Skip to main content

Ectomycorrhizal Associations Function to Maintain Tropical Monodominance

  • Chapter
Mycorrhizae: Sustainable Agriculture and Forestry

Abstract

Tropical rain forests are the epicenters of tree diversity. Nonetheless, tropical monodominance should be defined as >60%, rather than >50% of the tree species, co-occur in matrices of high-diversity, mixed rain forest. Several alternative mechanisms could produce this pattern, but one frequently cited observation is that most tropical monodominant trees form ectomycorrhizal (ECM) associations. The majority of other trees in mixed rain forest form arbuscular mycorrhizal (AM) associations, suggesting that ECM associations provide advantages to their monodominant trees; however, the mechanisms underlying this hypothesis have not been fully explored. This chapter will explore recent research in the tropical forests that has revealed evidence for positive feedbacks between ECM fungi, ECM monodominant trees and con-specific ECM seedlings. These positive feedbacks provide advantages to the ECM hosts that are not observed with AM and non-mycorrhizal trees. These advantages include linkages of seedlings to common ECM networks and interactions between ECM fungi and other saprotrophic microorganisms in forest soil that provide the ECM host with preferential access to limiting soil nutrients. These positive-feedback mechanisms may explain the local monodominance of an ECM tree species within the matrix of a typical high-diversity, predominantly AM rain forest community. Since tropical rain forests are currently threatened by human activities such as logging, development and industrial agriculture, understanding how mycorrhizal fungi function in maintaining tree diversity patterns is critical for managing and restoring these valuable ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abuzinadah, R. A., and Read, D. J., 1986, The role of proteins in the nitrogen nutrition of Ectomycorrhizal Plants. III. Protein utilization by Betula, Picea and Pinus in mycorrhizal association with Hebeloma crustuliniforme. New Phytol. 103:507-514.

    Article  CAS  Google Scholar 

  • Allen, M. F., Swenson, W., Querejeta, J. I., Egerton-Warburton, L. M., and Treseder, K. K., 2003, Ecology of mycorrhizae: A conceptual framework for complex interactions among plants and fungi. Annu. Rev. Phytopathol. 41:271-303.

    Article  CAS  PubMed  Google Scholar 

  • Baraloto, C., Forget, P. M., and Goldberg, D. E., 2005, Seed mass, seedling size and neotropical tree seedling establishment. J. Ecol. 93:1156-1166.

    Article  CAS  Google Scholar 

  • Brokaw, N. V. L., 1985, Gap-phase regeneration in a tropical forest. Ecology 66:682-687.

    Article  Google Scholar 

  • Brundrett, M. C., 2002, Coevolution of roots and mycorrhizas of land plants. New Phytol. 154:275-304.

    Article  Google Scholar 

  • Chen, Y. L., Brundrett, M. C., and Dell, B., 2000, Effects of ectomycorrhizas and vesicular-arbuscular mycorrhizas, alone or in competition, on root colonization and growth of Eucalyptus globulus and E. urophylla. New Phytol. 146:545-556.

    Article  Google Scholar 

  • Chilvers, G. A., Lapeyrie, F. F., and Horan, D. P., 1987, Ectomycorrhizal vs endomycorrhizal fungi within the same root-system. New Phytol. 107:441-448.

    Article  Google Scholar 

  • Connell, J. H., and Lowman, M. D., 1989, Low-diversity tropical rain forests: some possible mechanisms for their existence. Amer. Natural. 134:88-119.

    Article  Google Scholar 

  • Dighton, J., Tomas, E. D., and Latter, P. M., 1987, Interactions between tree roots, mycorrhizas, a saprophytic fungus and the decomposition of organic substrates in a microcosm. Biol. Fert. Soils 4:145-150.

    Article  Google Scholar 

  • Finlay, R. D., and Read, D. J., 1986, The structure and function of the vegetative mycelium of ectomycorrhizal plants. 2. The uptake and distribution of phosphorus by mycelial strands interconnecting host plants. New Phytol. 103:157-165.

    Article  Google Scholar 

  • Frioni, L., Minasian, H., and Volfovicz, R., 1999, Arbuscular mycorrhizae and ectomycorrhizae in native tree legumes in Uruguay. Forest Ecol. Manag. 115:41-47.

