Skip to main content

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 2))

Abstract

For a long time, neurosciences have focused on biochemical, molecular, and electrophysiological aspects of cell functioning. However, there is an increasing awareness of the importance of biomechanics in physiology and pathology of the central nervous system (CNS). In the first part of this review we provide physical basics necessary to understand biomechanical measurements, we introduce the cytoskeleton as a major contributor to a cell’s passive and active mechanical behavior, and we discuss some of the methods nowadays used to quantify mechanical properties. In the second part we present actual data on CNS mechanics, and we discuss the impact of passive mechanical material properties and active mechanical behavior of cells on the development, normal functioning and pathology of the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts B, Johnson A, Lewis J et al. (2002) Molecular biology of the cell. Garland Science, New York, NY, USA

    Google Scholar 

  • Alcaraz J, Buscemi L, Grabulosa M et al. (2003) Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys J 84(3):2071–2079

    PubMed  CAS  Google Scholar 

  • Alonso JL, Goldmann WH (2003) Feeling the forces: atomic force microscopy in cell biology. Life Sci 72(23):2553–2560

    PubMed  CAS  Google Scholar 

  • Ananthakrishnan R, Guck J, Wottawah F et al. (2006) Quantifying the contribution of actin networks to the elastic strength of fibroblasts. J Theor Biol 242(2):502–516

    PubMed  CAS  Google Scholar 

  • Arbogast KB, Margulies SS (1998) Material characterization of the brainstem from oscillatory shear tests. J Biomech 31(9):801–807

    PubMed  CAS  Google Scholar 

  • Ashkin A (1970) Acceleration and Trapping of Particles by Radiation Pressure. Physical Review Letters 24(4):156–159

    CAS  Google Scholar 

  • Ashkin A, Dziedzic JM, Yamane T (1987) Optical trapping and manipulation of single cells using infrared laser beams. Nature 330(6150):769–771

    PubMed  CAS  Google Scholar 

  • Balgude AP, Yu X, Szymanski A et al. (2001) Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials 22(10):1077–1084

    PubMed  CAS  Google Scholar 

  • Bard JB, Hay ED (1975) The behavior of fibroblasts from the developing avian cornea. Morphology and movement in situ and in vitro. J Cell Biol 67(2PT.1):400–418

    PubMed  CAS  Google Scholar 

  • Bausch AR, Ziemann F, Boulbitch AA et al. (1998) Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys J 75(4):2038–2049

    PubMed  CAS  Google Scholar 

  • Bilston LE, Liu Z, Phan-Thien N (1997) Linear viscoelastic properties of bovine brain tissue in shear. Biorheology 34(6):377–385

    PubMed  CAS  Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933

    PubMed  Google Scholar 

  • Bischofs IB, Schwarz US (2003) Cell organization in soft media due to active mechanosensing. Proc Natl Acad Sci USA 100(16):9274–9279

    PubMed  CAS  Google Scholar 

  • Bray D (1979) Mechanical tension produced by nerve cells in tissue culture. J Cell Sci 37:391–410

    PubMed  CAS  Google Scholar 

  • Bray D (1984) Axonal growth in response to experimentally applied mechanical tension. Dev Biol 102(2):379–389

    PubMed  CAS  Google Scholar 

  • Bridgman PC, Dave S, Asnes CF et al. (2001) Myosin IIB is required for growth cone motility. J Neurosci 21(16):6159–6169

    PubMed  CAS  Google Scholar 

  • Bringmann H, Skiniotis G, Spilker A et al. (2004) A kinesin-like motor inhibits microtubule dynamic instability. Science 303(5663):1519–1522

    PubMed  CAS  Google Scholar 

  • Brunner CA, Ehrlicher A, Kohlstrunk B et al. (2006) Cell migration through small gaps. Eur Biophys J 35(8):713–719

    PubMed  Google Scholar 

  • Bursac P, Lenormand G, Fabry B et al. (2005) Cytoskeletal remodelling and slow dynamics in the living cell. Nat Mater 4(7):557–561

    PubMed  CAS  Google Scholar 

  • Casner A, Delville JP (2001) Giant deformations of a liquid-liquid interface induced by the optical radiation pressure. Phys Rev Lett 87(5):054503

    PubMed  CAS  Google Scholar 

  • Cavalcanti-Adam EA, Micoulet A, Blummel J et al. (2006) Lateral spacing of integrin ligands influences cell spreading and focal adhesion assembly. Eur J Cell Biol 85(3–4):219–224

    PubMed  CAS  Google Scholar 

  • Chada S, Lamoureux P, Buxbaum RE et al. (1997) Cytomechanics of neurite outgrowth from chick brain neurons. J Cell Sci 110(Pt 10):1179–1186

