Skip to main content

Fatty Acid-Derived Signals that Induce or Regulate Plant Defenses Against Herbivory

  • Chapter
Induced Plant Resistance to Herbivory

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alborn HT, Brennan MM, Tumlinson JH (2003) Differential activity and degradation of plant volatile elicitors present in the regurgitant of tobacco hornworm (Manduca sexta) larvae. J Chem Ecol 29:1357–1372

    Article  PubMed  CAS  Google Scholar 

  • Alborn HT, Hansen TV, Jones TH, Bennett DC, Tumlinson JH, Schmelz EA, Teal PEA (2007) Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles. Proc Natl Acad Sci USA 104:12976–12981

    Article  PubMed  CAS  Google Scholar 

  • Alborn HT, Jones TH, Stenhagen GS, Tumlinson JH (2000) Identification and synthesis of volicitin and related components from beet armyworm oral secretion. J Chem Ecol 26:203–220

    Article  CAS  Google Scholar 

  • Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH (1997) An elicitor of plant volatiles identified from beet armyworm oral secretion. Science 276:945–949

    Article  CAS  Google Scholar 

  • Arimura G, Ozawa R, Kugimiya S, Takabayaashi J, Bohlman J (2004) Herbivore-induced defense response in a model legume. Two-spotted spider mites induce emission of (E)-beta-ocimene and transcript accumulaion of (E)-beta ocimene synthase in Lotus japonicus. Plant Physiol 135:1976–1983

    Article  PubMed  CAS  Google Scholar 

  • Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivory-induced volatiles elicit defense genes in lima bean leaves. Nature 406:512–515

    Article  PubMed  CAS  Google Scholar 

  • Baldwin IT, Schultz JC (1983) Rapid changes in tree leaf chemistry induced by damage – evidence for communication between plants. Science 221:277–279

    Article  PubMed  CAS  Google Scholar 

  • Bate NJ, Rothstein SJ (1998) C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant J 16:561–569

    Article  PubMed  CAS  Google Scholar 

  • Calcagno MP, Avila JL, Rudman I, Otero LD, Alonso-Amelot ME (2004) Food-dependent regurgitate effectiveness in the defence of grasshoppers against ants: the case of bracken-fed Abracris flavolineata (Orthoptera: Acrididae). Physiol Entomol 29:123–128

    Article  Google Scholar 

  • Chamnongpol S, Willekens H, Camp WV (1998) Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc Natl Acad Sci USA 95:5818–5823

    Article  PubMed  CAS  Google Scholar 

  • Conrath U, Pieterse CM, Mauch-Mani B (2002) Priming in plant-pathogen interactions. Trends Plant Sci 7(5):210–216

    Article  PubMed  CAS  Google Scholar 

  • Curtius T, Franzen H (1911) Aldehyde aus gruenen Pflanzenteilen. Chem Zentr II:1142–1143

    Google Scholar 

  • D’Auria JC, Pichersky E, Schaub A, Hansel A, Gershenzon J (2007) Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana. Plant J 49:194–207

    Article  PubMed  CAS  Google Scholar 

  • Degenhardt DC, Lincoln DE (2006) Volatile emissions from an odorous plant in response to herbivory and methyl jasmonate exposure. J Chem Ecol 32:725–743

    Article  PubMed  CAS  Google Scholar 

  • De Moraes CM, Lewis WJ, Paré PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573

    Article  Google Scholar 

  • De Moraes CM, Mescher MC (2004) Biochemical crypsis in the avoidance of natural enemies by an insect herbivore. Proc Natl Acad Sci USA 101:8993–8997

    Article  PubMed  Google Scholar 

  • De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580

    Article  PubMed  CAS  Google Scholar 

  • Dugravot S, Mondy N, Mandon N, Thibout E (2005) Increased sulfur precursors and volatiles production by the leek Allium porrum in response to specialist insect attack. J Chem Ecol 31:1299–1314

    Article  PubMed  CAS  Google Scholar 

  • Eichenseer H, Mathews MC, Bi JL, Murphy JB, Felton GW (1999) Salivary glucose oxidase: multifunctional roles for Helicoverpa zea? Arch Insect Biochem Physiol 42:99–109

    Article  PubMed  CAS  Google Scholar 

  • Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 101:1781–1785

    Article  PubMed  CAS  Google Scholar 

  • Engelberth J, Seidl-Adams I, Schulz JC, Tumlinson JH (2007) Insect elicitors and exposure to green leafy volatiles differentially up-regulate major octadecanoids and transcripts of 12-oxo phytodienoic acid reductases in Zea mays. Mol Plant Microbe Interact 20:707–716