    Google Scholar 

  • Gadgil, R. L., and Gadgil, P. D., 1971, Mycorrhiza and litter decomposition. Nature 233:133.

    Article  CAS  PubMed  Google Scholar 

  • Gadgil, R. L., and Gadgil, P. D., 1975, Suppression of litter decomposition by mycorrhizal foots of Pinus radiata. New Zealand J. Forest Sci. 5:35-41.

    Google Scholar 

  • Gentry, A. H., 1992, Tropical forest biodiversity-distributional patterns and their conservational significance. Oikos 63:19-28.

    Article  Google Scholar 

  • Gotelli, N. J., and Colwell, R. K., 2001, Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4:379-391.

    Article  Google Scholar 

  • Hartnett, D. C., and Wilson, G. W. T., 1999, Mycorrhizae influence plant community structure and diversity in tallgrass prairie. Ecology 80:1187-1195.

    Article  Google Scholar 

  • He, X. H., Critchley, C., and Bledsoe, C., 2003, Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit. Rev. Plant Sci. 22:531-567.

    Article  Google Scholar 

  • Henkel, T. W., 2003, Monodominance in the ectomycorrhizal Dicymbe corymbosa (Caesalpiniaceae) from Guyana. J. Trop. Ecol. 19:417-437.

    Article  Google Scholar 

  • Henkel, T. W., Mayor, J. R., and Woolley, L. P., 2005, Mast fruiting and seedling survival of the ectomycorrhizal, monodominant Dicymbe corymbosa (Caesalpiniaceae) in Guyana. New Phytol. 167:543-556.

    Article  PubMed  Google Scholar 

  • Hibbett, D. S., Gilbert, L. B., and Donoghue, M. J., 2000, Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature 407:506-508.

    Article  CAS  PubMed  Google Scholar 

  • Horton, T. R., Cazares, E., and Bruns, T. D., 1998, Ectomycorrhizal, vesicular-arbuscular and dark septate fungal colonization of bishop pine (Pinus muricata) seedlings in the first 5 months of growth after wildfire. Mycorrhiza 8:11-18.

    Article  Google Scholar 

  • Janos, D. P., 1983, Tropical mycorrhizas, nutrient cycles and plant growth. pp. 327-345 in S. L. Sutton, T. C. Whitmore, and A. C. Chadwick, eds. Tropical Rain Forest: Ecology and Management. Blackwell Scientific, Oxford.

    Google Scholar 

  • Janos, D. P., 1985, Mycorrhizal fungi: agents or symptoms of tropical community compo-sition. pp. 98-103 in R. Molina, ed. Proc. 6th North Amer. Conf. on Mycorrhizae. Oregon State University, Corvallis, OR.

    Google Scholar 

  • Janzen, D. H., 1974, Tropical blackwater rivers, animals and mast fruiting by the Diptero-carpaceae. Biotropica 6:69-103.

    Article  Google Scholar 

  • Klironomos, J. N., 2002, Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67-70.

    Article  CAS  PubMed  Google Scholar 

  • Leigh, E. G., Davidar, P., Dick, C. W., Puyravaud, J., Terborgh, J., ter Steege, H., and Wright, S. J., 2004, Why do some tropical forests have so man species of trees? Biotropica 36:445-473.

    Google Scholar 

  • McGuire, K. L., 2007a, Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology 88:567-574.

    Article  PubMed  Google Scholar 

  • McGuire, K. L., 2007b, Ectomycorrhizal Associations Function to Maintain Tropical Mono-dominance: Studies from Guyana. Ph.D. Dissertation: University of Michigan, Ann Arbor, MI.

    Google Scholar 

  • McGuire, K. L., 2007c, Recruitment dynamics and ectomycorrhizal colonization of Dicymbe corymbosa, a monodominant tree in the Guiana Shield. J. Trop. Ecol. 23:297-307.

    Article  Google Scholar 

  • McGuire, K. L., Henkel, T. W., Granzow de la Cerda, I., Villa, G., Edmund, F., and Andrew, C., 2008, Dual mycorrhizal colonization of forest-dominating tropical trees and the mycorrhizal status of non-dominant tree and liana species. Mycorrhiza 18:217-222.

