Skip to main content

Abstract

Sclerotinia rot, caused by the pathogenic fungus Sclerotinia sclerotiorum (Lib.) de Bary, is an economically important disease of carrot (Daucus carota L.) occurring in the field and storage. This review describes a range of control methods for Sclerotinia rot of carrot, emphasizing emerging strategies supported by new information on the etiology and epidemiology of the disease. Prospects and recommendations are outlined for integrating current and emerging control methods to attain sustainable management of the disease. The primary strategy to managing Sclerotinia rot is the integration of methods that reduce within-field sources of inoculum, suppress the development of S. sclerotiorum, and reduce the infection rate in the field and storage. The integrated strategy recommended in this review aims at achieving disease suppression through sanitation of soil and equipment, monitoring the crop development and microclimate, modifying the microclimate through canopy manipulation, predicting the disease, and timing the application of disease control practices as required. Breeding carrot cultivars for an upright and compact top growth may offer important contributions to the sustainable management of Sclerotinia rot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abawi, G. S., & Grogan, R. G. (1979). Epidemiology of diseases caused by Sclerotinia species. Phytopathology, 69, 899-904.

    Google Scholar 

  • Adams, P. B., & Ayres, W. A. (1979). Ecology of Sclerotinia species. Phytopathology, 69, 896-899.

    Google Scholar 

  • Afek, U., Orenstein, J., & Nuriel, E. (1999). Steam treatment to prevent carrot decay during storage. Crop Protection, 18, 639-642.

    Google Scholar 

  • Alexander, B. J. R., & Stewart, A. (1994). Survival of sclerotia of Sclerotinia and Sclerotium spp. in New Zealand horticultural soil. Soil Biology and Biochemistry, 26, 1323-1329.

    Google Scholar 

  • Anonymous. (1970). Carrot. Canadian Plant Disease Survey, 50, 20.

    Google Scholar 

  • Anonymous. (2001). Carrots. In, “Vegetable Production Guide for Commercial Growers, 2001/2002 Edition”. British Columbia Ministry of Agriculture, Food and Fisheries, BC, Canada, pp. 71-77.

    Google Scholar 

  • Anonymous. (2003). Commercial biocontrol products available for use against plant pathogens, APS Biological Control Committee. On-line publication, updated August 19, 2003.

    Google Scholar 

  • Anonymous. (2004a). 2003 FAO Production Yearbook, Vol.57. FAO, Rome, Italy.

    Google Scholar 

  • Anonymous. (2004b). Carrots. In, “Vegetable Production Recommendations, 2004-2005, Publication 363”. Ontario Ministry of Agriculture and Food, ON, Canada, pp. 70-73.

    Google Scholar 

  • Arneson, P. A. (2001). Plant disease epidemiology. In, “The Plant Health Instructor”. On-line publication, APS, St. Paul, Minnesota.

    Google Scholar 

  • Atallah, Z. K., & Johnson, D. A. (2004). Development of Sclerotinia stem rot in potato fields in south-central Washington. Plant Disease, 88, 419-423.

    Google Scholar 

  • Barton, W., & Chapman, S. R. (2002). BAS 510 F: A new broad-spectrum fungicide for use on fruit and vegetable crops and turfgrass. Canadian Journal of Plant Pathology, 24, 381.

    Google Scholar 

  • Bennett, A. J., Leifert, C., & Whipps, J. M. (2003). Survival of the biocontrol agentsConiothyrium minitans and Bacillus subtilis MBI 600 introduced into pasteurised, sterilised and non-sterile soils. Soil Biology & Biochemistry, 35, 1565-1573.

    CAS  Google Scholar 

  • Ben-Yephet, Y. (1988). Control of sclerotia and apothecia of Sclerotinia sclerotiorum by metham-sodium, methyl bromide and soil solarization. Crop Protection, 7, 25-27.

    CAS  Google Scholar 

  • Ben-Yephet, Y., Bitton, S., & Greenberger, A. (1986). Control of lettuce drop disease, caused by Sclerotinia sclerotiorum, with metham-sodium soil treatment and foliar application of benomyl. Plant Pathology, 35, 146-151.

    CAS  Google Scholar 

  • Ben-Yephet, Y., Genizi, A., & Siti, E. (1993). Sclerotial survival and apothecial production by Sclerotinia sclerotiorum following outbreaks of lettuce drop. Phytopathology, 83, 509-513.