    Article  PubMed  CAS  Google Scholar 

  • English J, Bonner J (1937) The wound hormones of plants. I. Traumatin, the active principle of the bean test. J Biol Chem 121:791–799

    CAS  Google Scholar 

  • Farag MA, Paré PW (2002) C6-green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochemistry 61:545–554

    Article  PubMed  CAS  Google Scholar 

  • Halitschke R, Schittko U, Pohnert G, Boland W, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. III. Fatty acid–amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiol 125:711–717

    Article  PubMed  CAS  Google Scholar 

  • Hatanaka A (1993) The biogeneration of green odour by green leaves. Phytochemistry 34: 1201–1218

    Article  CAS  Google Scholar 

  • Heil M, Bueno CS (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci USA 104:5467–5472

    Article  PubMed  CAS  Google Scholar 

  • Heil M, Kost C (2006) Priming of indirect defenses. Ecol Lett 9:813–817

    Article  PubMed  Google Scholar 

  • Hildebrand DF, Brown GC, Jackson DM, Hamilton-Kemp TR (1993) Effects of some leaf-emitted volatile compounds on aphid population increase. J Chem Ecol 19:1875–1887

    Article  CAS  Google Scholar 

  • Karban R, Shiojiri K, Huntzinger M, McCall AC (2006) Damage-induced resistance in sagebrush: volatiles are key to intra- and interplant communication. Ecology 87:922–930

    Article  PubMed  Google Scholar 

  • Kessler A, Halitschke R, Diezel C, Baldwin IT (2006) Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. Oecologia 148:280–292

    Article  PubMed  Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2006) ETR1-, JAR1- and PAD2-dependent signaling pathways are involved in C6-aldehyde-induced defense responses of Arabidopsis. Plant Sci 171:415–423

    Article  CAS  Google Scholar 

  • Kutlesa NJ, Caveney S (2001) Insecticidal activity of glufosinate through glutamine depletion in a caterpillar. Pest Manag Sci 57:25–32

    Article  PubMed  CAS  Google Scholar 

  • Lait CG, Alborn HT, Teal PEA, Tumlinson JH (2003) Rapid biosynthesis of N-linolenoyl-L-glutamine, an elicitor of plant volatiles, by membrane associated enzyme(s) in Manduca sexta. Proc Natl Acad Sci USA 100:7027–7032

    Article  PubMed  CAS  Google Scholar 

  • Litvak ME, Monson RK (1998) Patterns of induced and constitutive monoterpene production in conifer needles in relation to insect herbivory. Oecologia 114:531–540

    Article  Google Scholar 

  • Loughrin JH, Manukian A, Heath RR, Turlings TCJ, Tumlinson JH (1994) Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plants. Proc Natl Acad Sci USA 91:11836–11840

    Article  PubMed  CAS  Google Scholar 

  • Matsui K (2006) Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9:274–280

    Article  PubMed  CAS  Google Scholar 

  • Mithöfer A, Wanner G, Boland W (2005) Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol 137:1160–1168

    Article  PubMed  CAS  Google Scholar 

  • Mori N, Yoshinaga N, Sawada Y, Fukui M, Shimoda M, Fujisaki K, Nishida R, Kuwahara Y (2003) Identification odvolicitin-related compounds from the regurgitant of lepidopteran caterpillars. Biosci Biotech Biochem 67:1168–1171

    Article  CAS  Google Scholar 

  • Mori N, Alborn HT, Teal PEA, Tumlinson JH (2001) Enzymatic decomposition of elicitors of plant volatiles in Heliothis virescens and Helicoverpa zea. J Insect Physiol 47:749–757

    Article  PubMed  CAS  Google Scholar 

  • Ortego F, Evans PH, Bowers WS (1997) Enteric and plant-derived deterrents in regurgitate of American bird grasshopper, Schistocerca americana. J Chem Ecol 23:1941–1950

    Article  CAS  Google Scholar 

  • Paré PW, Alborn HT, Tumlinson JH (1998) Concerted biosynthesis of an insect elicitor of plant volatiles. Proc Natl Acad Sci USA 95:13971–13975

    Article  PubMed  Google Scholar 

  • Paré PW, Tumlinson JH (1997a) Induced synthesis of plant volatiles. Nature 385:30–31

    Article  Google Scholar 

  • Paré PW, Tumlinson JH (1997b) De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol 114:1161–1167

    Google Scholar 

  • Pohnert G, Jung V, Haukioja E, Lempa K, Boland W (1999) New fatty acid amides from regurgitant of lepidopteran (Noctuidae, Geometridae) caterpillars. Tetrahedron 55:11275–11280