    PubMed  CAS  Google Scholar 

  • Charlebois M, McKee MD, Buschmann MD (2004) Nonlinear tensile properties of bovine articular cartilage and their variation with age and depth. J Biomech Eng Trans Asme 126(2):129–137

    Google Scholar 

  • Charras GT, Horton MA (2002) Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys J 82(6):2970–2981

    PubMed  CAS  Google Scholar 

  • Cinamon G, Shinder V, Alon R (2001) Shear forces promote lymphocyte migration across vascular endothelium bearing apical chemokines. Nat Immunol 2(6):515–522

    PubMed  CAS  Google Scholar 

  • Couillard-Despres S, Winkler J, Uyanik G et al. (2001) Molecular mechanisms of neuronal migration disorders, quo vadis? Curr Mol Med 1(6):677–688

    PubMed  CAS  Google Scholar 

  • Crocker JC, Hoffman BD (2007) Multiple-particle tracking and two-point microrheology in cells. Cell Mech 83:141–178

    CAS  Google Scholar 

  • Cullen DK, LaPlaca MC (2006) Neuronal response to high rate shear deformation depends on heterogeneity of the local strain field. J Neurotrauma 23(9):1304–1319

    PubMed  Google Scholar 

  • Cullen DK, Lessing MC, LaPlaca MC (2007a) Collagen-dependent neurite outgrowth and response to dynamic deformation in three-dimensional neuronal cultures. Ann Biomed Eng 35(5):835–846

    Google Scholar 

  • Cullen DK, Simon CM, LaPlaca MC (2007b) Strain rate-dependent induction of reactive astrogliosis and cell death in three-dimensional neuronal-astrocytic co-cultures. Brain Res 1158:103–115

    CAS  Google Scholar 

  • Cumpson PJ, Zhdan P, Hedley J (2004) Calibration of AFM cantilever stiffness: a microfabricated array of reflective springs. Ultramicroscopy 100(3–4):241–251

    PubMed  CAS  Google Scholar 

  • Czosnyka M, Pickard JD (2004) Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry 75(6):813–821

    PubMed  CAS  Google Scholar 

  • Darvish KK, Crandall JR (2001) Nonlinear viscoelastic effects in oscillatory shear deformation of brain tissue. Med Eng Phys 23(9):633–645

    PubMed  CAS  Google Scholar 

  • Davis SS (1971) Viscoelastic Properties of Pharmaceutical Semisolids .3. Nondestructive Oscillatory Testing. J Pharm Sci 60(9):1351–&

    PubMed  CAS  Google Scholar 

  • Davis SS (1974) Is Pharmaceutical Rheology Dead. Pharm Acta Helv 49(5–6):161–168

    PubMed  CAS  Google Scholar 

  • Deich C, Seifert B, Peichl L et al. (1994) Development of dendritic trees of rabbit retinal alpha ganglion cells: relation to differential retinal growth. Vis Neurosci 11(5):979–988

    PubMed  CAS  Google Scholar 

  • Deng L, Fairbank NJ, Fabry B et al. (2004) Localized mechanical stress induces time-dependent actin cytoskeletal remodeling and stiffening in cultured airway smooth muscle cells. Am J Physiol Cell Physiol 287(2):C440–448

    PubMed  CAS  Google Scholar 

  • Dennerll TJ, Joshi HC, Steel VL et al. (1988) Tension and compression in the cytoskeleton of PC-12 neurites. II: Quantitative measurements. J Cell Biol 107(2):665–674

    PubMed  CAS  Google Scholar 

  • Dennerll TJ, Lamoureux P, Buxbaum RE et al. (1989) The cytomechanics of axonal elongation and retraction. J Cell Biol 109(6 Pt 1):3073–3083

    PubMed  CAS  Google Scholar 

  • Dimitriadis EK, Horkay F, Maresca J et al. (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82(5):2798–2810

    PubMed  CAS  Google Scholar 

  • Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143

    PubMed  CAS  Google Scholar 

  • Doi M, Edwards SF (1988) The Theory of Polymer Dynamics. Oxford University Press, Oxford, UK

    Google Scholar 

  • Donnelly BR, Medige J (1997) Shear properties of human brain tissue. J Biomech Eng Trans Asme 119(4):423–432

    CAS  Google Scholar 

  • Dufrene YF (2002) Atomic force microscopy, a powerful tool in microbiology. J Bacteriol 184(19):5205–5213