    Google Scholar 

  • Blad, B. L., Steadman, J. R., & Weiss, A. (1978). Canopy structure and irrigation influence white mold disease and microclimate of dry edible beans. Phytopathology, 68, 1431-1437.

    Google Scholar 

  • Boland, G. J., & Hall, R. (1987a). Epidemiology of white mold of white bean in Ontario. Canadian Journal of Plant Pathology, 9, 218-224.

    Google Scholar 

  • Boland, G. J., & Hall, R. (1987b). Evaluating soybean cultivars for resistance to Sclerotinia sclerotiorum under field conditions. Plant Disease, 71, 934-936.

    Google Scholar 

  • Boland, G. J., & Hall, R. (1988). Epidemiology of Sclerotinia stem rot of soybean in Ontario. Phytopathology, 78, 1241-1245.

    Google Scholar 

  • Boland, G. J., & Hall, R. (1994). Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 16, 93-108.

    Google Scholar 

  • Bom, M., & Boland, G. J. (2000). Evaluation of disease forecasting variables for sclerotinia stem rot (Sclerotinia sclerotiorum) of canola. Canadian Journal of Plant Science, 80, 889-898.

    Google Scholar 

  • Budge, S. P., McQuilken, M. P., Fenlon, J. S., & Whipps, J. M. (1995). Use of Coniothyrium minitans and Gliocladium virens for biological control of Sclerotinia sclerotiorum in glasshouse lettuce. Biological Control, 5, 513-522.

    Google Scholar 

  • Butzler, T. M., Bailey, J., & Beute, M. K. (1998). Integrated management of Sclerotinia blight in peanut: utilizing canopy morphology, mechanical pruning, and fungicide timing. Plant Disease, 82, 1312-1318.

    Google Scholar 

  • Caesar, A. J., & Pearson, R. C. (1983). Environmental factors affecting survival of ascospores of Sclerotinia sclerotiorum. Phytopathology, 73, 1024-1030.

    Google Scholar 

  • Cheah, L. H., Page, B. B. C., & Shepherd, R. (1997). Chitosan coating for inhibition of sclerotinia rot of carrot. New Zealand Journal of Crop and Horticultural Science, 25, 89-92.

    CAS  Google Scholar 

  • Cheah, L. H., & Brash, D. W. (2001). Minimizing postharvest rots and quality loss in New Zealand carrots. In, Crop Management and Postharvest Handling of Horticultural Products. Volume 1 - Quality Management. Dris, R., Niskanen, R., & Jain, S. M. (Eds.). Science Publishers, Inc., Enfield, New Hampshire, USA, 327-344.

    Google Scholar 

  • Clarkson, J. P., Phelps, K., Whipps, J. M., Young, C. S., Smith, J. A., & Watling, M. (2004). Forecasting Sclerotinia disease on lettuce: Toward developing a prediction model for carpogenic germination of sclerotia. Phytopathology, 94, 268-279.

    Google Scholar 

  • Coley-Smith, J. R., & Cooke, R.C. (1971). Survival and germination of fungal sclerotia. Annual Review of Phytopathology, 9, 65-92.

    Google Scholar 

  • Cook, G. E., Steadman, J. R., & Boosalis, M. G. (1975). Survival of Whetzelinia sclerotiorum and initial infection of dry edible beans in western Nebraska. Phytopathology, 65, 250-255.

    Google Scholar 

  • Couper, G. (2001). The biology, epidemiology and control ofSclerotinia sclerotiorum on carrots in North East Scotland. Ph.D. Thesis, University of Aberdeen, Aberdeen, Scotland, UK.

    Google Scholar 

  • Couper, G., Litterick, A., & Leifert, C. (2001). Control of Sclerotinia within carrot crops in NE Scotland: the effect of irrigation and compost application on sclerotia germination. In: Proceedings of the 11th International Sclerotinia Workshop. Young, C. & Hughes, K. (Eds.). York, UK, 129-130.

    Google Scholar 

  • Davis, R. M. (2004). Carrot diseases and their management. In: Diseases of Fruits and Vegetables. Volume 1. Naqvi, S. A. M. H. (Ed. ). Kluwer Academic Publishers, The Netherlands, 397-439.

    Google Scholar 

  • Del Rio, L. E., Martinson, C. A., & Yang, X. B. (2002). Biological control of Sclerotinia stem rot of soybean with Sporidesmium sclerotivorum. Plant Disease, 86, 999-1004.

