Skip to main content

Estimating Carbon Stocks and Stock Changes in Forests: Linking Models and Data Across Scales

  • Chapter
Managing Forest Ecosystems: The Challenge of Climate Change

Part of the book series: Managing Forest Ecosystems ((MAFE,volume 17))

Concerns over the impacts of atmospheric changes on the global climate system have resulted in a global emphasis on altering anthropogenic activities to reduce the rate of atmospheric change. The atmospheric concentration of carbon dioxide (CO2) rose from 280 ppm prior to the industrial revolution to ∼380ppm in 2005 and other greenhouse gases have also increased (e.g., methane from 715 to 1,774 ppb1) (IPCC, 2007). Increases in the amount of atmospheric carbon have been linked to changes in climate, including a 0.74°C temperature increase in the last 100 years (IPCC, 2007). Christensen et al. (2007) note that all land regions will likely warm in the 21st century.

In this paper, we present a discussion of methods used to obtain information on carbon stocks, using reported analyses as examples. We begin with some of the challenges in obtaining the necessary information. Methods used to integrate data and models across time and spatial scales, including stratification into large ecosystems, and imputation and regression methods to expand data to unsampled locations, are then discussed. In the summary, we list some of the research needs for improving these linkages and resulting estimates. As there are many articles relating to carbon budgeting, a full review is not given. Instead, examples of research, weighted to more current articles, are referenced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akindele, S.O., LeMay, V.M. (2006). Development of tree volume equations for common timber species in tropical rain forest areas of Nigeria. Forest Ecology and Management, 226, 41–48.

    Article  Google Scholar 

  • Beets, P.N., Robertson, K.A., Ford-Robertson, J.B., Gordon, J., MacLaren, J.P. (1999). Description and validation of C_change: a model for simulating carbon content in managed Pinus radiata stands. New Zealand Journal of Forestry Science, 19(3), 409–427.

    Google Scholar 

  • Bi, H., Turner, J., Lambert, M.J. (2004). Additive biomass equations for native eucalypt forest trees of temperate Australia. Trees, 18, 467–479.

    Article  Google Scholar 

  • Binkley, C.S., Brand, D., Harkin, Z., Bull, G., Ravindranath, N.H., Obersteiner, M., Nilsson, S., Yamagata, Y., Krott, M. (2002). Carbon sink by the forest sector—options and needs for implementation. Forest Policy and Economics, 4, 65–77.

    Article  Google Scholar 

  • Cairns, M.A., Brown, S., Helmer, E.H., Baumgardner, G.A. (1997). Root biomass allocation in the world’s upland forests. Oecologia, 111(1), 1–11.

    Article  Google Scholar 

  • Cao, M.K., Woodward, F.I. (1998). Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393, 249–252.

    Article  CAS  Google Scholar 

  • Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J.-P., Nelson, B.W., Ogawa, H., Puig, H., Riéra, B., Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145, 87–99.

    Article  CAS  Google Scholar 

  • Christensen, J.H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Kolli, R.K., Kwon, W.-T., Laprise, R., Magaña Rueda, V., Mearns, L., Menéndez, C.G., Räisänen, J., Rinke, A., Sarr, A., Whetton, P. (2007). Regional climate projections. In Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.). Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambrige: Cambridge University Press.

    Google Scholar 

  • Cochran, W.G. (1977). Sampling techniques, 3rd ed. Toronto: Wiley.

    Google Scholar 

  • Coops, N.C., Waring, R.H. (2001). The use of multi-scale remote sensing imagery to derive regional estimates of forest growth capacity using 3-PGS. Remote Sensing of Environment, 75(3), 324–334.

    Article  Google Scholar 

  • Fang, J., Chen, A., Peng, C., Zhao, S., Ci, L. (2001). Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320–2322.

    Article  CAS  Google Scholar 

  • Franklin, S.E., Lavigne, M.B., Wulder, M.A., Stenhouse, G.B. (2002). Change detection and landscape structure mapping using remote sensing. Forestry Chronicle, 78(5), 618–625.

