectin-aboriginum. Mycorrhiza 3: 79-81.

    Article  Google Scholar 

  • Salyards, J. R., Evans, R. Y., and Berry, A. M., 2003, Mycorrhizal development and plant growth in inoculated and non-inoculated plots of California native grasses and shrubs. Native Plants (Fall 2003): 143-149.

    Google Scholar 

  • Sanders, I. R., 2002, Specificity in the arbuscular mycorrhizal symbiosis. In M. G. A. van der Heijden and I. Sanders [eds.] Mycorrhizal ecology, pp. 415-437. Springer, Berlin.

    Google Scholar 

  • Schultz, P. A., Miller, R. M., Jastrow, J. D., Rivetta, C. V., and Bever, J. D., 2001, Evidence of a mycorrhizal mechanism for the adaptation of Andropogon gerardii (Poaceae) to high-and low-nutrient parairies. Amer. J. Bot. 88: 1650-1656.

    Article  Google Scholar 

  • Sengupta, A., and Chaudhuri, S., 2002, Arbuscular mycorrhizal relationships of mangrove plant community at the Ganges River estuary in India. Mycorrhiza 12: 169-174.

    PubMed  Google Scholar 

  • Smith, F. A., and Smith, S. E., 1997, Tansley Review No. 96. Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses. New Phytol. 137: 373-388.

    Article  Google Scholar 

  • Smith, S. E., and Read, D. J., 1997, Mycorrhizal symbiosis. Second Edition. Academic, San Diego, CA.

    Google Scholar 

  • Smith, M. R., Charvat, I., and Jacobson, R. L., 1998, Arbuscular mycorrhizae promote establishment of prairie species in a tall grass prairie restoration. Can. J. Bot. 76: 1947-1954.

    Article  Google Scholar 

  • Sylvia, D. M., 1989, Nursery inoculation of sea oats with vesicular-arbuscular mycorrhizal fungi and out-planting performance on Florida beaches. J. Coastal Res. 5: 747-754.

    Google Scholar 

  • Sylvia, D. M., Jarstfer, A. G., and Vostátka, M., 1993, Comparisons of vesicular-arbuscular mycorrhizal species and inocula formulations in a commercial nursery and on diverse Florida beaches. Biol. Fert. Soils 16: 139-144.

    Article  Google Scholar 

  • Sylvia, D. M., Alagely, A. K., Kane, M. E., and Philman, N. L., 2003, Compatible host -mycorrhizal fungus combinations for micropropagated sea oats. Mycorrhiza 13: 177-183.

    Article  PubMed  Google Scholar 

  • Szulczewski, M. D., Li, Y., Zhou, M., and Savabi, M. R., 2008, Phosphorus fractions in cal-careous from soils the southern Everglades and nearby farmlands. Soil Sci. Soci. J. (in press). U.S. Fish and Wildlife Service, 1999, South Florida multi-species recovery plan. Southeast Region, U.S. Fish and Wildlife Service. Atlanta, GA.

    Google Scholar 

  • Vaast, P., Zasoski, R. J., and Bledsoe, C. S., 1996, Effects of vesicular-arbuscular mycorrhizal inoculation at different soil P availabilities on growth and nutrient uptake of in vitro propagated coffee (Coffea arabica L.) plants. Mycorrhiza 6: 493-497.

    Article  Google Scholar 

  • Vidal, M. T., Azcon-Aguilar, C., Barea, J. M., and Pliegoalfaro, F., 1992, Mycorrhizal inocul-ation enhances growth and development of micropropagated plants of avocado. Hort. Sci. 1: 25-30.

    Google Scholar 

  • Wubet, T., Kottke, I., Teketay, D., and Oberwinkler, F., 2003, Mycorrhizal status of indige-nous trees in dry Afromontane forests of Ethiopia. For. Ecol. Manag. 179: 387-399.

    Article  Google Scholar 

  • Wunderlin, R. P., and Hansen, B. F., 2000, Flora of Florida. Vol. 1. University Press of Florida, Gainesville, FL.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Jayachandran, K., Fisher, J. (2008). Arbuscular Mycorrhizae and Their Role in Plant Restoration in Native Ecosystems. In: Siddiqui, Z.A., Akhtar, M.S., Futai, K. (eds) Mycorrhizae: Sustainable Agriculture and Forestry. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8770-7_8

Download citation

Publish with us

Policies and ethics