    Google Scholar 

  • Deshpande, R. Y., Hubbard, K. G., Coyne, D. P., Steadman, J. R., & Parkhurst, A. M. (1995). Estimating leaf wetness in dry bean canopies as a prerequisite to evaluating white mold disease. Agronomy Journal, 87, 613-619.

    Google Scholar 

  • Dillard, H. R., & Hunter, J. E. (1986). Association of common ragweed with Sclerotinia rot of cabbage in New York state. Plant Disease, 70, 26-28.

    Google Scholar 

  • Dillard, H. R., Ludwig, J. W., & Hunter, J. E. (1995). Conditioning sclerotia of Sclerotinia sclerotiorum for carpogenic germination. Plant Disease, 79, 411-415.

    Google Scholar 

  • Doran, J. W. (1980a). Microbial changes associated with residue management and reduced tillage. Soil Science Society of America Journal, 44, 518-524.

    CAS  Google Scholar 

  • Doran, J. W. (1980b). Soil microbial and biochemical changes associated with reduced tillage. Soil Science Society of America Journal, 44, 765-771.

    CAS  Google Scholar 

  • Dos Santos, A. F., & Dhingra, O. D. (1982). Pathogenicity of Trichoderma spp. on the sclerotia of Sclerotinia sclerotiorum. Canadian Journal of Botany, 60, 472-475.

    Google Scholar 

  • El Ghaouth, A. (1994). Manipulation of defense systems with elicitors to control postharvest diseases. In: Biological Control of Postharvest Diseases - Theory and Practice. Wilson, C. L., & Wisniewski, M. E. (Eds.). CRC Press, Inc., Boca Raton, FL, 153-167.

    Google Scholar 

  • Elad, Y. (2000). Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Protection, 19, 709-714.

    Google Scholar 

  • Ferraz, L. C. L., Café Filho, A. C., Nasser, L. C. B., & Azevedo, J. (1999). Effects of soil moisture, organic matter and grass mulching on the carpogenic germination of sclerotia and infection of bean by Sclerotinia sclerotiorum. Plant Pathology, 48, 77-82.

    Google Scholar 

  • Finlayson, J. E., Pritchard, M. K., & Rimmer, S. R. (1989). Electrolyte leakage and storage decay of five carrot cultivars in response to infection by Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 11, 313-316.

    Google Scholar 

  • Finlayson, J. E., Rimmer, S. R., & Pritchard, M. K. (1989). Infection of carrots by Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 11, 242-246.

    Google Scholar 

  • Fraser, H. (1998). Tunnel forced-air coolers for fresh fruits & vegetables. FACTSHEET Agdex n. 736/202. Ontario Ministry of Agriculture and Food, ON, Canada.

    Google Scholar 

  • Fuller, P. A., Steadman, J. R., & Coyne, D. P. (1984). Enhancement of white mold avoidance in dry beans by canopy elevation. HortScience, 19, 78-79.

    Google Scholar 

  • Geary, J. R. (1978). Host-parasite interactions between the cultivated carrot (Daucus carota L.) and Sclerotinia sclerotiorum (Lib.) de Bary. Ph.D. Thesis, University of East Anglia, East Anglia, UK.

    Google Scholar 

  • Geeson, J. D., Browne, K. M., & Everson, H. P. (1988). Storage diseases of carrots in East-Anglia 1978-82, and the effects of some pre- and post-harvest factors. Annals of Applied Biology, 112, 503-514.

    Google Scholar 

  • Gerlagh, M., Goossen-van de Geijn, H. M., Fokkema, N. J. & Vereijken, P. F. G. (1999). Long-term biosanitation by application of Coniothyrium minitans on Sclerotinia sclerotiorum-infected crops. Phytopathology, 89, 141-147.

    Google Scholar 

  • Gerlagh, M., Goossen-Van De Geijn, H. M., Hoogland, A. E. & Vereijken, P. F. G. (2003). Quantitative aspects of infection of Sclerotinia sclerotiorum sclerotia by Coniothyrium minitans: Timing of application, concentration and quality of conidial suspension of the mycoparasite. European Journal of Plant Pathology, 109, 489-502.

    Google Scholar 

  • Gotoechan, H. & Desilets, H. (1999). Post-harvest effects of two AM fungi on white rot (Sclerotinia sclerotiorum) in carrot (Daucus carota L.). Phytopathology, 89 S29 (abstract).