    PubMed  CAS  Google Scholar 

  • Edwards ME, Wang SSS, Good TA (2001) Role of viscoelastic properties of differentiated SH-SY5Y human neuroblastoma cells in cyclic shear stress injury. Biotechnol Prog 17(4):760–767

    PubMed  CAS  Google Scholar 

  • El Kirat K, Burton I, Dupres V et al. (2005) Sample preparation procedures for biological atomic force microscopy. J Microsc 218(Pt 3):199–207

    PubMed  CAS  Google Scholar 

  • Elkin BS, Azeloglu EU, Costa KD et al. (2007) Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. J Neurotrauma 24(5):812–822

    PubMed  Google Scholar 

  • Engler A, Bacakova L, Newman C et al. (2004a) Substrate compliance versus ligand density in cell on gel responses. Biophys J 86(1 Pt 1):617–628

    CAS  Google Scholar 

  • Engler AJ, Griffin MA, Sen S et al. (2004b) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 166(6):877–887

    CAS  Google Scholar 

  • Engler AJ, Richert L, Wong JY et al. (2004c) Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: Correlations between substrate stiffness and cell adhesion. Surf Sci 570(1–2):142–154

    CAS  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL et al. (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    PubMed  CAS  Google Scholar 

  • Evans E, Kukan B (1984) Passive Material Behavior of Granulocytes Based on Large Deformation and Recovery after Deformation Tests. Blood 64(5):1028–1035

    PubMed  CAS  Google Scholar 

  • Fallenstein GT, Hulce VD, Melvin JW (1969) Dynamic mechanical properties of human brain tissue. J Biomech 2(3):217–226

    PubMed  CAS  Google Scholar 

  • Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49(6):377–391

    PubMed  CAS  Google Scholar 

  • Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368(6467):113–119

    PubMed  CAS  Google Scholar 

  • Flanagan LA, Ju YE, Marg B et al. (2002) Neurite branching on deformable substrates. Neuroreport 13(18):2411–2415

    PubMed  Google Scholar 

  • Fountoulakis M, Hardmeier R, Hoger H et al. (2001) Postmortem changes in the level of brain proteins. Exp Neurol 167(1):86–94

    PubMed  CAS  Google Scholar 

  • Franze K, Gerdelmann J, Weick M et al. (2008) Threshold dependent neuronal retraction following mechanical stimulation. submitted

    Google Scholar 

  • Fuchs E, Cleveland DW (1998) A structural scaffolding of intermediate filaments in health and disease. Science 279(5350):514–519

    PubMed  CAS  Google Scholar 

  • Fung YC (1993) Biomechanics: Mechanical Properties of Living Tissues. Springer, New York

    Google Scholar 

  • Gardel ML, Shin JH, MacKintosh FC et al. (2004) Elastic behavior of cross-linked and bundled actin networks. Science 304(5675):1301–1305

    PubMed  CAS  Google Scholar 

  • Garo A, Hrapko M, van Dommelen JAW et al. (2007) Towards a reliable characterisation of the mechanical behaviour of brain tissue: The effects of post-mortem time and sample preparation. Biorheology 44(1):51–583

    PubMed  CAS  Google Scholar 

  • Gefen A, Gefen N, Zhu Q et al. (2003) Age-dependent changes in material properties of the brain and braincase of the rat. J Neurotrauma 20(11):1163–1177

    PubMed  Google Scholar 

  • Gefen A, Margulies SS (2004) Are in vivo and in situ brain tissues mechanically similar? J Biomech 37(9):1339–1352

    PubMed  Google Scholar 

  • Gehm L (1998) RHEOLOGIE – Praxisorientierte Grundlagen und Glossar. Vincentz Verlag, Hannover, Germany

    Google Scholar 

  • Georges PC, Janmey PA (2005) Cell type-specific response to growth on soft materials. J Appl Physiol 98(4):1547–1553

    PubMed  Google Scholar 

  • Georges PC, Miller WJ, Meaney DF et al. (2006) Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys J

    Google Scholar 

  • Griffin MA, Engler AJ, Barber TA et al. (2004a) Patterning, prestress, and peeling dynamics of myocytes. Biophys J 86(2):1209–1222

    CAS  Google Scholar 

  • Griffin MA, Sen S, Sweeney HL et al. (2004b) Adhesion-contractile balance in myocyte differentiation. J Cell Sci 117(Pt 24):5855–5863

    CAS  Google Scholar 

  • Grill SW, Howard J, Schaffer E et al. (2003) The distribution of active force generators controls mitotic spindle position. Science 301(5632):518–521

    PubMed  CAS  Google Scholar 

  • Guck J, Ananthakrishnan R, Mahmood H et al. (2001) The optical stretcher: a novel laser tool to micromanipulate cells. Biophys J 81(2):767–784

