Skip to main content

Mechanosensitivity of the Cochlea

  • Chapter
Mechanosensitivity of the Nervous System

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 2))

Abstract

Transient receptor potential (TRP) channels, widely expressed in both neuronal and non-neuronal cells, are activated by mechanical stimuli as well as by chemical and physical stimuli. The sense of hearing depends on the cochlea. Transduction channels at the tips of stereocilia of cochlear hair cells are the channels that convert mechanical sound stimuli to electrical action potential of the auditory nerve. Several types of TRP channels are expressed in the cochlea, which seem to be essential for maintaining the normal hearing. Despite extensive researches on the transduction channels, molecular identification of the mammalian transduction channel has not been achieved. In this review, we summarize the possible involvement of TRP channels in auditory mechanotransduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Atiba-Davies M, Noben-Trauth K. (2007) TRPML3 and hearing loss in the varitint-waddler mouse. Biochim Biophys Acta 1772:1028–1031.

    PubMed  CAS  Google Scholar 

  • Bach G. (2005) Mucolipin 1: endocytosis and cation channel – a review. Pflugers Arch 451:313–317.

    Article  PubMed  CAS  Google Scholar 

  • Bautista DM Jordt SE, Kikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Jilius D. (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–1282.

    Article  PubMed  CAS  Google Scholar 

  • Birder LA, Nakamura Y, Kiss S, Nealen ML, Barrick S, Kanai AJ, Wang E, Ruiz G, De Groat WC, Apodaca G, Watkins S, Caterina MJ. (2002) Altered uninary bladder function in mice lacking the vanilloid receptor TRPV1. Nat Neurosci 5:856–860.

    Article  PubMed  CAS  Google Scholar 

  • Corey DP, Hudspeth AJ. (1979) Ionic basis of the receptor potential in a vertebrate hair cell. Nature 281:675–677.

    Article  PubMed  CAS  Google Scholar 

  • Corey DP, Garcia-Anoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, Amalfitano A, Cheung EL, Derfler BH, Duggan A, Geleoc GS, Gray PA, Hoffman MP, Rehm HL, Tamasauskas D, Zhang DS. (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432:723–730.

    Article  PubMed  CAS  Google Scholar 

  • Corey DP. (2006) What is the hair cell transduction channel? J Physiol (London) 576:23–28.

    Article  CAS  Google Scholar 

  • Deol MS. (1954) The anomalies of the labyrinth of the mutants varitint-waddler, shaker-2 and jerker in the mouse. J Genet 52:562–588.

    Article  Google Scholar 

  • Di Palma F, Belyantseva IA, Kim HJ, Vogt TF, Kachar B, Noben-Trauth K. (2002) Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc Natl Acad Sci USA 99:14994–14999.

    Article  PubMed  CAS  Google Scholar 

  • Geleoc GS, Holt JR. (2003) Developmental acquisition of sensory transduction in hair cells of mouse inner ear. Nat Neurosci 6:1019–1020.

    Article  PubMed  CAS  Google Scholar 

  • Gong Z, Son W, Chung YD, Kim J, Shin DW, McClung CA, Lee Y, Lee HW, Chang DJ, Kaang BK, Cho H, Oh U, Hirsh J, Kernan MJ, Kim C. (2004) Two interdependent TRPV channel subunits, inactive and Nanchung, mediate hearing in Drosophilia. J Neurosci 24:9059–9066.

    Article  PubMed  CAS  Google Scholar 

  • Greene CC, McMillan PM, Barker SE, Kurnool P, Lomax MI, Burmeister M, Lesperance MM. (2001) DFNA25, a novel locus for dominant nonsyndromic hereditary hearing impairment, maps to 12q21–24. Am J Hum Genet 8:254–260.

    Article  Google Scholar 

  • Grimm C, Cuajungco MP, van Aken AF, Schnee M, Jörs S, Kros CJ, Ricci AJ, Heller S. (2007) A helix-breaking mutation in TRPML3 leads to constitutive activity underlying deafness in the varitint-waddler mouse. Proc Natl Acad Sci USA 104:19583–19588.

    Article  PubMed  CAS  Google Scholar 

  • Jaquemar D, Schenker T, Trueb B. (1999) An ankyrin-like protein with transmembrane domains is specifically lost afte oncogenic transformation of human fibroblasts. J Biol Chem 274:7325–7333.

    Article  PubMed  CAS  Google Scholar 

  • Jaramillo F. Hudspeth AJ. (1991) Localization of the hair cell’s transduction channels at the hair bundle’s top by iontophoretic application of a channel blocker. Neuron 7:409–420.