    Google Scholar 

  • Gracia-Garza, J. A., Bailey, B. A., Paulitz, T. C., Lumsden, R. D., Reeleder, R. D., & Roberts, D. P. (1997). Effect of sclerotial damage of Sclerotinia sclerotiorum on the mycoparasitic activity of Trichoderma harzianum. Biocontrol Science and Technology, 7, 401-413.

    Google Scholar 

  • Gracia-Garza, J. A., Neumann, S., Vyn, T. J., & Boland, G. J. (2002). Influence of crop rotation and tillage on production of apothecia by Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 24, 137-143.

    Google Scholar 

  • Gullino, M. L., Camponogara, A., Gasparrini, G., Rizzo, V., Clini, C., & Garibaldi, A. (2003). Replacing methyl bromide for soil disinfestation: The Italian experience and implications for other countries. Plant Disease, 87, 1012-1021.

    Google Scholar 

  • Hansen, J. M., Tobias, D. J., Balbyshev, N. F., Stack, R. W. & Lee, C. W. (2001). Effect of preharvest benomyl spray on winter storage of carrots. Phytopathology, 91, S178 (abstract).

    Google Scholar 

  • Hoadley, A. D. (1963). Control of carrot storage disease organisms with sodium orthophenylphenate. Plant Disease Reporter, 47, 900-903.

    Google Scholar 

  • Huang, H. C. (1977). Importance of Coniothyrium minitans in survival of sclerotia of Sclerotinia sclerotiorum in wilted sunflower. Canadian Journal of Botany, 55, 289-295.

    Google Scholar 

  • Huang, H. C., & Sun, S. K. (1991). Effects of S-H mixture or Perlka on carpogenic germination and survival of sclerotia of Sclerotinia sclerotiorum. Soil Biology and Biochemistry, 23, 809-813.

    CAS  Google Scholar 

  • Huang, H. C., Huang, J. W., Snaidon, G. & Erickson, R. S. (1997). Effect of allyl alcohol and fermented agricultural wastes on carpogenic germination of sclerotia of Sclerotinia sclerotiorum and colonization by Trichoderma spp. Canadian Journal of Plant Pathology, 19, 43-46.

    CAS  Google Scholar 

  • Huang, H. C., Bremer, E., Hynes, R. K., & Erickson, R. S. (2000). Foliar application of fungal biocontrol agents for the control of white mold of dry bean caused bySclerotinia sclerotiorum. Biological Control, 18, 270-276.

    Google Scholar 

  • Huang, H. C., Mundel, H. H., & Erickson, R. S. (2003). Effect of physiological resistance and plant architecture on yield of dry bean under disease pressure of white mold (Sclerotinia sclerotiorum). Plant Protection Bulletin (Taichung), 45,169-176.

    Google Scholar 

  • Hunter, J. E. (1981). Proposal for a forecasting system for white mold of snap bean. Report of Bean Improvement Cooperative, 24, 122-123.

    Google Scholar 

  • Hunter, J. E., Abawi, G. S., & Crosier, D. C. (1978). Effects of timing, coverage, and spray oil on control of white mold of snap bean with benomyl. Plant Disease Reporter, 62, 633-637.

    Google Scholar 

  • Hunter, J. E., Pearson, R. C., Seem, R. C., Smith, C. A., & Palumbo, D. R. (1984). Relationship between soil moisture and occurrence of Sclerotinia sclerotiorum and white mold disease on snap beans. Protection Ecology, 7, 269-280.

    Google Scholar 

  • Inbar, J., Menendez, A., & Chet, I. (1996). Hyphal interaction between Trichoderma harzianum and Sclerotinia sclerotiorum and its role in biological control. Soil Biology and Biochemistry, 28, 757-763.

    CAS  Google Scholar 

  • Jurke, C. J., & Fernando, W. G. D. (2002). The effects of plant architecture in canola on sclerotinia stem rot (Sclerotinia sclerotiorum) avoidance. Phytopathology, 92, S40 (abstract).

    Google Scholar 

  • Jurke, C. J., & Fernando, W. G. D.( 2003). Effect of seeding rates on infection of Sclerotinia sclerotiorum in canola. Canadian Journal of Plant Pathology, 25, 117.

    Google Scholar 

  • Kim, H. S., & Diers, B. W. (2000). Inheritance of partial resistance to sclerotinia stem rot in soybean. Crop Science, 40, 55-61.

    Google Scholar 

  • Kolkman, J. M., & Kelly, J. D. (2003). QTL conferring resistance and avoidance to white mold in common bean. Crop Science, 43, 539-548.