    PubMed  CAS  Google Scholar 

  • Guck J, Ananthakrishnan R, Moon TJ et al. (2000) Optical deformability of soft biological dielectrics. Phys Rev Lett 84(23):5451–5454

    PubMed  CAS  Google Scholar 

  • Harris AK, Stopak D, Wild P (1981) Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290(5803):249–251

    PubMed  CAS  Google Scholar 

  • Harris AK, Wild P, Stopak D (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208(4440):177–179

    PubMed  CAS  Google Scholar 

  • Hay ED (1982) Interaction of embryonic surface and cytoskeleton with extracellular matrix. Am J Anat 165(1):1–12

    PubMed  CAS  Google Scholar 

  • Heidemann SR, Buxbaum RE (1994) Mechanical tension as a regulator of axonal development. Neurotoxicology 15(1):95–107

    PubMed  CAS  Google Scholar 

  • Henderson E, Haydon PG, Sakaguchi DS (1992) Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science 257(5078):1944–1946

    PubMed  CAS  Google Scholar 

  • Hertz H (1881) Über die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik 92:156–171

    Google Scholar 

  • Hirakawa K, Hashizume K, Hayashi T (1981) Viscoelastic property of human brain -for the analysis of impact injury. No to shinkei = Brain and nerve 33(10):1057–1065

    PubMed  CAS  Google Scholar 

  • Hoffman BD, Massiera G, Van Citters KM et al. (2006) The consensus mechanics of cultured mammalian cells. Proc Natl Acad Sci USA 103(27):10259–10264

    PubMed  CAS  Google Scholar 

  • Horner PJ, Gage FH (2000) Regenerating the damaged central nervous system. Nature 407(6807):963–970

    PubMed  CAS  Google Scholar 

  • Hutter JL, Bechhoefer J (1993) Calibration of Atomic-Force Microscope Tips. Rev Sci Instrum 64(7):1868–1873

    CAS  Google Scholar 

  • Ingber DE (2006) Mechanical control of tissue morphogenesis during embryological development. Int J Dev Biol 50(2–3):255–266

    PubMed  Google Scholar 

  • Isambert H, Venier P, Maggs AC et al. (1995) Flexibility of actin filaments derived from thermal fluctuations. Effect of bound nucleotide, phalloidin, and muscle regulatory proteins. J Biol Chem 270(19):11437–11444

    PubMed  CAS  Google Scholar 

  • Ishijima A, Doi T, Sakurada K et al. (1991) Sub-piconewton force fluctuations of actomyosin in vitro. Nature 352(6333):301–306

    PubMed  CAS  Google Scholar 

  • Jacobson M (1991) Developmental Neurobiology, 3rd ed. Plenum Press, New York and London

    Google Scholar 

  • Janmey PA, Euteneuer U, Traub P et al. (1991) Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J Cell Biol 113(1):155–160

    PubMed  CAS  Google Scholar 

  • Janmey PA, Weitz DA (2004) Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem Sci 29(7):364–370

    PubMed  CAS  Google Scholar 

  • Joshi HC, Chu D, Buxbaum RE et al. (1985) Tension and compression in the cytoskeleton of PC 12 neurites. J Cell Biol 101(3):697–705

    PubMed  CAS  Google Scholar 

  • Kellermayer MS, Smith SB, Granzier HL et al. (1997) Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276(5315):1112–1116

    PubMed  CAS  Google Scholar 

  • Kratky O, Porod G (1949) Rontgenuntersuchung Geloster Fadenmolekule. Recl Trav Chim Pay B 68(12):1106–1122

    CAS  Google Scholar 

  • Kress H, Stelzer EH, Holzer D et al. (2007) Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity. Proc Natl Acad Sci USA 104(28):11633–11638

    PubMed  CAS  Google Scholar 

  • Kruse SA, Rose GH, Glaser KJ et al. (2008) Magnetic resonance elastography of the brain. Neuroimage 39(1):231–237

    PubMed  Google Scholar 

  • Kuo SC (2001) Using optics to measure biological forces and mechanics. Traffic 2(11):757–763

    PubMed  CAS  Google Scholar 

  • Lamoureux P, Buxbaum RE, Heidemann SR (1989) Direct evidence that growth cones pull. Nature 340(6229):159–162

    PubMed  CAS  Google Scholar 

  • Lamoureux P, Ruthel G, Buxbaum RE et al. (2002) Mechanical tension can specify axonal fate in hippocampal neurons. J Cell Biol 159(3):499–508