    Google Scholar 

  • Ganjegunte, G.K., Condron, L.M., Clinton, P.W., Davis, M.R., Mahieu, N. (2004). Decomposition and nutrient release from radiata pine (Pinus radiata) coarse woody debris. Forest Ecology and Management, 187, 197–211.

    Article  Google Scholar 

  • Gertner, G. (2003). Assessment of computationally intensive spatial statistical methods for generating inputs for spatially explicit error budgets. Forest Biometry, Modelling and Information Sciences, 1, 27–34. Retrieved March 2006, http://www.fbmis.info.

  • Gower, S.T., McMurtrie, R.E., Murty, D. (1996). Aboveground net primary production decline with stand age: potential causes. Trends Ecological Evolutions, 11(9), 378–382.

    Article  Google Scholar 

  • Halme, M., Tomppo, E. (2001). Improving the accuracy of multisource forest inventory estimates by reducing plot location error–a multicriteria approach. Remote Sensing of Environment, 78(3), 321–327.

    Article  Google Scholar 

  • Heikkinen, J.E.P., Virtanen, T., Huttunen, J.T., Elsakov, V., Martikainen, P.J. (2004). Carbon balance in East European tundra. Global Biogeochemical Cycles, 18, GB1023, 14 p.

    Article  CAS  Google Scholar 

  • Iles, K., Smith, N. (2006). A new type of sample plot that is particularly useful for sampling small clusters of objects. Forest Science, 52(2), 148–154.

    Google Scholar 

  • IPCC. (2007). Summary for policymakers. In Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.). Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jenkins, J.C., Chojnacky, D.C., Heath, L.S., Birdsey, R.A. (2003). National-scale biomass equations for United States tree species. Forest Science, 49(1), 12–35.

    Google Scholar 

  • Johnson, D.S., Williams, M.S., Czaplewski, R.L. (2003). Comparison of estimators for rolling samples using forest inventory and analysis data. Forest Science, 49(1), 50–63.

    Google Scholar 

  • Katila, M. (2004). Controlling the estimation errors in the Finnish multisource National Forest Inventory. Research Papers (dissertation) 910. Finish Forest Research Institute.

    Google Scholar 

  • Katila, M., Heikkinen, J., Tomppo, E. (2000). Calibration of small-area estimates for map errors in mulitsource forest inventory. Canadian Journal of Forest Research, 30, 1329–1339.

    Article  Google Scholar 

  • Kauppi, P.E. (2003). New, low estimate for carbon stock in global forest vegetation based on inventory data. Silva Fennica, 37(4), 451–457.

    Google Scholar 

  • Kurz, W.A., Apps, M.J. (1999). A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecological Applications, 9(1), 526–547.

    Article  Google Scholar 

  • Kurz, W.A., Beukema, S.J., Apps, M.J. (1998). Carbon budget implications of the transition from natural to managed disturbance regimes in forest landscapes. Mitigation and Adaptation Strategies for Global Change, 2, 405–421.

    Google Scholar 

  • Kurz, W.A., Apps, M., Banfield, E., Stinson, G. (2002). Forest carbon accounting at the operational scale. Forestry Chronicle, 78(5), 672–679.

    Google Scholar 

  • Lambert, M.-C., Ung, C.-H., Raulier, F. (2005). Canadian national tree aboveground biomass. Canadian Journal of Forest Research, 35, 1996–2018.

    Article  Google Scholar 

  • LeMay, V., Temesgen, H. (2005a). Comparison of nearest neighbor methods for estimating basal area and stems per ha using aerial auxiliary variables. Forest Science, 51(2), 109–119.

    Google Scholar 

  • LeMay, V., Temesgen, H. (2005b). Connecting inventory information sources for landscape level analyses. Forest Biometry, Modelling, and Information Sciences, 1, 37–49. Retrieved March 2006, http://www.fbmis.info.

  • Li, Z., Apps, M.J., Banfield, E., Kurz, W.A. (2002). Estimating net primary production of forests in the Canadian Prairie Provinces using an inventory-based carbon budget model. Canadian Journal of Forest Research, 32(1), 161–169.