    CAS  Google Scholar 

  • Kora, C. (2003). Etiology, epidemiology, and management of Sclerotinia rot of carrot caused by Sclerotinia sclerotiorum (Lib.) de Bary. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada.

    Google Scholar 

  • Kora, C., Boland, G. J., & McDonald, M. R. (2002). First report of foliar and root infection of carrot by Sclerotinia minor in Ontario, Canada. Plant Disease, 86, 1406.

    Google Scholar 

  • Kora, C., McDonald, M. R. & Boland, G. J. (2003). Sclerotinia rot of carrot: An example of phenological adaptation and bicyclic development of Sclerotinia sclerotiorum. Plant Disease, 87, 456-470.

    Google Scholar 

  • Kora, C., McDonald, M. R. & Boland, G. J. (2005a). Lateral clipping of canopy influences the microclimate and development of apothecia of Sclerotinia sclerotiorum in carrots. Plant Disease, 6, 549-557

    Google Scholar 

  • Kora, C., McDonald, M. R. & Boland, G. J. (2005b). Epidemiology of sclerotinia rot of carrot caused by Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 27, 245-258.

    Google Scholar 

  • Le Cam, B., Rouxel, F., & Villeneuve, F. (1993). Analyse de la flore fongique de la carrote conservée au froid: Prépondérance de Mycocentrospora acerina (Hartig) Deighton. Agronomie, 13, 125-133.

    Google Scholar 

  • Lee, C. W., Cho, K. H., Cihacek, L. J., & Stack, R. W. (2000). Influence of foliar application of calcium nitrate on carrot root tissue electrolyte leakage and storage characteristics. HortScience, 35, 453 (abstract).

    Google Scholar 

  • Lewis, B. G., & Garrod, B. (1983). Carrots. In: Post-harvest pathology of fruits and vegetables, Dennis C. (Ed.) (pp. 103-124). London, UK: Academic Press.

    Google Scholar 

  • Liew, C. L., & Prange, R. K. (1994). Effect of ozone and storage temperature on postharvest diseases and physiology of carrots (Daucus carota L.). Journal of the American Society for Horticultural Science, 119, 563-567.

    CAS  Google Scholar 

  • Lockhart, C. L., & Delbridge, R. W. (1972). Control of storage diseases of carrots by washing, grading, and postharvest fungicide treatments. Canadian Plant Disease Survey, 52, 140-142.

    Google Scholar 

  • Lumsden, R. D. (1979). Histology and physiology of pathogenesis in plant diseases caused by Sclerotinia species. Phytopathology, 69, 890-896.

    Google Scholar 

  • Martinson, C. A., & Del Rio, L. E. (2001). Prolonged control of Sclerotinia sclerotiorum with Sporidesmium sclerotivorum. In, “Proceedings of the 11th International Sclerotinia Workshop”, (eds. Young, C. and Hughes, K).York, UK, 133-134.

    Google Scholar 

  • McDonald, M. R. (1994). Sclerotinia rot (white mold) of carrot. In, “Diseases and Pests of Vegetable Crop in Canada”, (eds. Howard, H. J., Garland, J. A. and Seaman, W. L.). The Canadian Phytopathological Society and Entomological Society of Canada, Ottawa, Canada, pp. 72-73.

    Google Scholar 

  • McLaren, D. L., Huang, H. C., & Rimmer, S. R. (1996). Control of apothecial production of Sclerotinia sclerotiorum by Coniothyrium minitans and Talaromyces flavus. Plant Disease, 80, 1373-1378.

    Google Scholar 

  • McLean, D. M. (1958). Role of dead flower parts in infection of certain crucifers by Sclerotinia sclerotiorum (Lib.) de Bary. Plant Disease Reporter, 42, 663-666.

    Google Scholar 

  • McQuilken, M. P., Mitchel, S. J., Budge, S. P., Whipps, J. M., Fenlon, J. S. & Archer, S. A. (1995). Effect of Coniothyrium minitans on sclerotial survival and apothecial production of Sclerotinia sclerotiorum in field-grown oilseed rape. Plant Pathology, 44: 883-896.

    Google Scholar 

  • Melzer, M. S., Smith, E. A., & Boland, G. J. (1997). Index of plant hosts of Sclerotinia minor. Canadian Journal of Plant Pathology, 19, 272-280.

    Google Scholar 

  • Mercier, J., Arul, J., Ponnampalam, R., & Boulet, M. (1993). Induction of 6-Methoxymellein and resistance to storage pathogens in carrot slices by UV-C. Journal of Phytopathology, 137, 44-54.