    PubMed  CAS  Google Scholar 

  • Langfitt TW (1969) Increased intracranial pressure. Clin neurosurg 16:436–471

    PubMed  CAS  Google Scholar 

  • LaPlaca MC, Cullen DK, McLoughlin JJ et al. (2005) High rate shear strain of three-dimensional neural cell cultures: a new in vitro traumatic brain injury model. Journal of Biomechanics 38(5):1093–1105

    PubMed  Google Scholar 

  • LaPlaca MC, Lee VMY, Thibault LE (1997) An in vitro model of traumatic neuronal injury: Loading rate-dependent changes in acute cytosolic calcium and lactate dehydrogenase release. J Neurotrauma 14(6):355–368

    PubMed  CAS  Google Scholar 

  • LaPlaca MC, Simon CM, Prado GR et al. (2007) CNS injury biomechanics and experimental models. Prog Brain Res 161:13–26

    PubMed  CAS  Google Scholar 

  • Lee J, Ishihara A, Oxford G et al. (1999) Regulation of cell movement is mediated by stretch-activated calcium channels. Nature 400(6742):382–386

    PubMed  CAS  Google Scholar 

  • Lepekhin EA, Eliasson C, Berthold CH et al. (2001) Intermediate filaments regulate astrocyte motility. J Neurochem 79(3):617–625

    PubMed  CAS  Google Scholar 

  • Lesny P, De Croos J, Pradny M et al. (2002) Polymer hydrogels usable for nervous tissue repair. Journal of chemical neuroanatomy 23(4):243–247

    PubMed  CAS  Google Scholar 

  • Lewis GP, Fisher SK (2003) Up-regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodeling and a comparison to vimentin expression. Int Rev Cytol 230:263–290

    PubMed  CAS  Google Scholar 

  • Lewis GP, Sethi CS, Linberg KA et al. (2003) Experimental retinal reattachment: a new perspective. Mol Neurobiol 28(2):159–175

    PubMed  CAS  Google Scholar 

  • Lo CM, Wang HB, Dembo M et al. (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79(1):144–152

    PubMed  CAS  Google Scholar 

  • Logan A, Berry M (2002) Cellular and molecular determinants of glial scar formation. Adv Exp Med Biol 513:115–158

    PubMed  CAS  Google Scholar 

  • Lu YB, Franze K, Seifert G et al. (2006) Viscoelastic properties of individual glial cells and neurons in the CNS. Proc Natl Acad Sci USA 103(47):17759–17764

    PubMed  CAS  Google Scholar 

  • Lundkvist A, Reichenbach A, Betsholtz C et al. (2004) Under stress, the absence of intermediate filaments from Muller cells in the retina has structural and functional consequences. J Cell Sci 117(Pt 16):3481–3488

    PubMed  CAS  Google Scholar 

  • Mahaffy RE, Park S, Gerde E et al. (2004) Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys J 86(3):1777–1793

    PubMed  CAS  Google Scholar 

  • Mahaffy RE, Shih CK, MacKintosh FC et al. (2000) Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys Rev Lett 85(4):880–883

    PubMed  CAS  Google Scholar 

  • Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA 94(3):849–854

    PubMed  CAS  Google Scholar 

  • Martin XD (1992) Normal intraocular pressure in man. Ophthalmologica 205(2):57–63

    PubMed  CAS  Google Scholar 

  • Mastronarde DN, Thibeault MA, Dubin MW (1984) Non-uniform postnatal growth of the cat retina. J Comp Neurol 228(4):598–608

    PubMed  CAS  Google Scholar 

  • Matzke R, Jacobson K, Radmacher M (2001) Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nat Cell Biol 3(6):607–610

    PubMed  CAS  Google Scholar 

  • Mcconnaughey WB, Petersen NO (1980) Cell Poker – an Apparatus for Stress-Strain Measurements on Living Cells. Rev Sci Instrum 51(5):575–580

    PubMed  CAS  Google Scholar 

  • Mezger T, Zorll U (2000) Das Rheologie- Handbuch. Für Anwender von Rotations- und Oszillations- Rheometern. Vincentz Verlag, Hannover, Germany

    Google Scholar 

  • Miller JD (1975) Volume and pressure in the craniospinal axis. Clin neurosurg 22:76–105

    PubMed  CAS  Google Scholar 

  • Miller K, Chinzei K (2002) Mechanical properties of brain tissue in tension. J Biomech 35(4):483–490

    PubMed  Google Scholar 

  • Miller K, Chinzei K, Orssengo G et al. (2000) Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J Biomech 33(11):1369–1376

    PubMed  CAS  Google Scholar 

  • Moore SW, Keller RE, Koehl MA (1995) The dorsal involuting marginal zone stiffens anisotropically during its convergent extension in the gastrula of Xenopus laevis. Development 121(10):3131–3140