    Google Scholar 

  • Moyersoen, B., and Fitter, A. H., 1999, Presence of arbuscular mycorrhizas in typically ecto-mycorrhizal host species from Cameroon and New Zealand. Mycorrhiza 8:247-253.

    Article  Google Scholar 

  • Nara, K., 2006, Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol. 169:169-178.

    Article  CAS  PubMed  Google Scholar 

  • Newbery, D. M., Chuyong, G. B., and Zimmermann, L., 2006, Mast fruiting of large ectomycorrhizal African rain forest trees: importance of dry season intensity, and the resource-limitation hypothesis. New Phytol. 170:561-579.

    Article  PubMed  Google Scholar 

  • Redecker, D., Kodner, R., and Graham, L. E., 2000, Glomalean fungi from the Ordovician. Science 289:1920-1921.

    Article  CAS  PubMed  Google Scholar 

  • Silvertown, J. W., 1980, The evolutionary ecology of mast seeding in trees. Biol. J. Linn. Soc. 14:235-250.

    Article  Google Scholar 

  • Simard, S. W., and Durall, D. M., 2004, Mycorrhizal networks: a review of their extent, function, and importance. Can. J. Bot. 82:1140-1165.

    Article  CAS  Google Scholar 

  • Simard, S. W., Perry, D. A., Jones, M. D., Myrold, D. D., Durall, D. M., and Molina, R., 1997, Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388:579-582.

    Article  CAS  Google Scholar 

  • Smith, J. E., and Read, D. J., 1997, Mycorrhizal Symbiosis. Second eds. Academic Press, San Diego, CA.

    Google Scholar 

  • Torti, S. D., and Coley, P. D., 1999, Tropical monodominance: a preliminary test of the ectomycorrhizal hypothesis. Biotropica 31:220-228.

    Article  Google Scholar 

  • Torti, S. D., Coley, P. D., and Kursar, T. A., 2001, Causes and consequences of mono-dominance in tropical lowland forests. Amer. Natural. 157:141-153.

    Article  CAS  Google Scholar 

  • Treseder, K. K., 2004, A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol. 164:347-355.

    Article  Google Scholar 

  • Treseder, K. K., and Allen, M. F., 2000, Black boxes and missing sinks: fungi in global change research. Mycol. Res. 104:1282-1283.

    Article  Google Scholar 

  • Trojanowski, J., Haider, K., and Hutterman, A., 1984, Decomposition of C14 labelled lignin, holocellulose and lignocellulose by mycorrhizal fungi. Archiv. Microbiol. 139:202-206.

    Article  CAS  Google Scholar 

  • Valencia, R. H., Balslev, H., Paz, H., and Mino, C. G., 1994, High tree alpha-diversity in Amazonian Ecuador. Biodiv. Conserv. 3:21-28.

    Article  Google Scholar 

  • van der Heijden, M. G. A., Klironomos, J. N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A., and Sanders, I. R., 1998, Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69-72.

    Article  CAS  Google Scholar 

  • Woolley, L. P., Henkel, T. W., and Sillett, S. C., 2008, Reiteration in the monodominant tropi-cal tree Dicymbe corymbosa (Caesalpiniaceae) and its potential adaptive significance. Biotropica 40:32-43.

    Google Scholar 

  • Wu, B. Y., Nara, K., and Hogetsu, T., 2001, Can C14 labeled photosynthetic products move between Pinus densiflora seedlings linked by ectomycorrhizal mycelia? New Phytol. 149:137-146.

    Article  CAS  Google Scholar 

  • Zagt, R. J., and Werger, M. J. A., 1997a, Community structure and the demography of pri-mary species in tropical rain forest. pp. 21-38 in R. J. Zagt, ed. Tree Demography in the Tropical Rain Forest of Guyana. Tropenbos, Utrecht, The Netherlands.

    Google Scholar 

  • Zagt, R. J., and Werger, M. J. A., 1997b, Spatial components of dispersal and survival for seeds and seedlings of two codominant tree species in the tropical rain forest of Guyana. Trop. Ecol. 38:343-355.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

McGuire, K.L. (2008). Ectomycorrhizal Associations Function to Maintain Tropical Monodominance. In: Siddiqui, Z.A., Akhtar, M.S., Futai, K. (eds) Mycorrhizae: Sustainable Agriculture and Forestry. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8770-7_12

Download citation

Publish with us

Policies and ethics