    CAS  Google Scholar 

  • Merriman, P. R., Pywell, M., Harrison, G., & Nancarrow, J. (1979). Survival of sclerotia of Sclerotinia sclerotiorum and effects of cultivation practices on disease. Soil Biology and Biochemistry, 11, 567-570.

    Google Scholar 

  • Miklas, P. N., Johnson, W. C., Delorme, R., & Gepts, P. (2001). QTL conditioning physiological resistance and avoidance to white mold in dry bean. Crop Science, 41, 309-315.

    Google Scholar 

  • Miklas, P. N., Delorme, R., & Riley, R. (2003). Identification of QTL conditioning resistance to white mold in snap bean. Journal of the American Society for Horticultural Science, 128, 564-570.

    CAS  Google Scholar 

  • Molloy, C., Cheah, L. H., & Koolaard, J. P. (2004). Induced resistance against Sclerotinia sclerotiorum in carrots treated with enzymatically hydrolysed chitosan. Postharvest Biology and Technology, 33, 61-65.

    CAS  Google Scholar 

  • Moore, W. D. (1949). Flooding as a means of destroying sclerotia of Sclerotinia sclerotiorum. Phytopathology, 39, 920-927.

    Google Scholar 

  • Morrall, R. A. A., & Dueck, J. (1982). Epidemiology of Sclerotinia stem rot of rapeseed in Saskatchewan. Canadian Journal of Plant Pathology, 4, 161-168.

    Google Scholar 

  • Mukula, J. (1957). On the decay of stored carrots in Finland. Acta Agriculturae Scandinavica, Suppl. 2.

    Google Scholar 

  • Olsson, K., & Svensson, R. (1996). The influence of polyacetylenes on the susceptibility of carrots to storage diseases. Journal of Phytopathology, 144, 441-447.

    CAS  Google Scholar 

  • Park, S. J. (1993). Response of bush and upright plant type selections to white mold and seed yield of common beans grown in various row widths in southern Ontario. Canadian Journal of Plant Science, 73, 265-272.

    Google Scholar 

  • Phan, C. T., & Hsu, H. (1973). Physical and chemical changes occurring in the carrot root during storage. Canadian Journal of Plant Science, 53, 629-634.

    Google Scholar 

  • Phillips, A. J. L. (1987). Carpogenic germination of sclerotia ofSclerotinia sclerotiorum: A review. Phytophylactica, 19, 279-283.

    Google Scholar 

  • Phillips, A. J. L. (1990). The effects of soil solarization on sclerotial populations of Sclerotinia sclerotiorum. Plant Pathology, 39, 38-43.

    Google Scholar 

  • Pratt, R. G. (1991). Evaluation of foliar clipping treatments for cultural control of Sclerotinia crown and stem rot in crimson clover. Plant Disease, 75, 59-62.

    Google Scholar 

  • Pritchard, M. K., Boese, D. E. & Rimmer, S. R. (1992). Rapid cooling and field-applied fungicides for reducing losses in stored carrots caused by cottony soft rot. Canadian Journal of Plant Pathology, 14, 177-181.

    CAS  Google Scholar 

  • Punja, Z. K., Chen, W. P., & Yip, R. (2003). Transgenic carrots expressing a thaumatin-like protein display enhanced tolerance to several fungal pathogens. Canadian Journal of Plant Pathology, 25, 112 (abstract).

    Google Scholar 

  • Purdy, L. H. (1979). Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology, 69, 875-880.

    Google Scholar 

  • Rader, W. E. (1952). Diseases of stored carrots in New York State. New York Agricultural Experiment Station Geneva Bulletin, No. 889, 10-14.

    Google Scholar 

  • Reeleder, R. D., Raghavan, G. S. V., Monette, S., & Gariepy, Y. (1989). Use of modified atmospheres to control storage rot of carrot caused by Sclerotinia sclerotiorum. International Journal of Refrigeration, 12, 159-163.

    Google Scholar 

  • Rousseau, G., Rioux, S., & Dostaler, D. (2003). Assessment of soil or compost suppressiveness to Sclerotinia sclerotiorum under growth chamber condition: Correlations with laboratory and field assessments. Canadian Journal of Plant Pathology, 25, 434 (abstract).

    Google Scholar 

  • Rubatzky, V. E., Quiros, C. F., & Simon, P.W. (1999). Carrots and Related Vegetable Umbelliferae. CABI Publishing, New York, 294 pp.