    PubMed  CAS  Google Scholar 

  • Mooy CM, Van Den Born LI, Baarsma S et al. (2002) Hereditary X-linked juvenile retinoschisis: a review of the role of Muller cells. Arch Ophthalmol 120(7):979–984

    PubMed  Google Scholar 

  • Moreno-Herrero F, Colchero J, Gomez-Herrero J et al. (2004) Atomic force microscopy contact, tapping, and jumping modes for imaging biological samples in liquids. Phys Rev E Stat Nonlin Soft Matter Phys 69(3 Pt 1):031915

    PubMed  CAS  Google Scholar 

  • Morrison B, Meaney DF, Margulies SS et al. (2000) Dynamic mechanical stretch of organotypic brain slice cultures induces differential genomic expression: Relationship to mechanical parameters. J Biomech Eng Trans Asme 122(3):224–230

    Google Scholar 

  • Mucke N, Kreplak L, Kirmse R et al. (2004) Assessing the flexibility of intermediate filaments by atomic force microscopy. J Mol Biol 335(5):1241–1250

    PubMed  CAS  Google Scholar 

  • Munevar S, Wang Y, Dembo M (2001) Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys J 80(4):1744–1757

    PubMed  CAS  Google Scholar 

  • Nedelec FJ, Surrey T, Maggs AC et al. (1997) Self-organization of microtubules and motors. Nature 389(6648):305–308

    PubMed  CAS  Google Scholar 

  • Nicolle S, Lounis M, Willinger R et al. (2005) Shear linear behavior of brain tissue over a large frequency range. Biorheology 42(3):209–223

    PubMed  CAS  Google Scholar 

  • Ommaya AK (1968) Mechanical properties of tissues of the nervous system. J Biomech 1(2):127–138

    PubMed  CAS  Google Scholar 

  • Pampaloni F, Lattanzi G, Jonas A et al. (2006) Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length. Proc Natl Acad Sci USA 103(27):10248–10253

    PubMed  CAS  Google Scholar 

  • Pannicke T, Iandiev I, Uckermann O et al. (2004) A potassium channel-linked mechanism of glial cell swelling in the postischemic retina. Mol Cell Neurosci 26(4):493–502

    PubMed  CAS  Google Scholar 

  • Peichl L, Bolz J (1984) Kainic acid induces sprouting of retinal neurons. Science 223(4635):503–504

    PubMed  CAS  Google Scholar 

  • Pekny M, Johansson CB, Eliasson C et al. (1999) Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J Cell Biol 145(3):503–514

    PubMed  CAS  Google Scholar 

  • Pelham RJ, Jr., Wang Y (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 94(25):13661–13665

    PubMed  CAS  Google Scholar 

  • Potard US, Butler JP, Wang N (1997) Cytoskeletal mechanics in confluent epithelial cells probed through integrins and E-cadherins. Am J Physiol 272(5 Pt 1):C1654–1663

    PubMed  CAS  Google Scholar 

  • Prange MT, Margulies SS (2002) Regional, directional, and age-dependent properties of the brain undergoing large deformation. J Biomech Eng Trans Asme 124(2):244–252

    Google Scholar 

  • Prange MT, Meaney DF, Margulies SS (2000) Defining brain mechanical properties: effects of region, direction, and species. Stapp car crash J 44:205–213

    PubMed  CAS  Google Scholar 

  • Prass M, Jacobson K, Mogilner A et al. (2006) Direct measurement of the lamellipodial protrusive force in a migrating cell. J Cell Biol 174(6):767–772

    PubMed  CAS  Google Scholar 

  • Provis JM, Diaz CM, Dreher B (1998) Ontogeny of the primate fovea: a central issue in retinal development. Prog Neurobiol 54(5):549–580

    PubMed  CAS  Google Scholar 

  • Radmacher M (1997) Measuring the elastic properties of biological samples with the AFM. IEEE Eng Med Biol Mag 16(2):47–57

    PubMed  CAS  Google Scholar 

  • Radmacher M, Tillmann RW, Fritz M et al. (1992) From molecules to cells: imaging soft samples with the atomic force microscope. Science 257(5078):1900–1905

    PubMed  CAS  Google Scholar 

  • Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145(1):61–83

    PubMed  CAS  Google Scholar 

  • Reichenbach A, Eberhardt W, Scheibe R et al. (1991a) Development of the rabbit retina. IV. Tissue tensility and elasticity in dependence on topographic specializations. Exp Eye Res 53(2):241–251