    Article  CAS  Google Scholar 

  • Prime-A-Plant Group, Conrath U, Beckers GJ, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CM, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for the battle. Mol Plant Microbe Interact 19:1062–1071

    Article  PubMed  CAS  Google Scholar 

  • Prost I, Dhondt S, Rothe G, Vicente J, Rodriguez MJ, Kift N, Carbonne F, Griffiths G, Esquerre-Tugaye MT, Rosahl S, Castresana C, Hamberg M, Fournier J (2005) Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol 139:1902–1913

    Article  PubMed  CAS  Google Scholar 

  • Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–719

    Article  PubMed  CAS  Google Scholar 

  • Rhoades DF (1983) Responses of alder and willow to attack by tent caterpillars and webworms – Evidence for pheromonal sensitivity of willows. ACS Symp Ser 208:55–68

    Article  Google Scholar 

  • Rodrigues-Saona C, Crafts-Brandner SJ, Williams L, Paré PW (2002) Lygus hesperus feeding and salivary gland extracts induce volatile emissions in plants. J Chem Ecol 28:1733–1747

    Article  Google Scholar 

  • Röse USR, Manukian A, Heath RR, Tumlinson JH (1996) Volatile semiochemicals released from undamaged cotton leaves: a systemic response of living plants to caterpillar damage. Plant Physiol 111:487–495

    PubMed  Google Scholar 

  • Röse USR, Tumlinson JH (2005) Systemic induction of volatile release in cotton: how specific is the signal to herbivory. Planta 222:327–335

    Article  PubMed  CAS  Google Scholar 

  • Ruther J, Kleier S (2005) Plant–plant signaling: ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen-1-ol. J Chem Ecol 31:2217–2222

    Article  PubMed  CAS  Google Scholar 

  • Sawada Y, Yoshinaga N, Fujisaka K, Nishida R, Kuwahara Y, Mori N (2006) Absolute configuration of volicitin from the regurgitant of lepidopteran caterpillars and biological activity of volicitin-related compounds. Biosci Biotechnol Biochem 70:2185–2190

    Article  PubMed  CAS  Google Scholar 

  • Schaller F, Schaller A, Stintzi A (2004) Biosynthesis and metabolism of jasmonates. J Plant Growth Regul 23(3):179–199

    CAS  Google Scholar 

  • Schmelz EA, Alborn HT, Tumlinson JH (2003) Synergistic interactions between volicitin, jasmonic acid and ethylene mediate insect-induced volatile emission in Zea mays. Physiol Plant 117:403–412

    Article  PubMed  CAS  Google Scholar 

  • Schmelz EA, Carroll MJ, LeClere S, Phipps SM, Meredith J, Chourey PJ, Alborn HT, Teal PEA (2006) Fragments of ATP synthase mediate plant perception of insect attack. Proc Natl Acad Sci USA 103:8894–8899

    Article  PubMed  CAS  Google Scholar 

  • Shiojiri K, Kishimoto K, Ozawa R, Kugimiya S, Urashimo S, Arimura G, Horiuchi J, Nishioka T, Matsui K, Takabayashi J (2006) Changing green leaf volatile biosynthesis in plants: an approach for improving plant resistance against both herbivores and pathogens. Proc Natl Acad Sci USA 103:16672–16676

    Article  PubMed  CAS  Google Scholar 

  • Spiteller D, Dettner K, Boland W (2000) Gut bacteria may be involved in interactions between plants, herbivores and their predators: microbial biosynthesis of N-acyclglutamine surfactants as elicitors of plant volatiles. Biol Chem 381:755–762

    Article  PubMed  CAS  Google Scholar 

  • Spiteller D, Pohnert G, Boland W (2001) Absolute configuration of volicitin, an elicitor of plant volatile biosynthesis from lepidopteran larvae. Tetrahedron Lett 42:1483–1485

    Article  CAS  Google Scholar 

  • Stanley-Samuelson DW (1994) Prostaglandins and related eicosanoids in insects. Adv Insect Physiol 24:115–212

    Article  CAS  Google Scholar 

  • Stanley-Samuelson DW, Jurenka RA, Loher W, Blomquist GJ (1987) Metabolism of polyunsaturated fatty acids by larvae of the waxmoth, Galleria mellonella. Arch Insect Biochem Physiol 6:141–149

    Article  CAS  Google Scholar 

  • Stelmach BA, Muller A, Hennig P, Gebhardt S, Schubert-Zsilavecz M, Weiler EW (2001) A novel class of oxylipins, sn1-O-(12-oxophytodienoyl)-sn2-O-(hexadecatrienoyl)-monogalactosyl diglyceride, from Arabidopsis thaliana. J Biol Chem 276:28628–28628