    Article  Google Scholar 

  • Li, Z., Kurz, W.A., Apps, M.J., Beukema, S.J. (2003a). Belowground biomass dynamics in the Carbon Budget Model of the Canadian Forest Sector: recent improvements and implications of the estimation of NPP and NEP. Canadian Journal of Forest Research, 33, 126–136.

    Article  Google Scholar 

  • Li, Z., Apps, M.J., Kurz, W.A., Banfield, E. (2003b). Temporal changes of forest net primary production and net ecosystem production in west central Canada associated with natural and anthropogenic disturbances. Canadian Journal of Forest Research, 33, 2340–2351.

    Article  Google Scholar 

  • Lim, K.S., Treitz, P.M. (2004). Estimation of above ground forest biomass from Airborne Discrete Return Laser scanner data using canopy-based quantile estimators. Scandinavian Journal of Forest Research, 29, 558–570.

    Article  Google Scholar 

  • Luken, J.O., Hinton, A.C., Baker, D.G. (1991). Forest edges associated with power-line corridors and implications for corridor siting. Landscape and Urban Planning, 20(4), 315–324.

    Article  Google Scholar 

  • Mäkelä, A. (2003). Process-based modelling of tree and stand growth : towards a hierarchical treatment of multiscale processes. Canadian Journal of Forest Research, 33(3), 398–409.

    Article  Google Scholar 

  • Maltamo, M., Kangas, A. (1998). Methods based on k-nearest neighbor regression in the prediction of basal area diameter distribution. Canadian Journal of Forest Research, 28, 1107–1115.

    Article  Google Scholar 

  • McRoberts, R.E., Nelson, M.D., Wendt, D.G. (2002). Stratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors technique. Remote Sensing of Environment, 82, 457–468.

    Article  Google Scholar 

  • Moeur, M. (2000). Extending stand exam data with most similar neighbor inference. Proceedings of the Society of American Foresters National Convention, September 11–15, 1999. Portland, OR, pp. 99–107.

    Google Scholar 

  • Mouillet, F., Field, C.B. (2005). Fire history and the global carbon budget: a 1° × 1° fire history reconstruction for the 20th century. Global Change Biology, 11, 398–420.

    Article  Google Scholar 

  • Mueller, T.G., Pierce, F.J. (2003). Soil carbon maps: enhancing spatial estimates with simple terrain attributes at multiple scales. Soil Science American Journal, 67, 258–267.

    Article  CAS  Google Scholar 

  • Myneni, R.B., Dong, J., Tucker, C.J., Kaufmann, R.K., Kauppi, P.E., Liski, J., Zhou, L., Alexeyev, V. (2001). A large carbon sink in the woody biomass of northern forests. Proceedings of the National Academy of Science, 98(26), 14784–14789.

    Article  CAS  Google Scholar 

  • Nabuurs, G.J., Masera, O., Andrasko, K., Benitez-Ponce, P., Boer, R., Dutschke, M., Elsiddig, E., Ford-Robertson, J., Frumhoff, P., Karjalainen, T., Krankina, O., Kurz, W., Matsumoto, M., Oyhantcabal, W., Ravindranath, N.H., Sanz Sanchez, M.J., Zhang, X. (2007). Forestry. In Metz, B., O.R. Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A. (eds.) Climate change 2007: Mitigation. Contribution of Working group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Neeff, T., Dutra, L.V., dos Santos, J.R., da Costa Freitas, C., Araujo, L.S. (2005). Tropical forest measurement by interferometric height modeling and P-band radar backscatter. Forest Science, 51(6), 585–594.

    Google Scholar 

  • Nelson, J. (2003). Forest-level models and challenges for their successful application. Canadian Journal of Forest Research, 33(3), 422–429.

    Article  Google Scholar 

  • Nuutinen, T., Kellomäki, S. (2001). A comparison of three modelling approaches for large-scale forest scenario analysis in Finland. Silva Fennica, 35(3), 299–308.

    Google Scholar 

  • Oliver, G.R., Beets, P.N., Garrett, L.G., Pearce, S.H., Kimberly, M.O., Ford-Robertson, J.B., Robertson, K.A. (2004). Variation in soil carbon in pine plantations and implications for monitoring soil carbon stocks in relation to land-use change and forest site management in New Zealand. Forest Ecology and Management, 203, 283–295.