    CAS  Google Scholar 

  • Reichenbach A, Hagen E, Schippel K et al. (1988a) Cytotopographical specialization of enzymatically isolated rabbit retinal Muller (glial) cells: structure, ultrastructure, and 3H-ouabain binding sites. Z Mikrosk Anat Forsch 102(6):897–912

    CAS  Google Scholar 

  • Reichenbach A, Hagen E, Schippel K et al. (1988b) Quantitative electron microscopy of rabbit Muller (glial) cells in dependence on retinal topography. Z Mikrosk Anat Forsch 102(5):721–755

    CAS  Google Scholar 

  • Reichenbach A, Schnitzer J, Friedrich A et al. (1991b) Development of the rabbit retina: II. Muller cells. J Comp Neurol 311(1):33–44

    CAS  Google Scholar 

  • Reichenbach A, Schnitzer J, Reichelt E et al. (1993) Development of the rabbit retina, III: Differential retinal growth, and density of projection neurons and interneurons. Vis Neurosci 10(3):479–498

    PubMed  CAS  Google Scholar 

  • Reid SN, Yamashita C, Farber DB (2003) Retinoschisin, a photoreceptor-secreted protein, and its interaction with bipolar and muller cells. J Neurosci 23(14):6030–6040

    PubMed  CAS  Google Scholar 

  • Remmerbach T, Dietrich J, Wottawah F et al. (2008) Oral Cancer Diagnosis by Mechanical Phenotyping. submitted

    Google Scholar 

  • Rief M, Gautel M, Oesterhelt F et al. (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276(5315):1109–1112

    PubMed  CAS  Google Scholar 

  • Riley DA (1981) Ultrastructural evidence for axon retraction during the spontaneous elimination of polyneuronal innervation of the rat soleus muscle. J Neurocytol 10(3):425–440

    PubMed  CAS  Google Scholar 

  • Rodriguez OC, Schaefer AW, Mandato CA et al. (2003) Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol 5(7):599–609

    PubMed  CAS  Google Scholar 

  • Rosenbluth MJ, Lam WA, Fletcher DA (2006) Force microscopy of nonadherent cells: a comparison of leukemia cell deformability. Biophys J 90(8):2994–3003

    PubMed  CAS  Google Scholar 

  • Rotsch C, Radmacher M (2000) Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J 78(1):520–535

    PubMed  CAS  Google Scholar 

  • Rubinstein M, Colby RH (2003) Polymer Physics. Oxford University Press, New York, USA

    Google Scholar 

  • Schaar BT, McConnell SK (2005) Cytoskeletal coordination during neuronal migration. Proc Natl Acad Sci USA 102(38):13652–13657

    PubMed  CAS  Google Scholar 

  • Schmidschonbein GW, Sung KLP, Tozeren H et al. (1981) Passive Mechanical Properties of Human Leukocytes. Biophys J 36(1):243–256

    CAS  Google Scholar 

  • Schramm G (1994) A Practical Approach to Rheology and Rheometry. Gebrueder HAAKE GmbH, Karlsruhe, Germany

    Google Scholar 

  • Schultze M (1866) Zur Anatomie und Physiologie der Retina. Verlag von Max Cohen & Sohn, Bonn

    Google Scholar 

  • Shuck LZ, Haynes RR, Fogle JL (1970) Determination of Viscoelastic Properties of Human Brain Tissue. Mech Eng 92(11):57–&

    Google Scholar 

  • Smith DH, Meaney DF (2000) Axonal damage in traumatic brain injury. Neuroscientist 6(6):483–495

    Google Scholar 

  • Smith PG, Deng L, Fredberg JJ et al. (2003) Mechanical strain increases cell stiffness through cytoskeletal filament reorganization. Am J Physiol Lung Cell Mol Physiol 285(2):L456–463

    PubMed  CAS  Google Scholar 

  • Stamenovic D, Liang Z, Chen J et al. (2002) Effect of the cytoskeletal prestress on the mechanical impedance of cultured airway smooth muscle cells. J Appl Physiol 92(4):1443–1450

    PubMed  Google Scholar 

  • Sterba RE, Sheetz MP (1998) Basic laser tweezers. Methods Cell Biol 55:29–41

    PubMed  CAS  Google Scholar 

  • Suresh S, Spatz J, Mills JP et al. (2005) Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater 1(1):15–30

    PubMed  CAS  Google Scholar 

  • Svoboda K, Block SM (1994) Biological applications of optical forces. Annu Rev Biophys Biomol Struct 23:247–285

    PubMed  CAS  Google Scholar 

  • Svoboda K, Schmidt CF, Branton D et al. (1992) Conformation and elasticity of the isolated red blood cell membrane skeleton. Biophys J 63(3):784–793