    Google Scholar 

  • Saindon, G., Huang, H. C., Kozub, G. C., Mundel, H. H., & Kemp, G. A. (1993). Incidence of white mold and yield of upright bean grown in different planting patterns. Journal of Phytopathology, 137, 118-124.

    Google Scholar 

  • Salunkhe, D. K., & Desai, B .B. (1984). Postharvest Biotechnology of Vegetables. CRC Press, Inc., Boca Raton, FL, 208p.

    Google Scholar 

  • Sanderson, K.R. & Peters, R.D. (2008). Side trimming carrot canopies expected to become the standard practice. Carrot Country, Summer 2008 issue, © 2008 Columbia Publishing.

    Google Scholar 

  • Schwartz, H. F., & Steadman, J. R. (1978). Factors affecting sclerotia populations of, and apothecium production by Sclerotinia sclerotiorum. Phytopathology, 68, 383-388.

    Google Scholar 

  • Schwartz, H. F., Steadman, J. R., & Coyne, D.P. (1978). Influence of Phaseolus vulgaris blossoming characteristics and canopy structure upon resistance to Sclerotinia sclerotiorum. Phytopathology, 68, 465-470.

    Google Scholar 

  • Shibairo, S. I., Upadhyaya, M. K., & Toivonen, P. M. A. (1998a). Influence of preharvest water stress on postharvest moisture loss of carrots (Daucus carota L.). Journal of Horticultural Science and Biotechnology, 73, 347-352.

    Google Scholar 

  • Shibairo, S. I., Upadhyaya, M. K., & Toivonen, P. M. A. (1998b). Potassium nutrition and postharvest moisture loss in carrots (Daucus carota L.). Journal of Horticultural Science and Biotechnology, 78, 862-866.

    Google Scholar 

  • Simon, P.W. (1990). Carrots and other horticultural crops as a source of provitamin A carotenes. HortScience, 25, 1495-1499.

    CAS  Google Scholar 

  • Simpfendorfer, S., Heenan, D. P., Kirkegaard, J. A., Lindbeck, K. D., & Murray, G. M.(2004). Impact of tillage on lupin growth and the incidence of pathogenic fungi in southern New South Wales. Australian Journal of Experimental Agriculture, 44, 53-56.

    Google Scholar 

  • Snowdon, A. L. (1992). Watery soft rot of carrots and parsnips caused by Sclerotinia minor Jagger andSclerotinia sclerotiorum (Lib.) de Bary. In: Color Atlas of Post-Harvest Diseases and Disorders of Fruits and Vegetables. Volume 2: Vegetables. Boca Raton, FL: CRC Press, 290-291.

    Google Scholar 

  • Stack, R. W., Gudmestad, N. C., & Lee, C. (1998). Effect of preharvest benomyl spray and aster yellows on storage of carrots. Phytopathology, 88, S117-S118.

    Google Scholar 

  • Stack, R. W., Cihacek, L. J., Lee, C. W., & Hansen, J. M. (2002). Effect of calcium, nitrogen, and potassium fertilization on white mold of stored carrots. Phytopathology, 92, S78-S79.

    Google Scholar 

  • Steadman, J. R. (1979). Control of plant diseases caused by Sclerotinia species. Phytopathology, 69, 904-907.

    CAS  Google Scholar 

  • Steadman, J. R. (1983). White mold - a serious yield-limiting disease of bean. Plant Disease, 67, 346-350.

    Google Scholar 

  • Subbarao, K. V. (1998). Progress toward integrated management of lettuce drop. Plant Disease, 82, 1068-1078.

    Google Scholar 

  • Subbarao, K. V. (2002). Cottony rot/Pink rot. In: Compendium of umbelliferous crop diseases. Davis, R. M. and Raid, R. N. (Eds.). APS Press, St. Paul, MN, 29-30.

    Google Scholar 

  • Suojala, T., & Pessala, R. (1999). Optimal harvest time of carrot and white cabbage for storage. In: Agri-Food Quality II. Quality management of fruits and vegetables. Hägg, M., Ahvenainen, R., Evers, A. M., & Tiilikkala, K. (Eds.). The Royal Society of Chemistry, Cambridge, UK, 227-231.

    Google Scholar 

  • Tahvonen, R. (1985). The prevention of Botrytis cinerea and Sclerotinia sclerotiorum on carrots during storage by spraying the tops with fungicide before harvesting. Annales Agriculturae Fenniae, 24, 89-95.