    Article  Google Scholar 

  • Penman, J., Gytarsky, M., Hiraishi, T., Kurg, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Wagner, F. (eds.) (2003). Good practice guidance for land use, land-use change and forestry. Japan: Intergovernmental Panel on Climate Change (IPCC/IGES).

    Google Scholar 

  • Richards, G.P. (2002). The FULLCAM carbon accounting model: Development, calibration and implementation for the National Carbon Accounting System. NCAS Technical Report No. 28. Canberra: Australian Greenhouse Office.

    Google Scholar 

  • Robinson, A., Wykoff, W.R. (2004). Imputing missing height measure using a mixed-effects modeling strategy. Canadian Journal of Forest Research, 34, 2492–2500.

    Article  Google Scholar 

  • Roesch, F.A., Realms, G.A. (1999). Analytical alternatives for an annual inventory system. Journal of Forestry, 97, 33–37.

    Google Scholar 

  • Rohner, M., Böswald. K. (2001). Forestry development scenarios: timber production, carbon dynamics in tree biomass and forest values in Germany. Silva Fennica, 35(3), 277–297.

    Google Scholar 

  • Schimel, D., Melillo, J., Tian, H., McGuire, A.D., Kicklighter, D., Kittel, T., Rosenbloom, N., Running, S., Thornton, P., Ojima, D., Parton, W., Kelly, R., Sykes, M., Neilson, R., Rizzo, B. (2000). Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science, 287, 2004–2006.

    Article  CAS  Google Scholar 

  • Smith, J.E., Heath, L.S. (2002). A model of forest floor carbon mass for United States forest types. Research Paper NE-722. USDA Forest Service.

    Google Scholar 

  • Suratman, M.N., Bull, G.Q., Leckie, D.G., LeMay, V., Marshall, P.L., Mispan, M.R. (2004). Prediction models for estimating volume, age, predicting area of rubber (Hevea brasiliensis) plantations in Malaysia using Landsat TM data. International Forestry Review, 6(1), 1–12.

    Article  Google Scholar 

  • Temesgen, H., LeMay, V.M., Froese, K.L., Marshall, P.L. (2003). Imputing tree-lists from aerial attributes for complex stands of south-eastern British Columbia. Forest Ecology and Management, 177, 277–285.

    Article  Google Scholar 

  • Tomppo, E., Nilsson, M., Rosengren, M., Aalto, P., Kennedy, P. (2002). Simultaneous use of Landsat-TM and IRS-1C WiFS data in estimating large area tree stem volume and aboveground biomass. Remote Sensing of Environment, 82(1), 156–177.

    Article  Google Scholar 

  • Vågen, T.G., Lal, R., Singh, B.R. (2005). Soil carbon sequestration in Sub-Saharan Africa: A Review. Land Degradation and Development, 16, 53–71.

    Article  Google Scholar 

  • White, T.M., Kurz, W.A. (2005). Afforestation on private land in Canada from 1990 to 2002 estimated from historical records. Forestry Chronicle, 81(4), 491–497.

    Google Scholar 

  • Wulder, M.A., Kurz, W.A., Gillis, M. (2003). National level forest monitoring and modeling in Canada. Progress in Planning, 61, 365–381.

    Article  Google Scholar 

  • Yang, Y.S., Guo, J., Chen, G., Xie, J., Gao, R., Li, Z., Jin, Z. (2005). Carbon and nitrogen pools in Chinese fir and evergreen broadleaved forests and changes associated with felling and burning in mid-subtropical China. Forest Ecology and Management, 216, 216–226.

    Article  Google Scholar 

  • Zeide, B. (2003). The U-approach to forest modeling. Canadian Journal of Forest Research, 33(3), 480–489.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

LeMay, V., Kurz, W.A. (2008). Estimating Carbon Stocks and Stock Changes in Forests: Linking Models and Data Across Scales. In: Bravo, F., Jandl, R., LeMay, V., von Gadow, K. (eds) Managing Forest Ecosystems: The Challenge of Climate Change. Managing Forest Ecosystems, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8343-3_4

Download citation

Publish with us

Policies and ethics