    Article  CAS  Google Scholar 

  • Stelmach BA, Muller A, Hennig P, Laudert D, Andert L, Weiler EW (1998) Quantitation of the octadecanoid 12-oxo-phytodienoic acid, a signaling compound in plant mechanotransduction. Phytochemistry 47:539–546

    Article  PubMed  CAS  Google Scholar 

  • Stintzi A, Weber H, Reymond P, Browse J, Farmer EE (2001) Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc Natl Acad Sci USA 98: 12837–12842

    Article  PubMed  CAS  Google Scholar 

  • Stintzi A, Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA 97:10625–10630

    Article  PubMed  CAS  Google Scholar 

  • Sword GA (2001) Tasty on the outside, but toxic in the middle: grasshopper regurgitation and host plant-mediated toxicity to a vertebrate predator. Oecologia 128:416–421

    Article  Google Scholar 

  • Taki N, Sasaki-Sekimoto Y, Obayashi T, Kikuta A, Kobayashi K, Ainai T, Yagi K, Sakurai N, Suzuki H, Masuda T, Takamiya K, Shibata D, Kobayashi Y, Ohta H (2005) 12-Oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiol 139:1268–1283

    Article  PubMed  CAS  Google Scholar 

  • Ton J, D’Alessandro MD, Jourdie V, Jakab G, Karlen D, Held M, Mauch-Mani B, Turlings TCJ (2007) Priming by airborne signals boosts direct and indirect resistance in maize. Plant J 49:16–26

    Article  PubMed  CAS  Google Scholar 

  • Truitt CL, Paré PW (2004) In situ translocation of volicitin by beet armyworm larvae to maize and systemic immobility of the herbivore elicitor in planta. Planta 218:999–1007

    Article  PubMed  CAS  Google Scholar 

  • Tumlinson JH, Alborn HT, Loughrin JH, Turlings TCJ, Jones TH (2000) Plant volatile elicitor from insects. US Patent # 6,054,483; April 25, 2000 (M-3499); US Patent # 6,207,712 B1; March 27, 2001

    Google Scholar 

  • Tumlinson JH, Lait CG (2005) Biosynthesis of fatty acid amide elicitors of plant volatiles by insect herbivores. Arch Insect Biochem Physiol 58:54–68

    Article  PubMed  CAS  Google Scholar 

  • Turlings TCJ, Alborn HT, Loughrin JH, Tumlinson JH (2000) Volicitin, an elicitor of maize volatiles in oral secretion of Spodoptera exigua: isolation and bioactivity. J Chem Ecol 26:189–202

    Article  CAS  Google Scholar 

  • Turlings TCJ, Bernasconi M, Bertossa R, Bigler F, Caloz G, Dorn S (1998) The induction of volatile emissions in maize by three herbivore species with different feeding habits: possible consequences for their natural enemies. Biol Control 11:122–129

    Article  Google Scholar 

  • Turlings TC, Tumlinson JH (1992) Systemic release of chemical signals by herbivore-injured corn. Proc Natl Acad Sci USA 89:8399–8402

    Article  PubMed  CAS  Google Scholar 

  • Vancanneyt G, Sanz C, Farmaki T, Paneque M, Ortego F, Castanera P, Sanchez-Serrano JJ (2001) Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proc Natl Acad Sci USA 98:8139–8144

    Article  PubMed  CAS  Google Scholar 

  • Wei JN, Zhu JW, Kang L (2006) Volatiles released from bean plants in response to agromyzid flies. Planta 224:279–287

    Article  PubMed  CAS  Google Scholar 

  • Williams L, Rodriguez-Saona C, Paré PW, Crafts-Brandner SJ (2005) Arch Biochem Phys 58:84–96

    Article  CAS  Google Scholar 

  • Yoshinaga N, Aboshi T, Ishikawa C, Fukui M, Shimoda M, Nishida R, Lait CG, Tumlinson JH, Mori N (2007) Fatty acid amides, previously identified in caterpillars, found in the cricket Teleogryllus taewanemma and fruit fly Drosophila melanogaster larvae. J Chem Ecol 33:1376–1381

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga N, Sawada Y, Nishida R, Kuwahara Y, Mori N (2003) Specific incorporation ofL-glutamine into volicitin in the regurgitant of Spodoptera litura. Biosci Biotechnol Biochem 67:2655–2657

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tumlinson, J.H., Engelberth, J. (2008). Fatty Acid-Derived Signals that Induce or Regulate Plant Defenses Against Herbivory. In: Schaller, A. (eds) Induced Plant Resistance to Herbivory. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8182-8_19

Download citation

Publish with us

Policies and ethics