    CAS  Google Scholar 

  • Terry, L. A. & Joyce, D. C. (2004). Elicitors of induced disease resistance in postharvest horticultural crops: a brief review. Postharvest Biology and Technology, 32, 1-13.

    Google Scholar 

  • Tronsmo, A. (1989). Trichoderma harzianum used for biological control of storage rot on carrots. Norwegian Journal of Agricultural Sciences, 3, 157-161.

    Google Scholar 

  • Turkington, T. K., & Morall, R. A. A. (1990). Influence of canopy density on risk and incidence of sclerotinia stem rot of canola. Canadian Journal of Plant Pathology, 12, 339.

    Google Scholar 

  • Turkington, T. K., Morall, R. A. A., & Gugel, R. K. (1991). Use of petal infestation to forecast stem rot of canola: Evaluation of early bloom sampling, 1985-1990. Canadian Journal of Plant Pathology, 13, 50-59.

    Google Scholar 

  • Twengström, E., Sigvald, R., Svensson, C., & Yuen, J. (1998). Forecasting Sclerotinia stem rot in spring sown oilseed rape. Crop Protection, 17, 405-411.

    Google Scholar 

  • Uecker, F. A., Ayers, W. A., & Adams, P. B. (1978). A new hyphomycete on sclerotia of Sclerotinia sclerotiorum. Mycotaxon, 7, 275-282.

    Google Scholar 

  • Van den Berg, L., & Yang, S. M. (1969). Effect of relative humidity on production of extracellular pectolytic enzymes by Botrytis cinerea and Sclerotinia sclerotiorum. Canadian Journal of Botany, 47, 1007-1010.

    Google Scholar 

  • Van Loenen, M. C. A., Turbett, Y., Mullins, C. E., Feilden, N. E. H., Wilson, M. J., Leifert, C., & Seel, W. E. (2003). Low temperature-short duration steaming of soil kills soil-borne pathogens, nematode pests and weeds. European Journal of Plant Pathology, 109, 993-1002.

    Google Scholar 

  • Warton, B., Matthiessen, J. N., & Shackleton, M. A. (2001). Glucosinolate content and isothiocyanate evolution: Two measures of the biofumigation potential of plants. Journal of Agricultural and Food Chemistry, 49, 5244-5250.

    PubMed  CAS  Google Scholar 

  • Weber, Z. (2003). Efficacy of biological and chemical protection of winter oilseed rape against white mould. Bulletin of the Polish Academy of Sciences Biological Sciences, 51, 149-152.

    CAS  Google Scholar 

  • Wegulo, S. N., Sun, P., Martinson, C. A., & Yang, X. B. (2000). Spread of Sclerotinia stem rot of soybean from area and point sources of apothecial inoculum. Canadian Journal of Plant Science, 80, 389-402.

    Google Scholar 

  • Weiss, A., Hipps, L. E., Blad, B. L., & Steadman, J. R. (1980). Comparison of within-canopy microclimate and white mold disease (Sclerotinia sclerotiorum) development in dry edible beans as influenced by canopy structure and irrigation. Agricultural Meteorology, 22, 11-21.

    Google Scholar 

  • Willets, H. J., & Wong, A. L. (1980). The biology of Sclerotinia sclerotiorum, S. trifoliorum, and S. minor with emphasis on specific nomenclature. Botanical Review, 46, 101-165.

    Google Scholar 

  • Williams, J. R., & Stelfox, D. (1980). Influence of farming practices in Alberta on germination and apothecium production of sclerotia of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 2, 169-172.

    Google Scholar 

  • Yang, J., Kharbanda, P. D., & Tewari, J. P. (2001). Studies on disease suppressiveness of compost. Canadian Journal of Plant Pathology, 23, 191.

    Google Scholar 

  • Zhou, T., & Boland, G. J. (1998). Biological control strategies for Sclerotinia diseases. In: Plant-microbe interaction and biological control. Boland, G. J., & Kuykendall, L. D. (Eds.). Russell Dekker & Sons Publications Ltd., New York, 127-155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kora, C., McDonald, M.R., Boland, G.J. (2008). New Progress in the Integrated Management of Sclerotinia Rot of Carrot. In: Ciancio, A., Mukerji, K. (eds) Integrated Management of Diseases Caused by Fungi, Phytoplasma and Bacteria. Integrated Management of Plant Pests and Diseases, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8571-0_13

Download citation

Publish with us

Policies and ethics