    Article  PubMed  CAS  Google Scholar 

  • Jordt SE, Bautista DM, Chuang HH, Mckemy DD, Zygmunt PM, Hogestatt ED, Meng ID, Julius D. (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265.

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Chung YD, Park DY, Choi S, Shin DW, Soh H, Lee HW, Son W, Yim J, Park CS, Kernan MJ, Kim C. (2003) A TRPV family ion channel required for hearing in Drosophilia. Nature 424:81–84.

    Article  PubMed  CAS  Google Scholar 

  • Kitahara T, Li H-I, Balaban CD. (2005) Changes in transient receptor potential cation channel superfamiliy V (TRPV) mRNA expression in the mouse inner ear ganglia after kanamycin challenge. Hear Res 201:132–144.

    Article  PubMed  CAS  Google Scholar 

  • Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang D-S, Woolf CJ, Corey DP. (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50:277–289.

    Article  PubMed  CAS  Google Scholar 

  • Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S. (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103:525–535.

    Article  PubMed  CAS  Google Scholar 

  • Liedtke W, Kim C. (2005) Functionality of the TRPV subfamily of TRP ion channels: add mechano-TRP and osmo-TRP to the lexicon! Cell Mol Life Sci 62:2985–3001.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno A, Matsumot N, Imai M, Suzuki M. (2003) Impared osmotic sensation in mice lacking TRPV4. Am J Physiol Cell Physiol 285:C96–101.

    PubMed  CAS  Google Scholar 

  • Ohmori H. (1985) Mechano-electrical transduction currents in isolated vestibular hair cells of the chick. J Physiol (London) 359:189–217.

    CAS  Google Scholar 

  • Owsianik G, Talavera K, Voets T, Nilus B. (2006) Permeation and selectivity of TRP channels. Ann Rev Physiol 68:685–717.

    Article  CAS  Google Scholar 

  • Rong W, Hillsley K, Davis C, De Felipe C, Hunt S, Kabir J, Kotsonis P, Oh U, Ahluwalia A. (2004) Jejunal afferent nerve sensitivity in wild-type and TRPV1 knockout mice. J Physiol 560:867–881.

    Article  PubMed  CAS  Google Scholar 

  • Schneiderman T. Overview of the hearing mechanism. In Hearing impairment in children. 2nd edition. Ed. Pappas DG. Singular Publishing Group. San Diego. 1998. pp. 1–28.

    Google Scholar 

  • Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD. (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702.

    Article  PubMed  CAS  Google Scholar 

  • Tabuchi K, Suzuki M, Mizuno A, Hara A. (2005) Hearing impairment in TRPV4 knockout mice. Neurosci Lett 382:304–308.

    Article  PubMed  CAS  Google Scholar 

  • Takumida M, Kubo N, Ohtani M, Suzuka Y, Anniko M. (2005) Transient receptor potential channels in the inner ear: presence of transient receptor potential channel subfamily 1 and 4 in the guinea pig inner ear. Acta Otolaryngol 125:929–934.

    Article  PubMed  Google Scholar 

  • Van Camp G, Willems PJ, Smith RJ. (1997) Nonsyndromic hearing impairment unparalleled heterogeneity. Am J Hum Genet 60:758–764.

    PubMed  Google Scholar 

  • Venkatachalam K, Hofmann T, Montell C. (2006) Lysosomal localization of TRPML3 depends of TRPML2 and the mucolipidosis-associated protein TRPML1. J Bio Chem 281:17517–17527.

    Article  CAS  Google Scholar 

  • Walker RG, Willingham AT, Zuker CS. (2000) A Drosophila mechanosensory transduction channel. Science 287:2229–2234.

    Article  PubMed  CAS  Google Scholar 

  • Whitehead ML, Lonsbury-Martin BL, Martin GK. (1992) Evidence for two discrete sources of 2f1–f2 distortion-product otoacoustic emission in rabbit. II Differential dependence on stimulus parameters. J Acoust Soc Am 91:1587–1607.

    Article  PubMed  CAS  Google Scholar 

  • Yates GK. Cochlear structure and function. In Hearing. Ed. Moore BCJ. Academic Press. San Diego. 1995. pp. 41–74.

    Chapter  Google Scholar 

  • Zhou J, Balaban C, Durrant JD. (2006) Effect of intracochlear perfusion of vailloids on cochlear neural activity in the guinea pig. Hear Res 218:43–49.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tabuchi, K., Hara, A. (2009). Mechanosensitivity of the Cochlea. In: Kamkim, A., Kiseleva, I. (eds) Mechanosensitivity of the Nervous System. Mechanosensitivity in Cells and Tissues, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8716-5_6

Download citation

Publish with us

Policies and ethics