    PubMed  CAS  Google Scholar 

  • Tan JL, Tien J, Pirone DM et al. (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci USA 100(4):1484–1489

    PubMed  CAS  Google Scholar 

  • Thibault KL, Margulies SS (1998) Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria. J Biomech 31(12):1119–1126

    PubMed  CAS  Google Scholar 

  • Thoumine O, Ott A (1997) Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. J Cell Sci 110:2109–2116

    PubMed  CAS  Google Scholar 

  • Tseng Y, Kole TP, Wirtz D (2002) Micromechanical mapping of live cells by multiple-particle-tracking microrheology. Biophys J 83(6):3162–3176

    PubMed  CAS  Google Scholar 

  • Uckermann O, Vargova L, Ulbricht E et al. (2004) Glutamate-evoked alterations of glial and neuronal cell morphology in the guinea pig retina. J Neurosci 24(45):10149–10158

    PubMed  CAS  Google Scholar 

  • Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385(6614):313–318

    PubMed  Google Scholar 

  • Vanselow J, Thanos S, Godement P et al. (1989) Spatial arrangement of radial glia and ingrowing retinal axons in the chick optic tectum during development. Brain Res Dev Brain Res 45(1):15–27

    PubMed  CAS  Google Scholar 

  • Virchow R (1856) Gesammelte Abhandlungen zur wissenschaftlichen Medicin. Verlag von Meidinger Sohn & Comp., Frankfurt a. M., Germany

    Google Scholar 

  • Wakatsuki T, Schwab B, Thompson NC et al. (2001) Effects of cytochalasin D and latrunculin B on mechanical properties of cells. J Cell Sci 114(Pt 5):1025–1036

    PubMed  CAS  Google Scholar 

  • Wang HB, Dembo M, Wang YL (2000) Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am J Physiol Cell Physiol 279(5):C1345–1350

    PubMed  CAS  Google Scholar 

  • Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260(5111):1124–1127

    PubMed  CAS  Google Scholar 

  • Wang N, Ingber DE (1994) Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys J 66(6):2181–2189

    PubMed  CAS  Google Scholar 

  • Wang N, Stamenovic D (2000) Contribution of intermediate filaments to cell stiffness, stiffening, and growth. Am J Physiol Cell Physiol 279(1):C188–194

    PubMed  CAS  Google Scholar 

  • Wang Q, Chiang ET, Lim M et al. (2001) Changes in the biomechanical properties of neutrophils and endothelial cells during adhesion. Blood 97(3):660–668

    PubMed  CAS  Google Scholar 

  • Wirtz HR, Dobbs LG (2000) The effects of mechanical forces on lung functions. Respir Physiol 119(1):1–17

    PubMed  CAS  Google Scholar 

  • Woerly S, Doan VD, Sosa N et al. (2004) Prevention of gliotic scar formation by NeuroGel allows partial endogenous repair of transected cat spinal cord. J Neurosci Res 75(2):262–272

    PubMed  CAS  Google Scholar 

  • Wottawah F, Schinkinger S, Lincoln B et al. (2005) Optical rheology of biological cells. Phys Rev Lett 94(9):098103

    PubMed  Google Scholar 

  • Yao XY, Hageman GS, Marmor MF (1994) Retinal adhesiveness in the monkey. Invest Ophthalmol Vis Sci 35(2):744–748

    PubMed  CAS  Google Scholar 

  • Yeung T, Georges PC, Flanagan LA et al. (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60(1):24–34

    PubMed  Google Scholar 

  • Yu X, Bellamkonda RV (2001) Dorsal root ganglia neurite extension is inhibited by mechanical and chondroitin sulfate-rich interfaces. J Neurosci Res 66(2):303–310

    PubMed  CAS  Google Scholar 

  • Zheng J, Buxbaum RE, Heidemann SR (1994) Measurements of growth cone adhesion to culture surfaces by micromanipulation. J Cell Biol 127(6 Pt 2):2049–2060

    PubMed  CAS  Google Scholar 

  • Zheng J, Lamoureux P, Santiago V et al. (1991) Tensile regulation of axonal elongation and initiation. J Neurosci 11(4):1117–1125

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Paul Janmey, Yun-Bi Lu, and Jochen Guck for many inspiring discussions about the topic and for their continuous support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Franze, K., Reichenbach, A., Käs, J. (2009). Biomechanics of the CNS. In: Kamkim, A., Kiseleva, I. (eds) Mechanosensitivity of the Nervous System. Mechanosensitivity in Cells and Tissues, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8716-5_10

Download citation

Publish with us

Policies and ethics